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ABSTRACT

The latest European Space Agency Annual Space
Environment Report [4] confirms, once more, the ever
increasing amount of space debris orbiting around the
Earth. Collisions between resident space objects will
only accelerate the growth rate of the current debris
population endangering space-related activities. In that
context, the surveillance of the outer space becomes
of paramount relevance. Current existing surveillance
networks make extensive use of different observation
techniques to retrieve not only updated information of
the orbital elements of the object, but also evidence about
its attitude and attitude motion.
One on-going limitation for the tracking of space debris
with optical sensors (active or passive) comes from
the lack of accurate ephemerides that will not allow
pinpointing the object within the field of view of the
sensor. The constraint imposed by the field of view is
significantly less stringent in passive-optical systems, but
becomes critical for active systems such as laser ranging
stations.
The presented work focuses on the development of
algorithms that allow an automated real-time correction
of the pointing of the telescope while the object is within
the field of view of the wide angle camera. The final aim
is the centring of the target within the narrow field of
view of the laser beam, thus facilitating the acquisition
of laser ranges. We choose estimators according to
statistical properties such as efficiency and robustness
to enable the tracking even in the most challenging
observation conditions: daytime. All experiments were
conducted using real data derived from a tracking camera
with a scientific-CMOS sensor on the Zimmerwald
Laser and Astrometry Telescope (ZIMLAT) at the Swiss
Optical Ground Station and Geodynamics Observatory
Zimmerwald (SwissOGS) operated by the Astronomical
Institute of the University of Bern, Switzerland.

Keywords: Satellite Laser Raning, Object Recognition,
Active Tracking.

1. INTRODUCTION

The last revision of the Space Debris Mitigation Guide-
lines issued by The Inter-Agency Space Debris Coordina-
tion Committee (IADC) [6] supports the sustainable use
of the outer space through:

• Limiting the probability of accidental collision in or-
bit.

• Limiting the long-term presence of spacecraft and
launch vehicle orbital stages in the low-Earth orbit
(LEO) region after the end of their mission.

The previous two guidelines, out of the total of 7, high-
light the importance of a surveillance and tracking global
network. Note that the second mitigation guideline asks
for surveillance to ensure that the disposal of decom-
missioned satellites and launch vehicle orbital stages are
compliant with the original proposal and will not pose a
future risk for space-related activities.
The ground-based monitoring of the outer space is
usually conducted by sky surveys and specific target’s
follow-up observation schemes. Nonetheless, when the
reduction of uncertainty in the target state becomes im-
perative due to a close conjunction, or due to the oc-
currence of a re-entry event, a combination of the prior
observing techniques raises: the stare and chase. This
observation strategy could be implemented either using
prior information of the target, or for first discoveries fix-
ing the telescope in a given direction, e.g. in the zenith.
The one pass real-time observation of targets with poor
ephemerides presents a challenge: we want to maximize
the portion of the observed arc and maximize the likeli-
hood to retrieve range and angular measurements. In pre-
vious studies [8], we showed that the use of merged ob-
servations, distributed along the maximal observable or-
bital arc, will facilitate the re-acquisition of targets for the
same station and to other stations by disseminating the
new ephemerides through the propagation of the newly
estimated state. Through this work we will present the
core algorithms used by the stare and chase. Specifically,
we will derive efficient and robust estimates for the object
recognition and the tracking modules. The combination
of the two modules define our active tracking approach
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where the system starts the tracking using existing orbital
information from the target. Next, once images are ac-
quired, and the target object is successfully identified in
the camera reference frame, differential corrections are
estimated and the pointing of the telescope is rectified
with respect to the initial pointing derived from the given
orbit.

