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ABSTRACT

The object of this paper is the initial orbit determination
of an orbit set compatible with an observational arc by
means of differential algebra. The initial estimate is re-
trieved as a truncated power series expanded with respect
to the uncertainties in the measurements. The analysis of
the region is performed with the automatic domain split-
ting, that splits the orbit set into two or more regions de-
fined by just as many Taylor expansions when the esti-
mated truncation error introduced by the truncated power
series exceeds a certain tolerance. A comparison between
the proposed initial orbit determination approach and al-
ternative methods from the literature is included to show
the improvements achieved by exploiting accuracy infor-
mation using differential algebra. The goal of the descrip-
tion of the initial orbit determination solution as orbit set
is to propagate several independent orbit set to a com-
mon epoch and analyze them to decide whether they’re
correlated or not. Initial results for the linkage of two
independent observations are also included.

Key words: Initial orbit determination, differential alge-
bra, admissible region.

1. INTRODUCTION

Every day thousands of detections of objects orbiting
the Earth are retrieved by observatories. However, a
single observational arc is in general not sufficient to
accurately determine the orbit of an unknown object.
Due to the observation geometry and the uncertainty
related to sensor accuracy, timing accuracy, and observer
state knowledge, we obtain a relatively large orbit set
(OS) that is compatible with one observational arc rather
than one single orbital state. This paper outlines a new
method, called the Differential Algebraic Initial Orbit
Determination (DAIOD), which aims to describe the
solution of the initial orbit determination (IOD) as a
truncated power series (TPS) that depends on variations

of the observations,the so called OS. The reason to do
so is to have the solution in a suitable form to then
propagate it. Indeed, by propagating different OSs at
the same epoch, it is possible to analyze the region they
define: by analyzing the overlapping of two OSs, one can
decide if they’re correlated and if so, the orbit estimate
can be refined.

Since for the present work the observations are simu-
lated, the output of a typical real optical observation is
first explained here after to then describe the simulating
tool, called the virtual observatory (VO). The relevant
nomenclature from literature is then outlined to introduce
the DAIOD method.

A typical optical observation is characterized of
four important parameter:

t The time at which the observation is made. In a
geostationary Earth orbit (GEO), the time between
two subsequent observations is typically around
2—3 min;

& The longitude of the observed object with respect to
the observatory;

¢ The latitude of the observed object with respect to
the observatory;

op The precision of the observation (usually in arcsec-
onds), defined as the 3¢ variation of the observed
angle. Typical values for the precision vary from
1”, being the most accurate observation, to 5—10",
being the least accurate.

The observation noise is assumed to be normally dis-
tributed, such that the observed angles can be represented
as Gaussian variables:

[0 NN(@i,UQ)
. (1)
51 N./\/'((Si,0'2)
where oo
o= 5 )

Proc. 7th European Conference on Space Debris, Darmstadt, Germany, 18-21 April 2017, published by the ESA Space Debris Office
Ed. T. Flohrer & F. Schmitz, (http://spacedebris2017.sdo.esoc.esa.int, June 2017)



Virtual Observatory

Geodetic ¢ | Observatory
Coordinates Kernel o
Geometry
+ Object TLE analysis
+ Simulation
Window (to,te)

Azimuth and
elevation O TETS
Constraints
* Sensor type and Sensor
features Model
* Measure Error (op)

* Visibility Window (number,
duration, time gap, etc...)

» Simulated Observables

» Simulated Measures

Satellite

Figure 1. VO software tool description.

During a full passage above a station, typically 5 — 8
observations are made for the same object, when the
sensor is fixed in a certain position. For the work at
hand, the optical observations are simulated through the
VO. This software is able to recreate optical and radar
survey scenarios from any point on the Earth, thanks
to the use of Spacecraft Planet Instrument C-matrix
Events (SPICE), a powerful tool developed by the
Navigation and Ancillary Information Facility (NAIF)
group at NASA. Figure 1 shows the inputs for the VO
in the yellow boxes, while the output is given in the red
box. After receiving the two-line elements (TLEs) of
the satellite and the observatory coordinates, the SPK
kernels of these two objects are created: these files
contain data that represent the ephemerides of the objects
for a certain time interval, which means that the states of
the satellite and of the observatory can be retrieved at any
time within the user defined simulation window. From
here, the relative geometry between the satellite and the
observatory can be analyzed, by taking into account the
sky background luminosity, the object illumination and
the object elevation to define the observability windows.
Lastly, the observations are simulated by defining the
sensor type and by adding user-defined measurement
noises, that is the op. A file containing the observations
made during the visibility window is then created.

Now, the relevant nomenclature that will be used
throughout the paper is outlined.

Observation. An observation is made of a time ¢,
two angles «v and § and the associated precision o p.

Very short arc (VSA). It is a sequence of N obser-
vations where an object is found to move [9, 10].
Due to the short interval between each detection,
these observations do not allow for the definition of
a track, but still contain useful information about the
object.