2. EFFICIENT AND ROBUST ESTIMATORS

Through our work, we will use robust and efficient es-
timators. The metric defined for the robustness is the
breakdown point [9], while for the efficiency we choose
estimators that yield minimum dispersion estimates [9].
An example of a robust estimator is the sample median;
likewise, an example of an efficient estimator is the sam-
ple mean. Next, we will list situations where the selection
of a suitable estimator is of paramount relevance:

• To mitigate the impact of different error sources in
the estimation of source and background in the pas-
sive system. Potential error sources could be due to
hot and dead pixels in the imaging sensor, stray light
from the laser beam, if used in combination with an
active system, presence of clouds or star trails within
the field of view of the sensor.

• During the object recognition phase during daylight,
the terminator or nighttime if close to a celestial or
artificial bright object. The brightness of the back-
ground might be close to the one of the source chal-
lenging the localization of the object image in the
frame.

• During the active tracking, for deriving best esti-
mates of the pointing of the telescope in real time.
Note that inaccurate and unreliable estimates com-
ing only from the object recognition module could
lead in worse-case scenarios to hardware failures,
e.g. wrong slew movements of the telescope.

For the fulfilment of the previous points, a combination
of robust and efficient estimators is selected as the pre-
ferred choice for estimating the properties of the object
image, i.e. the centroid and brightness, as well as its fu-
ture position in the camera reference frame using the his-
torical records available from successful detections. Fi-
nally, once we are able to track the object for the com-
plete pass, we update its state and propagate it for next
acquisitions.

3. IMAGE PROCESSING

In this section we will analyse all steps concerning the ob-
ject recognition phase and the estimation of the so-called
centroid, i.e. the coordinates of the object image on the

camera reference system, which describe the central ten-
dency for the location of the distribution of its intensity
on the image plane. The input for the image process-
ing module are images acquired in real time. The output
will be estimates of the centroid coordinates for the object
image. The latter will be the input for the tracking algo-
rithm. Moreover, we will show that the implementation
of our algorithm allow us to derive the apparent bright-
ness of the target as a by-product of the object recognition
phase.

3.1. Problem statement

Given a raw image and the orientation of the camera ref-
erence system with respect to a defined reference system
of interest, e.g. the horizon reference system, find the
coordinates of the object image so that, after applying
the transformation between camera and horizon reference
systems, angular observations, i.e. azimuth an elevation,
can be derived.
To tackle the problem we divide the acquired image into
two classes: source and background. The source cor-
responds to those solar photons scattered by the target,
which reach the detector. The background comprises sky
background photons, detector dark current, dead and hot
pixels, etc. In general, the background represents all in-
put signal which triggered an event on the detector de-
spite not coming from the source. Due to the afore-
mentioned variability of the background attributed to the
different error sources, we apply a sequence of steps to
smooth and remove the background and improve the es-
timation of the centroid.

3.2. Pre-Processing

In this step we apply a lowpass filter in order to enhance
the quality of the object image by filtering potential imag-
ing errors, which will affect otherwise the estimation of
the background and the source. We refer to imaging er-
rors as sample pixels that provide intensity values not
drawn from the expected probability distribution of either
the background or the source. The selected choice for the
filter is the robust median kernel. The operation consists
on placing a matrix of a defined size in each of the image
pixels, and computing the median of all elements within
it; the resulting value will overwrite the old value for the
pixel where the matrix was placed. This pre-processing
step was implemented as a discrete convolution in the
spatial domain, meaning that we include another tuning
parameter besides the kernel size, the step size, which
will allow to improve the computational performance of
the operation. In Subsection 3.5 we will show the impact
of selecting different tuning parameters.



3.3. Background Estimation and Removal

An image taken by our tracking camera contains 5.5
megapixels. The object image will be represented in only
a fraction of the total number of pixels. In order to reduce
the size of the image we crop the original raw image into
a smaller one. To answer the question: where do you crop
your image without also removing the object of interest?
we implemented two different options. First, we use the
estimated position of the laser beam on the camera refer-
ence system (further details are given e.g. in [3]) and crop
the raw image according to a predefined width consider-
ing an average apparent velocity of a low Earth orbiter for
crossing the diagonal field of view of the tracking camera,
which is of about 9 arcminutes. That works when we have
accurate ephemerides, e.g. those generated for active tar-
gets of the International Laser Ranging Service (ILRS)
[7] in the form of Consolidated Predicted Format (CPF).
In the space debris domain usually the ephemerides are
computed from the so-called Two Line Elements (TLE)
[1], which can have significant offsets with respect to the
true position of the object in the sky. In the latter case,
the operator must select where the object is during the
first frame acquired by the tracking camera and only af-
terwards the image is cropped. Note that this approach
was implemented only for cases where the signal-to-noise
ratio was compromised, e.g. during daylight, and the au-
tomated operating mode will remove the target after the
pre-processing step preventing the immediate tracking of
the target.
Once we have the subframe, and initial coordinates of the
centroid, we can compute the intensity as a function of
the distance between all pixels within the subframe and
the centroid. By doing so, we are approximating the point
spread function (PSF) of the object image. Note that the
PSF will represent mainly the on-site atmospheric see-
ing, i.e. we use the mathematical function describing
the seeing-induced PSF as a first-order approximation of
the PSF of the object image. To derive the radius of the
source on the image, we compute it using the full-width-
at-half-maximum (FWHM) calculated numerically using
the previously constructed radial distribution of intensity
with respect to the centroid. The radii for the inner and
outer background apertures are the result of the product
between the FWHM and a defined constant (more details
are available in [2]). In our case we took twice the value
taken in [2] to consider potential errors in the estimation
of the centroid.
The difference between outer and inner background radii
defines a region within the subframe that might be used
as a representative sample of the background. For the ap-
proximation of the PSF, we use circular apertures assum-
ing a symmetrical PSF, which might be found in ideal
imaging systems observing with long exposure, averag-
ing the impact of the on-site atmospheric seeing. From
the computational point of view, the calculation of circu-
lar apertures involve the computation of the distance be-
tween all pixels within the subframe and the centroid of
the object image. The previous operation can be avoided
if we take the circumscribed square of the outer minus the
one of the inner aperture.

In Figure 1 we show the subframe of the image, and the
area that will be used to extract the samples for the esti-
mation of the background using circular and square aper-
tures. The raw image has a radiometric resolution of 16
bit and, as it can be seen in the raw subframe, the used
dynamic range is that of 18% of its total capacity. The
example shows a nighttime frame acquired for Topex-
Poseidon using an exposure time of 0.05 seconds. Addi-
tionally, from visual inspection, we see that the extracted
background using squares is more heterogeneous, in this
case, than the one using circles, in particular the lower
right and left corners. It is clear that the geometrical pat-
tern is not the cause, but rather the fact that the square
apertures reach a brighter region of the background that
is more heterogeneous for this specific frame.
In Table 1 we compare the estimation of the background
for each case evinced in Figure 1. Our ground truth is
defined by the values estimated using the circular aper-
tures. The reason is that we computed the normality
Kolmogorov-Smirnov statistical test, and it succeeded at
a confidence level of 95% using the samples contained in
the background ring. Despite the fact that the background
is more heterogeneous when using squares, the estimates
for the background using the sample mean and median
are close to the ones provided by our ground truth. The
difference can be neglected if one considers the dynami-
cal range of the image. The estimated background using
the complete subframe, including the source, show the
expected increase in the magnitude for the background
estimated using the sample mean, but the impact of the
source is significantly attenuated when using the sample
median. Note that despite including the source within the
estimation of the background, due to the large number of
samples, the impact of the source is further attenuated.
Regarding the estimators measuring the dispersion, we
see no difference between the estimation of the variance
with respect to the mean or median due to the large num-
ber of samples for each of the 3 cases. The latter result is
commonly found in actual symmetric distributions. The
estimated standard deviation with respect to the sample
mean and sample median reflects the heterogeneity of the
background containing the source when estimating the
background using the subframe. Finally, when taking the
median absolute deviation, a robust estimator to measure
the dispersion of a set of samples, we see that it is able
to isolate those pixels that do not belong to the homoge-
neous distribution of the background, i.e. the source.
We conclude that the use of robust estimators for the reck-
oning of the background, as well as for its dispersion,
mitigates the impact of error sources not coming from
its expected distribution. We proved the previous state-
ment computing the background including the source it-
self, which may be considered an extreme case. We im-
plemented the described approach in our real-time system
using the square apertures besides the median and median
absolute deviation as estimators for the background.