Observations set. It is the set of three observations
used to perform 10D, generally the first, middle and
last of a VSA.

Attributable. Reference [10] defines an attributable
as the useful information that could be extracted
from a VSA. It is made of two angles and two an-
gular rates for an optical observation:

A= (a,é,a,é) 3)

where generally the two angles coincide with the
middle observation and the angular rates are calcu-
lated with the remaining data from the observation
set. This definition is now widely used to describe
the 4 D vector containing partial information about
the object observed, when considering an error-free
observation.

(a, 6)-domain. It is the 6D region containing the
op; uncertainties in the angles.

Orbit set (OS). Given the state of the object as a
function of dex and &6, the OS is the set of the or-
bital states (rq,v2) enclosed by the range of the
state function over a given (e, §)-domain. Once the
OS is defined, it is possible to retrieve other val-
ues as a function of the state, thus also having them
expanded with respect to the same (e, d)-domain.
Functions that will be used later are, for example,
the range and the range-rate:

p(0a,06) = [lr2(de, 66) — Ry|
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where Ry and V, are respectively the position and
velocity of the observer.

Admissible region (AR). It is the 2D plane gen-
erated by the two degrees of freedom of the Az-
tributable, that is the (p, p) plane, where p is the
range and p is the range-rate. It is the region where
the attributable places the information, respecting
physical constraints such as the energy law and min-
imum/maximum distance from the Earth. Alter-
natively, it can be described as the range of the
p(da, 68) and p(da, 66) functions, given the initial
(e, 0)-domain, thus being the projection of the OS
on the (p, p) plane. It is, however, important to un-
derline the difference of these two definitions: the



first one is purely deterministic, and every point of
the region has equal probability of being the real so-
lution; the second definition takes into account the
uncertainties op; in the observations and thus defines
the region as a point solution together with its neigh-
boring area defined by the variations in the observa-
tions.

Linkage problem. It is the problem of identifying
two or more VSAs belonging to the same physical
object: the VSA alone cannot define an orbit, but if
two or more are found to be correlated, the orbit can
be computed.

Having defined the keywords, the paper will now describe
the IOD algorithm in Section 2, where the OS is gener-
ated starting from an observation set. Then, Section 3
introduces the automatic domain splitting (ADS) algo-
rithm necessary to sample the OS in order to keep the
error introduced by the TPS below a certain threshold
for the entire (o, §)-domain. Results are shown in Sec-
tion 4, where comparison with literature and validation
are shown, while Section 5 concludes the paper.

2. INITIAL ORBIT DETERMINATION

Orbit determination (OD) refers to the use of a set of tech-
niques for estimating the orbits of objects and is typically
divided into two phases. When the number of observa-
tions is equal to the number of unknowns, a nonlinear
system of equations needs to be solved. This problem is
known as IOD. When many more observations are taken
over an orbit arc of adequate length, accurate orbit deter-
mination (AOD) can be performed [3]. This paper deals
with an IOD algorithm that exploits differential algebra
(DA). Since the closer the observations are in time, the
more difficult it is to perform IOD [10], given a full pas-
sage over the station, the first, middle and last observa-
tions are considered. Before explaining the IOD algo-
rithm, the DA framework and some useful algorithms are
introduced.

2.1. The DA framework

DA supplies the tools to compute the derivatives of func-
tions within a computer environment. More specifically,
by substituting the classical implementation of real alge-
bra with the implementation of a new algebra of Taylor
polynomials, any function f of v variables is expanded
into its Taylor polynomial up to an arbitrary order n with
limited computational effort. This means that every time
a generic function is evaluated in a point zq, the output
will be the TPS around z(. In addition to basic algebraic
operations, operations for differentiation and integration
can be easily introduced in the algebra, thus finalizing
the definition of the differential algebra structure of DA
[4, 5]. One important function enabled by DA that will

be exploited in the algorithm is here described: the ex-
pansion of the solution of parametric implicit equations
[1, 2]. Well-established numerical techniques (e.g., New-
ton’s method) exist to compute numerically the solution
of an implicit equation

flx) =0, ®)

with f : ®” — R™. Suppose an explicit dependence on
a vector of parameters p can be highlighted in the vector
function f, which leads to the parametric implicit equa-
tion

f(z,p) =0. (6)

We look for the function z(p) that solves (6) for any
value of p.

DA techniques can effectively handle the previous
problem by representing z(p) in terms of its Taylor
expansion with respect to p. This result is achieved by
applying partial inversion techniques as detailed in [7].
The final result is

] = 2 + Tz|(2)=0 (D), @)

which is the k-th order Taylor expansion of the solution
of the implicit equation. For every value of Jp, the
approximate solution of f(z,p) = 0 can be easily
computed by evaluating the Taylor polynomial (7). The
solution obtained by means of the polynomial map (7) is
a Taylor approximation of the exact solution of Eq. (6).
The accuracy of the approximation depends on both the
order of the Taylor expansion and the displacement &p
from the reference value of the parameter.