Figure 1. Subframe of original image centered on the object image (left). Area of the subframe defined by the difference
between outer and inner background radii (middle). Area of the subframe taking the circumscribed square of the difference
between outer and inner background radii (right). Unit colobars: Analog-To-Digital (ADU) units.

Table 1. Estimation of the background varying the geo-
metrical pattern from where samples of the background
are extracted. Std: standard deviation. Mad: median ab-
solute deviation. We highlight in gray the combination of
estimators that minimize the impact of the source in the
estimation of the background.

Circle Square Subframe
Num. Samples 38300 59400 88209
Sample Mean [ADU] 2661 2664 2715
Sample Median [ADU] 2661 2663 2672
Std. Mean [ADU] 86 89 422
Std. Median [ADU] 86 89 424
Mad. Mean [ADU] 58 58 70
Mad. Median [ADU] 58 58 58

Figure 2. Profiles of two frames acquired during the ob-
servation of a Topex-Poseidon pass using the tracking
camera. The top plot shows that there is enough contrast
to distinguish the object image compared to the bottom
one. The figure highlights the impact of choosing a spe-
cific threshold for the removal of the background.

Once we have representative estimates for the back-
ground, the next step is its removal. To see the impact of
removing the estimated MED(back) + kMAD(back),
where k is a constant,MED the median operator,MAD
the median absolute deviation with respect to the median
and back is the set of background samples, we extracted
two cross-sections from two different frames acquired
from the Topex-Poseidon pass, where the object was
deeply embedded in background noise. For the statistical
interpretation of k the reader is referred to [9]. In Figure
2 we show two profiles of the object image fixing the row.
After the subtraction of only MED(back), it becomes
clear that a suitable threshold for masking the pixels
which do not belong to the source is zero. Nevertheless,
the zero threshold will not maximize the removal of the
background, i.e. there will be scattered pixels which not
belonging to the source will impact the determination of
the centroid. The thresholdMED(back)+MAD(back)
was found to yield a good compromise between high
and low contrast images. Larger values for k will work
for brighter targets but may remove the weak signal of
the source for images with low signal-to-noise ratio (see
bottom plot in Figure 2).

Once we are able to remove the background, we proceed
with the estimation of the centroid.

3.4. Centroid Estimation

The estimation of the centroid is given by the weighted
average of the coordinates of the source pixels defining
as weighting factor the intensity at the location of the dif-
ferent N pixels within its distribution. The formula reads
[5]:

XCoG =

∑N−1
i=0 Ix,yX∑N−1
i=0 Ix,y

, (1)

where XCoG is the coordinate component for the center
of gravity of the object image with an intensity Ix,y at
a given coordinate component X . Note that the estima-
tor used for finding the centroid minimizes the weighted
mean square error. At this stage, after the pre-processing
steps decribed in Subsection 3.2, and the estimation and



removal of the background analyzed in Subsection 3.3,
we minimize the contribution of background pixels in the
estimation of the centroid for the source. In Subsection
3.5 we will show the results after the two operations in a
sequential fashion.