In C++ the DA framework is implemented in the
library DACE [12].

2.2. Gauss’ and Lambert’s algortihms

Gauss’ Algorithm
Gauss’ algorithm works in double precision and takes as
input the times of observations (¢1, t,, t3), the positions
of the observatory at these times (R;, R;, R3) and the
direction cosine vectors (p; p, p;). The algorithm esti-
mates the slant ranges (p;, p2, p3) in order to obtain the
object positions

ri = R + pi p;, where i = 1,2,3 (8)
in two-body dynamics. Figure 2 shows the geometry of

the problem. The description of this algorithm can be
found in [6].

Lambert’s Algorithm

Lambert’s algorithm takes as input two position vectors,
the At between them and the gravitational parameter and
gives as output the velocity vectors. The geometry of the
problem is shown in Figure 3. The algorithm can work
with both double precision and DA variables. Since it is
not possible to solve the problem analytically, as outlined
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Figure 2. Geometry of input and output values for
Gauss’s algorithm. Modified from [6].
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Figure 3. Geometry of input and output values for Lam-
bert’s algorithm. Modified from [6].

in [14], several methods were created in the past. For the
work at hand, the C++ implementation in [8] has been
used, after updating it to be able to accept both double
precision and DA variables.

2.3. Mathematical definition of the DAIOD algo-
rithm

The DAIOD algorithm takes as input the observation of
an object as defined in Section 1 and gives as output the

TPS of the object state at the central time of the obser-
vation. To do so, an initial estimate of the object posi-
tion at ¢1, to and t3 is obtained through Gauss’ algorithm
in double precision. The observatory state is retrieved
through the kernel obtained with the VO, while the direc-
tion cosines are found through the observation angles:

cos d; sin o
sin (51

€))

cos 0; COS
pl -

where ¢ = 1, 2, 3 refers to the observation instances.

At this point an estimate for the position vectors
r1, rp and r3 is available in double precision. Now, the
velocities have to be computed. Lambert’s algorithm
takes as input two position vectors and the At between
them and gives as output the velocity vectors. This means
that by computing Lambert’s algorithm twice (from ¢;
to t, and from ¢, to ¢3) one should be able to retrieve
the three state vectors. However, Gauss’ algorithm does
not ensure that the three estimated vectors define one
unique orbit, thus it does not ensure that the two velocity
vectors found at ¢, (v; and v3) coincide, as can be
seen in Figure 4. To fix this problem and obtain the

Figure 4. Output of Lambert algorithm taking as input
the output from Gauss’s algorithm

expansion of the state, Lambert’s algorithm will be used
twice: the first time to find the dp = (dp1, dp2, Ip3)
necessary to ensure that v, = v3 and the second time
to expand the corrected solution (ry, vo) with respect
to the observation angle variations da, 46. The first
step allows us to improve the estimation of the ranges
made in Gauss’s algorithm by forcing the three estimates
to be part of the same orbit, while the last step allows
us to analyze the variations in the state vectors due to
variations in the observations just by means of function
evaluations. Indeed, although the observations are our
known values, they are not free of errors, hence it is
important to analyze the neighborhood of the solution.

For the first usage of Lambert’s algorithm, the val-
ues pi1, p2, p3 are initialized as DA variables. Equation
10 shows the mathematical definition. The curly brackets
show the computer adapted definition of the variation .

P1,DA = P1,Gauss + (Spl {DA(I)}
P2,DA = P2,Gauss + 502 {DA(2)} (10)
P3,DA = P3,Gauss T+ 6p3 {DA(S)}



In this way, the output of Lambert’s algorithm are the
velocity functions depending on variations of the slant
ranges. In particular:

vy = v, (0p1, Gp2) (11)
vy =v; (6p2, 0p3) (12)

With the goal of solving the discontinuity in ¢, the Av
between the left and right velocities is calculated:

Av =v] —v;, = Av (§py1, Sp2, 6p3) (13)

By forcing Av = 0 one wants to find the dp necessary
to obtain it. Newton method for DA explained in Subsec-
tion 2.1 is used here. Indeed, the function f is Aw, the
parameters & are p; and the variations ép are §p;. Thus,
from

Av (p; 0p) =0 (14)

one obtains:

P1,L1 = P1,Gauss + Apl
P2,L1 = P2,Gauss + Ap2 (15)
P3,L1 = P3,Gauss + APS

such that

Av (p1,r1, p2,1, p3,01; 0,0, 0) =0 (16)

At the end of this step, one has obtained the object states
that satisfy the constraint of pertaining to the same or-
bit. However, the solution is expanded with respect to
the slant ranges. This is not useful, since one wants the
solution in terms of the observations and not in terms of
the output itself. For this reason, Lambert’s algorithm is
used again. This time, the DA variables initialized are the
observations. The non-constant parts of the angle polyno-
mials are scaled by the precision of the observation op,
so that by evaluating the final solution within the interval
[—1,1], one can find the 30 interval solution depending
on the accuracy. Equation 17 shows the definition:

a1,pa = &1 +op1oar {op1DA(1)}
a2 pA = Qo +0oppdas {op2DAQ2)}
a3z pa = &3 +opsdas {op3DA3)}

a7

01,pA = <§1 +op,1001  {op1DA4)}
02,pA = <§2 +op2ddy  {op2DA(S)}
d3,pa =03+ op 3003  {op3DA(6)}

At this point p is the output of the first Lambert’s algo-
rithm in double precision: p = pr;. The mathematical
ground of this method is the first order Newton:

Av(p)=0 = piy1=p; — Jg‘}(ﬂo) Av(p;)) (18)
Here, the assumption is made that the Jacobian does
not change in the loop. The iteration is carried out until
i = MaxOrder, thus until the highest order of the DA
variable is reached. Once the ranges are found depending
on the observations, the position vectors are obtained
with Equation 8, while the velocities can be calculated
with one last Lambert’s procedure.

An important outcome of this method is that one
not only obtains the point solution, but can also easily
calculate its 30 variation by means of functions evalu-
ations. Recalling the definition of the nomenclature in
Section 1, the original domain of the variations is the
(a,0)-domain, while the range of this domain through
the DAIOD algorithm is called the OS. The solution,
however, is not valid for any variation of the input. While
considering a power series one has to respect the radius
of convergence, when dealing with TPSs one has to
carefully estimate the truncation error: if this exceeds a
certain tolerance, the approximation is not good enough.
This implies that one single TPS may not able to describe
the entire OS and the initial (o, §)-domain may need to
be split in sub-regions. With this division, there would
be as many TPSs as sub-regions, keeping the error of the
approximation below a certain threshold for the whole
range of solutions. The tool that is able to estimate the
error, divide the domain and find the new TPS for the OS
is called the ADS tool and is introduced in Section 3.

3. AUTOMATIC DOMAIN SPLITTING

When using DA tools it is important to analyse the region
of validity of a TPS since it defines the validity of a DA
map. To solve this problem the idea is to create a proce-
dure able to estimate the limits of validity of a TPS and
split the domain linked to this TPS in two or more sub-
domains when these limits are exceeded. This means that
when a single Taylor expansion is not enough to repre-
sent the DA map, the tool splits the domain on which the
map is defined and evaluates a new map for each of the
new domains.

The tool which automatically performs the estimation of
the validity of the map is the automatic domain splitting
(ADS). ADS generates a list of domains and respective
TPSs, whose union corresponds to the initial DA set. In
this way all the TPSs obtained lie on a region within their
convergence disk and the approximation error can be con-
trolled and kept below fixed threshold. This can be done
when the DA map is created as well as when it is prop-
agated in time. During the creation of the map the trun-
cation error is estimated for the TPS that represents the
transformation from an initial domain to a codomain at
the same epoch, instead for the propagation the TPS that
approximates the propagated state is taken into account.
The efficiency of the tool for uncertainty propagation is
highlighted in [17].

The mathematical concept that lies behind the represen-
tation of the obtained list of subsets is the Manifold as
outlined in [15]. To better understand it, three main defi-
nitions are here outlined:

e A topological space M is locally Euclidean of di-
mension n if every point p € M has a neighbor-
hood U such that there is a homeomorphism ¢ from
U onto an open subset of 1".



o A Chart is the couple (U, @), where Y C M™ is an
open subset of the manifold and ¢ : U — R" is a
homomorphism of ¢/ into Cartesian space.

e An Atlas A is a collection of charts (U, pq) such
that the union of U, form a open cover of the mani-
fold, i.e. Uy g Ua = M™.

Every manifold admits such an atlas and if all the ¢,
are r-times differentiable we can refer to the atlas as a
CTatlas. It is to be noted that the atlas is not unique,
since different atlases can represent the same manifold
and an atlas is in general composed of an infinite number
of charts. However, manifolds of practical relevance are
usually described by a finite atlas, thus becoming closed
manifolds. The previous definitions can be associated
to the process of mapping the globe: when projecting
a part of the globe on a 2-D map, the part of the globe
to be mapped can be identified with a subset of the
manifold and once the projection function is defined, the
globe section can be mapped on a 2-D Cartesian space.
Thus, the section of the globe and its projection function
constitute a Chart for the globe. Furthermore, a global
projection function able to map the whole globe onto a
single Cartesian space chart does not exist if the mapping
is to be homeomorphic. More detailed properties and
characteristics are presented in many math text book as
[11] and [13].

3.1. DA Manifold Representation

Since the ¢, functions of the charts are bijective func-
tions, it is also possible to define an atlas using the inverse
maps, therefore the inverse charts can be defined as

(Vaasoa_l)aeA (19)
Vo LV CRF = 0, (V) € MP.