3.5. Results and Discussion

In this Subsection we will analyze the sequence of op-
erations performed for the extraction of the object’s cen-
troid. We present one pass for the rocket body H-2A with
NORAD 38341, which has an altitude of 585 km at the
perigee and culminated at an elevation of 23◦on Octo-
ber 11, 2019, at 15:45 UTC. Note that the observation
conditions, daylight and the low elevation pass, present a
challenge to distinguish the source from the background.
In Figure 3 we show the sequence of operations per-
formed to discriminate the source from the background.
From the left to the right we show the raw subframed
image, the resulting image after the convolution be-
tween the raw subframed image and the median filter
using two combinations of kernel and step size (top
and bottom plots), the resulting image after subtracting
MED(back) + MAD(back), and finally the resulting
image masking all non-positive pixels to zero.

We show one image out of the 750 acquired with an
exposure time of 0.02 seconds. Note that we show how
the previous centroid of the image was not optimally es-
timated since the background pixels were not correctly
removed (upper sequence of images in Figure 3). De-
spite being suboptimal, the solution using a kernel of 5
pixels x 5 pixels with a step size of 3 pixels keeps the
target within the subframe. On the other hand, the solu-
tion using a kernel of 9 pixels x 9 pixels with a step size
of 5 pixels keeps the target centered within the subframe,
after a better removal of the background in the previous
image. The reason is clear: a larger combination between
kernel and step size smooths better the intensity in the
whole subframe. Note also that the smoothing affects the
intensity of the source. After the analysis of this series,
we noticed that the dynamic range yield 76% out of its
full capacity for the raw subframes. The impact of the
on-site atmospheric seeing becomes noticeable in many
frames due to the short exposure freezing the seeing at
the acquisition of the frame. Finally, we can estimate the
limit of the kernel size by taking the atmospheric seeing.
Example: for an atmospheric seeing of 2 arcseconds and
a pixel scale of 0.173 arcseconds/pixel the limit will be a
kernel size of 11 pixels x 11 pixels. A kernel size larger
than the limit might remove the target from the subframe
preventing the estimation of its centroid.
Finally, after the estimation of the centroid, we can es-
timate again the PSF, place the apertures for the source
and the inner and outer apertures for the background and
derive the apparent brightness of the target.

4. ACTIVE TRACKING

The output of the object recognition phase is the posi-
tion of the object image in the camera reference system
and its apparent brightness. Knowing the position of the
laser beam in the camera reference system, we can es-
timate the offset between the target and the laser beam
position. After the transformation between the camera
and the horizon reference systems, those offsets are ex-
pressed as ∆azimuth and ∆elevation. Despite the elab-
orated object recognition algorithm, nothing prevents it
from failing in case of the presence of clouds, bright arti-
ficial or celestial objects within the subframe, or very low
intensity contrast between source and background. For
those cases, an active tracking algorithm is developed to
ensure the smooth tracking of the object when the esti-
mates derived from the object recognition phase are of
compromised precision or accuracy.

4.1. Problem Statement

Given a set of past records of the state vector of the object
image in the camera reference frame, extracted from the
object recognition phase, estimate predictions at an epoch
t+ 1 for the state vector of the object image, updating its
state at epoch t when a new observation becomes avail-
able, using the n number of past records collected until
the epoch t. The n last records define our sliding obser-
vation window (sow).
In order to model the trajectory T (t) of the object image
in the camera reference frame, we make use of the Taylor
series expansion:

T (t) =

pmax∑
p=0

T (t)p

p!
(t0 − t)p, (2)

where t0 is the initial entry of the sliding observation win-
dow. The predictions for the epoch t+ 1 are derived after
the estimation of the T (t)p

p! coefficients via the minimiza-
tion of the mean square error using all n observations
available within the sliding observation window. Note
that the algebraic form of Equation 2 is simply a polyno-
mial of degree pmax, but taking the pth rate of change
of the trajectory gives a dynamical definition, i.e. a state
transition matrix.
The observation equation is trivial due to the fact that we
observe directly the state that we want to estimate, i.e.:

X = X + η, (3)

where η is the noise of the measurement with unknown
probability density function.