By exploiting the representation of an atlas of inverse
charts, the concept of manifold can be easily applied to
the DA set description: it is indeed much easier to specify
a subset of the Euclidean space than to specify a subset
of an arbitrary manifold.

Practically, this means that the DA manifold is composed
of an atlas of charts made of DA vector that represent
the Euclidean domain, while ¢! is a TPS that maps the
Euclidean space onto the manifold. Moreover, by choos-
ing the Euclidean domain to be (—1,1)? and following
the exposition in [15], we introduced the DA manifold as
follows:

A v-dimensional DA manifold M embedded in a w-
dimensional space is defined by its finite DA atlas A
of DA charts ((—1,1)%, 0o~ 1) with o, =1 € D,

The employment of inverse maps and the scaled initial
domain lead to another simplification: once the domain
is fixed to (—1,1)? it does not need to be stored in the
DA chart thus saving memory.

3.2. The ADS within the DA Manifold

Thanks to previous definitions, the concept of DA
manifold can be straight used for the OS determination
and propagation. For the DA representation of the DA
chart and the DA manifold, Taylor theory is used: the
maps are Taylor expansions around a nominal point,
that is a map representation of the initial state with its
uncertainties, the orbit set (OS). For any map used for
the representation, the truncation error has to be smaller
than a fixed threshold to ensure that it well approximates
the real state. The estimation and control of the error
is provided by the ADS. To build the basis of the error
control process, that will be exploited in Section 3.3, the
maps will now be mathematically defined.

For the initial OS determination the map goes from
the initial domain U € R to the DA manifold. At the
beginning of the procedure, the atlas representing the
manifold is defined by one chart:

A={U.")}
{’Y : (—17 1)” c RV — ,}/((_17 1)1}) c pn (20)

The error of the map is then estimated. If this error is
bigger than a fixed threshold, the ADS tool splits the ini-
tial domain ¢/ into two sub-domains along the direction
of biggest error and re-evaluates a map over each of the
new domains. The dual splitting is carried out until the
criterion is met. In this way a new atlas that represents
the initial manifold is obtained and can be written as:

A= {(uav')/a)}aeA = M"
UaeAZ/la =U 21
Yo i Uy €RY = Y0 Us) € R"

3.3. Map Error Estimation Process

The most crucial problem with the DA representation
and the Taylor expansion is the calculation of the error
between the real function and the TPS that approximates
it. The theory behind the error estimation function, given
in [17] and developed within the ADS algorithm is now
explained.

Let f be a n + 1 differentiable function f € Cn*!
and Py be its n-th order Taylor expansion with radius
r > 0. For some C > 0 with e, the maximum error of
the expansion, if we halve the radius of the domain, then
the error will decrease by a factor gt

e

fEm) Pyl < C0am <0-(5)" = o
This justifies why reducing the size of the domain im-
proves the convergence radius of the expansion to the
n + 1 power.

Continuing to consider the exposition in [17], to estimate
the error for any expansion order, the coefficients of the



same order i are used and the sum of their magnitude S;

is considered:
Si= ) laal (23)

loe|=1

An exponential is performed to compute the parameters
A and B , to match the function S; in terms of least
squares

Si = f(i) = A-exp(Bn) 24)

Once A and B are found, the fit function f (%) is used to
compute the value of f(n+1) and thus the size S,, ;. The
mathematical background that supports this technique is
the fact that on a sufficiently small domain, the terms of
any convergent power series converge at least exponen-
tially [15]. If S, 41 is too big with respect to the error
threshold, the domain is split and new expansions are
evaluated over the two new domains. In accordance with
Equation 22, the terms of any order n in the two new
expansions will be smaller by a factor of 2" than the cor-
responding terms in the initial expansion [16].

In the case that the Taylor expansion is a multi variable
map the previous method is used to check the direction
truncation error. Indeed, the process for the computation
of the exponential fit f(7) is carried out for each variable
v. The value of the fit function magnitude f,(n + 1) is
then extracted for each variable, where n is the maximum
expansion order. Now it is possible to identify the vari-
able with higher error that corresponds to the higher mag-
nitude f,(n + 1). How will be explained in Section 3.4
the knowledge of direction with higher truncation error is
crucial for the domain splitting.

Manifold | Patch SplittingHistory :

1 e ———

ADS —>| Map function

Figure 5. ADS Framework Overview.

3.4. Implementation and Application of ADS

The mathematical concept of manifold is implemented
for computer representation into three main class: Mani-
fold, Patch and SplittingHistory.

The respective of the mathematical manifold is the class
Manifold. As the mathematical manifold is described by
an atlas that is the union of several charts, the class Man-
ifold is described by the union of Patches. The ADS al-
gorithm checks that all the Patches lie within the conver-

gence disk, thanks to the construction of an error control-
ling function. In this way, the ADS algorithm becomes a
member function that decides when the manifold conver-
gence analysis is acceptable.

The Patch is where the Taylor expansion of the map and
the scaled initial domain (—1, 1)" are stored, respectively
by means of a differential algebraic vector (DAvector)
and of the class SplittingHistory. It is also responsible
for estimating the error of the expansion map, establish-
ing the direction of the split and obtaining new Patches
after performing a split. The SplittingHistory class, on
the other hand, is responsible for keeping track of where
the new domain is located with respect to the initial one.
And it does so by storing integer values representing the
variable direction being split in a vector. This class is
also equipped with a member function that extrapolates
information about the domain and can replay it after or
during the splitting. In Section 3.3 the criterion of trun-
cation error estimation and the direction of splitting is es-
tablished. The common procedure for different types of
map functions and domains is now described. The first
step is the definition of the initial domain, thus an initial
Patch, which at the beginning of the procedure coincides
with the entire manifold. The ADS routine needs the def-
inition of a map function and of a domain as a vector of
DA elements to be able to store them into the DA Patch
and in the DA Manifold. Then the truncation error of the
TPS is computed and if it is higher than threshold, the
variable with maximum error is identified and then the
domain is split along it. The ADS algorithm thus auto-
matically analyses the manifold and then constructs the
atlas structure that represents it.

Initial Domain

Figure 6. ADS routine to evaluate the scalar and vector
Sfunction with single and multi variable domain

Thanks to its flexibility by just changing the definition
of the initial DAmanifold, ADS can handle: Single Vari-
able Scalar Functions, Multi-Variate Scalar Functions



and Multi-Variate Vector Functions. The routine is shown
in Figure 6. Furthermore the ADS automatically interact
with the different classes for the computer environment
implementation. An overview of the ADS routine with
the connection between the different structures are repre-
sented in Figure 5 . The arrows indicate that the class
pointing takes the properties of the class/object being
pointed to, the red boxes indicate the functions/operators,
while the dashed box represents the close link between
the two enclosed classes, each class has no sense without
the other.

4. RESULTS

4.1. DAIOD: AR and comparison with literature

In Section 1, the concepts of attributable and admissible
region (AR) were introduced as part of the literature avail-
able on IOD of space debris. Here, they are represented
in order to make comparisons between the method from
literature [9] and the current approach. Remembering the
definitions given in Section 1 we want to stress the differ-
ence between the two types of admissible regions (ARs):
the AR from literature is the result of a deterministic ap-
proach where the observation is error-free and the area
within the (p, p) plane is created by posing physical con-
straints, while the AR for this paper is the projection of
the OS on the (p, p) plane, thus being a solution point
and its neighboring area created by the uncertainties in
the observations. The concept of AR is used here to have
a visual understanding of the work carried out, however
the results for the DAIOD algorithm are always found in
terms of the OS, thus in 6 dimensions.

The TLEs of object with NORAD ID 14786, a satellite
in a GEO orbit, are used to create the simulation with
the VO. Figure 7 shows the AR for the simulated at-
tributable. The energy law is used to constrain the region,
by substituting in it respectively a minimum/maximum
semimajor axis (Gmin, Amaz) and a maximum eccentric-
ity (€maz)- In this way three constraining inequalities are
obtained: &, < 0,&,,.,, <Oand&, . < 0. The
output is a plot with a Matlab implementation of the algo-
rithm defined in [9]. The light blue region shows all the
possible combinations of p and p that would satisfy the
physical constraints to complete the attributable and be a
possible state for the observed object. As can be seen, it
is a fairly big region. It could be shrunk if one had a priori
information about the object. For example, if one knew
that the satellite was in a GTO, one would put more strin-
gent constraints on the eccentricity and on the semimajor
axis, shown as dashed lines in Figure 7, thus obtaining
the blue AR, where the region containing circular orbits
has been canceled out and only eccentric orbits remain.
However, a priori knowledge is in general not available.
The AR for the current approach is found by projecting
the OS found with the DAIOD algorithm onto the (p, )
plane. The resulting box-shaped AR is shown in Figure
8 superimposed on the AR presented in Figure 7. It is
easy to check that the real solution, that is the value used

dp/dt(km/s)

0 0.5 1 1.5 2 2.5 3 3.5 1
p (km) =104

Figure 7. AR from literature. The lightblue area is the
general AR, while the blue area is the AR for a GTO ob-
Jject.

dp/dt (km/s)

® True Solution
® Center of polynomial expansion

-10 [—JBox-shaped AR

0 0.5 1 1.5 2 2.5 3 35 4
p (km) =< 10%

Figure 8. Comparison between ARs: literature vs. pre-
sented method

to simulate the observation with the VO, is comprised in
both regions, but the box-shaped region obtained with the
approach here described is much smaller: indeed, it is
already possible to say that the observed object is in a
high-Earth orbit with small or zero eccentricity. How-
ever, as already underlined in Section 2.3, one box may
not be accurate enough to describe the entire region and
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the same simulation will be analyzed and split with the
ADS tool in Subsubsection 4.2.3. To prove the necessity
of the ADS, a quick check is carried out: if the OS map
were to be valid everywhere, the error between the per-
turbed observation (referred to with a star o*, §*) and the
angles retrieved with an evaluation of the perturbed state
(referred to with a circle a®, §°) would always be small
or zero. Figure 9 shows the contour plot of the differ-
ences, where the axes are defined by the (dave, §62)-plane
for the central simulated observation. As can be seen, the
map is valid in the origin (unperturbed point), but a devia-
tion of few arcseconds would invalidate it. Remembering
that observations can have variations op € [1”,10"], the
map needs to be able to handle them without introducing
significant numerical errors and for this reason the initial
(e, 6)-domain needs to be split.