4.2. Observation and Error Windows

For the estimation of the future state and its update, we
use all measurements contained within a sliding observa-
tion window of n entries. Estimators that minimize the



Figure 3. Comparison of the resulting centroid after using a different set up for the pre-processing step, i.e. convolution
between the raw subframed image and median kernel. The top sequence uses a median filter with a kernel of 5 pixels x
5 pixels with a step size of 3 pixels, while the bottom sequence uses a kernel of 9 pixels by 9 pixels with a step size of 5
pixels. Note that in the top sequence the object image is not centered in the subframe due to the impact of the non-filtered
background pixels from the previous image. Unit colorbars: ADU.

mean square error are arguably sensitive to outliers due
to their low breakdown point. An example of an outlier
coming from the object recognition phase can occur, e.g.
due to a passing cloud. The estimated centroid will most
likely correspond to the center of gravity of all the un-
masked pixels which belong to the cloud not to the object
of interest. In order to filter outliers, we use a sliding error
window (sew) defined by the observed-minus-computed
(OmC) state of the object image for the n entries of the
sliding observation window.
As soon as a new observation becomes available, we sub-
tract it from its prediction, defining the term OmCt, and
compare it against τ = MED(sew) ± kMAD(sew)
computing it over all n OmC entries in the sliding error
window. Our null hypothesis is that OmCt is within the
bounds ±τ . If the alternate hypothesis results true, then
the observation acquired at epoch t is marked and not ac-
counted for within the sliding observation window.
Note that during the tracking a sudden change in the tra-
jectory can happen. In that case, the next n/2 observa-
tions will be marked as outliers, however, the n/2 + 1 in-
coming observation will correct the estimated τ , avoiding
the saturation of the filter marking as good observations
those within the newly estimated ±τ .

4.3. Results and Discussion

We present an interesting case for a LAGEOS-1 pass
observed on April 20, 2019. The reason for selecting
this target relies on its low signal-to-noise ratio, which
evinces a perfect case for testing the precision, accu-
racy and reliability of the algorithm. For the accuracy,
the solution extracted using the software AstroImageJ
[2] will define our ground truth. In Figure 4 we show

the component-wise solutions obtained using Astroim-
ageJ (aij), the estimated state from the object recognition
procedure (objrec), and the predicted state derived from
the active tracking (track). In Figure 4 we are able to see:

1. Initialization of the sliding observation window.
The algorithm stores the first 10 entries to initialize
the sow. The solution provided by the object recog-
nition procedure is in agreement with respect to the
solution extracted using aij.

2. Change in component X and outlier in Y. We can
see how the X component is treated at the begin-
ning as an outlier neglecting all incoming measure-
ments, but after the 5th new measurement, the filter
becomes responsive again. In the Y component we
can see two spurious measurements neglected by the
active tracking.

3. Exclusion of outlier. We can see that an important
outlier is neglected by the tracking solution, smooth-
ing the trajectory of the object image as receiving
new observations.

The maximum error between the solution provided by aij
and ours is that of 20 pixels. Considering a pixel scale of
0.173 arcseconds/pixel, we conclude that the algorithm
performs at the required level, i.e. can block the target
within the field of view of the laser beam which is ≈ 20
arcseconds.



Figure 4. Lageos-1 case study to validate the estimation of the centroid against the solution provided by AstroImageJ.
We show the component-wise solutions obtained using AstroimageJ (aij), the estimated state from the object recognition
procedure (objrec), and the predicted state derived from the active tracking (track).

5. CASE STUDY: H-2A

In Subsection 3.5 we introduced a challenging pass due to
the observation conditions: daylight, low elevation, pass-
ing clouds and short exposure time. In Figure 5 we show
the observation geometry for the observed pass from the
SwissOGS.

Figure 5. Observation geometry for the rocket body H-
2A observed from the SwissOGS on October 11, 2019, at
15:43 UTC.