4.2. ADS results

As introduced in Section 3.4 the ADS routine can be used
on different kinds of maps and for different purposes. The
three different cases introduced in Subsection 3.4 will
now be used to validate the tool.

4.2.1. Single Variable Scalar Function

A single-variable scalar function is a map f : ® — R.
The DA approach finds a k-th order polynomial that
approximates the function in the center of the domain.
The ADS algorithm stores the entire domain in an input
Patch and the function evaluation of the domain in an
output Patch: if the error is below a fixed threshold, the
Patch is stored into the result manifold, otherwise the
domain is split. The process then computes the optimal
split direction. In this example it gives a trivial result,
that is the single variable of the domain. The two new
Patches are then inserted into the trivial manifold and
the process is resumed. To avoid too small sub-domains
and limit the runtime, a maximum number of splits
Ninaz 18 also fixed. The resulting manifold contains the

—Single Domain DA result

301 —Exact Solution

2571
20|

151

(a) Exact solution (black) and single domain expansion (red)
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(b) Solution with ADS (blue). The black dots on the x-axis define the
extremes of the sub-domains.

Figure 10. ADS on single variable scalar function: the
inverse square.

union of the Patches which provides a more accurate
approximation than the one achievable with a single
polynomial evaluation.

To illustrate the code the inverse-square function
J; is considered on the domain of [0.001,6]. The



domain is intentionally asymmetrical to avoid the DA
looking for an expansion in the singularity point but it
is closer as possible to it. The TPS order was defined to
be 5, the error estimation tolerance to be 10~* and the
maximum number of split for each sub-domain to be 7.
Figure 10(a) shows that a single map badly approximates
the function at the boundary of the domain and close
to the singular point. Figure 10(b), on the other hand,
shows an increase in precision thanks to the Manifold
of 34 Patches. Further increasing of the number of split
allows to obtain a higher precision more and more close
to the singularity point. The reason for the presence of
so many sub-domains close to the singular point is that
the Taylor approximation is poor in the neighborhood of
the singularity, thus the ADS routine keeps splitting the
domain close to the singularity point until the maximum
number of splits is reached.

4.2.2. Multi Variable Scalar Function

Carrying on the illustration of the ADS routine for multi-
variable scalar functions, the algorithm works in the same
way as for the previous case, with the only difference that
the splitting direction is now not trivial anymore.

To illustrate the ADS with the multi-variable scalar func-
tion the Gaussian function defined on a squared do-
main in [—0.5,1.5] x [—0.5,1.5] with parameters p =
(0.5 0.5) and 0? = diag(0.1, 0.01) has been chosen.
The non symmetric function is used to understand how
the ADS changes the preferred direction according to the
shape of function. The expansion order is chosen to be
10, the error tolerance 10~° and the maximum number of
splits 10. As can be seen in Figure 11 the ADS routine

0
T L5 05

Figure 11. Gauss function exact solution and superim-
posed manifold representation

applied to the Gauss function returns a manifold of 64
patches and the major split are made along the stretched
direction. The increase in the accuracy can be achieved
by decreasing the error tolerance. Figure 12(a) shows the
error for the single expansion on the whole domain, while
Figure 12(b) shows the error obtained with the ADS,
which is kept below the threshold. The absolute error

1.5

is computed as the difference between the actual values
and the TPS evaluation.
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(a) Error between real values and polynomial approximation for the
single polynomial expansion.
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(b) Error between real values and polynomial approximation for the
split polynomial expansion with 64 sub-domains.

Figure 12. ADS on multiple variable scalar function: the
gaussian function

4.2.3. Multi Variable Vector Function: DAIOD

Multi-variable vector functions f : R* — R™ differ from
the structure presented before in the error estimation pro-
cess. Indeed, because it is a vectorial function, the es-
timation is carried out for each component of the map.
The component with the largest error estimation is then
used to decide the splitting direction. The only caveat in
the vector case is the definition of the “largest error”. In-
deed, the different components of the vector often are not
comparable (e.g. angles and distances), and hence a sin-
gle splitting threshold is not appropriate. In such cases,
a weighting factor can be applied to each component of
the error estimate. For the the multi-variable vector func-
tion case the initial OS determination with the DAIOD
algorithm is considered. The function takes as input the
Observation Set and returns the TPS of the object state
at the central time of the observation ¢, i.e (2,v2). The
DAIOD map is a function that transforms the Taylor poly-
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Figure 14. Plot of the AR for 10Ds performed with observations taken at different At: the smaller the time between two

observations is, the bigger the uncertainty on the solution is.

nomial of the domain onto the Taylor polynomial of the
solution around the nominal value of the phase space with
arbitrary expansion order of the TPS and it can be anal-
ysed by the ADS to control the error.