Furthermore, this case highlights the benefits from
an active tracking approach instead of an initial orbit
determination. By the time that observations will be
collected for the initial orbit determination and newly
ephemerides will be generated and integrated into the
observing system, the target will most likely be lost.
In Figure 6 we can see the different solutions for the
retrieval of the object’s image centroid using only the
object recognition algorithm, using active tracking, and
the solution extracted from aij. A striking feature is
the remarkable drift starting at the 18th second. At
that particular epoch, few clouds obscured the object
preventing the estimation of its centroid until second 25.
After ignoring the first outliers, the filter finally follows
the object until new accurate observations become
available. That particular event was not successfully
overcome by the aij solution: the coordinates of the
object’s centroid for those frames covered by clouds
were introduced manually for the sake of comparison.

The other two discontinuities at seconds 54 and 104
are due to the interaction of the observer to re-center
the target while storing images. The latter two events
triggered a halting event in aij. In our case, we were
able to process the complete pass without halts thanks
chiefly to the width of the subframe, which mainly
permitted the recognition of the object within a wider
space search than the one used by aij. The right subplots
in Figure 6 show that our centroid’s detection are in
agreement with the ones obtained from the aij solution.
The tracking solution proves its smoothness after the
relatively scattered observations of the object’s centroid
attributed mainly to the low intensity contrast between
source and background, cloud presence, freezing of the
seeing, etc.

Figure 6. Centroiding solutions for the H-2A pass on Oc-
tober 11, 2019. We show the component-wise solutions
obtained using AstroimageJ (aij), the estimated state from
the object recognition procedure (objrec), and the pre-
dicted state derived from the active tracking (track). The
right plots depict a detailed portion of the pass for the x
component (top) and y component (bottom).

After the extraction of the centroid, the placement of
source and background apertures in the original subframe
permitted us to extract the apparent instrumental magni-
tudes, which are shown in Figure 7.



Figure 7. Extracted instrumental magnitudes using our
real-time solution (ZIM) and the post-processed solution
using aij.

In general our solution and the one provided by AstroIm-
ageJ show a significant dispersion due to the aforemen-
tioned eventualities. Nonetheless, we can notice certain
periodicity that might correlate with the attitude and atti-
tude motion of the target. Note that the represented light
curve was detendred to remove the contribution of the
slant range and phase angle. The observables collected
during the observation of this pass are: azimuth, eleva-
tion and apparent brightness. Unfortunately, for this par-
ticular case we did not retrieve any laser ranges.

6. SUMMARY

The use of an active tracking approach might be criti-
cal to reduce drastically the uncertainty of the target’s
state within single passes. Moreover, after the successful
tracking, the newly estimated state may be propagated
and ephemerides can be sent to partner stations, which
can reacquire the target and further improve the knowl-
edge of the target’s state.
The core algorithms for observation strategies such as the
stare and chase are based on object recognition and track-
ing modules. To be successful in the aforementioned ob-
servation strategy, the derivation of robust, efficient and
implementable algorithms becomes imperative. Through
this work, we presented:

• Centroid and apparent brightness estimation
through a sequence of image processing steps.
Those steps are the cropping of the full raw image
into a subframe, the convolution of the subframe im-
age against a median kernel, the background sub-
traction, and finally the estimation of the centroid as
the weighting average of all remaining positive pix-
els. Once the centroid is available we place source
and background apertures and retrieve the apparent
magnitude of the target.

• Active tracking based on the estimation of the tar-
get’s state at a future epoch besides the update of
its current state making use of its past n historical
records. The inclusion of the sliding error window

enhances the robustness of the otherwise sensitive
M-estimator used for the estimation of the trajectory.
We presented a validation of the algorithm by com-
paring our solution with the one extracted from the
software AstroImageJ.

• Presented a case study for the rocket body H-2A,
observed with very challenging conditions: day-
light, low culmination, cloud presence all in real
time. The results demonstrated an accurate proce-
dure to correct for the pointing of the telescope be-
side the real-time collection of azimuth, elevation,
apparent brightness and ranges. For the case study
of H-2A, we did not collect ranges, but we have
other cases that prove that capability.
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