Results are shown for the object with NORAD ID 25542,
which is in a GTO orbit. The DAIOD is performed for
four different time intervals between the observations.
There are three main parameters that affect the results:
the order of expansion, the maximum number of splits
and the error tolerance. These parameters all influence
the maximum error of the expansion and their effect can
be appreciated in Figure 13. The Absolute error is com-
puted as the maximum of the difference between the
value of polynomial evaluation and the actual value per-
formed on the vertices of every sub-domain.

Figure 13(a) shows that the absolute error decreases when
a more stringent error tolerance is applied during the ADS
routine. In all case, observations that are more sepa-
rated in time always yield more precise results, as already
pointed out in Section 1. For large uncertainties, the er-
ror estimation process may produce an inaccurate error
estimation which results in the absolute error being big-
ger than the tolerance. The connection between Figure
13(a) and 13(c) is also clear: the smaller the tolerance,
the more the domain is split to keep the absolute error
small enough. The effect of the expansion order is ana-
lyzed against the absolute error and the number of sub-
domains, fixing the error tolerance be 10~°. Figure 13(b)

shows that by raising the expansion order it is possible to
obtain a more accurate estimation of the function, indeed
even when the ADS never splits the domain (the 480s and
960s orbits), the absolute error decreases. It is also pos-
sible to see in Figure 13(d) that the TPS performed with
lower expansion orders are not able to accurately esti-
mate the truncation error, thus the ADS does not split the
initial domain, even though the absolute error is beyond
the tolerance. From the results it is clear that we need to
use observations as much separated in time as possible
and we need a high-order computation to obtain accurate
estimation. The last notable consideration is that when
some sub-domains reach the maximum number of splits,
as shown in Figure 13(e) and 13(f), the respective TPSs
yield an estimate error larger than the tolerance, hence
the maximum absolute error on the whole manifold will
be larger than the tolerance itself, see Figure 13(a) and
13(b).

To better understand the behavior of the DAIOD with re-
spect to the time interval between subsequent observa-
tions, the OSs obtained for separations of 120, 240 and
480 seconds are projected on the (p, p) plane and shown
in Figure 14. The first notable consideration about the re-
sults is that the smaller the time between two observation
is, the bigger the uncertainties become. This is visible
from the dimension of the AR in the first plot with re-
spect to the other two. Furthermore the ADS produces
a higher number of sub-domains when uncertainties are



bigger, resulting in an increase in precision but also in the
computational time to produce the output.

Now that the explanation of the DAIOD with ADS is
completed, it is possible to apply the ADS to the observa-
tion taken into account in Section 4.1 and shown in Figure
8. It was said that a single TPS was not enough to approx-
imate the IOD so that ADS was needed to obtain a better
estimate for the OS found. Figure 15 shows the split AR.
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Figure 15. Plot of the AR with ADS for the Observation
Set presented in Figure 8.

Other than yielding a known maximum error on the en-
tire domain, the split AR is also smaller than the initial
one, thanks to the error estimation process. Figures 16(a)
and 16(b) show the absolute error of p computed as the
difference between the actual values of and the estimated
ones for, respectively, a single polynomial expansion and
the output with ADS. The parameters for the ADS are:
Sth-order expansion, error tolerance of 10~3and 106,
respectively for the range and range-rate and maximum
number of splits equal to 10. A grid of 729 equally spaced
values is created and for each point the absolute error of
p is calculated. Then with those values a polynomial fit is
obtained and projected on the (p, p) plane to show a con-
tinuous trend of the absolute error. Figure 16(a) shows
that the single expansion is quite accurate close to the
expansion point but is very imprecise close to the bor-
ders, while Figure 16(b) show that the manifold evalua-
tion yields a smaller error on the entire split domain.

5. CONCLUSIONS AND FUTURE WORK

This work has achieved three main goals concerning the
IOD and propagation of the obtained OS: the developing
of the VO, the implementation of the IOD within the
DA framework and the analysis of the DAIOD algorithm
with the ADS.

The VO is a simulating tool that receives as input
the TLEs of real known objects, the At between two
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(a) Plot of the AR (red box), the single polynomial expansion evalua-
tion (red dots) and the trend of absolute error on p. Single polynomial
expansion.
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(b) Plot of the AR with ADS (black boxes), the manifold polynomial
evaluation (red dots) and the trend of absolute error on p. Manifold
polynomial expansion.

Figure 16. Plots of the error distribution on the domain
for single polynomial expansion and manifold of polyno-
mials obtained with ADS.

consecutive observations, the position of the observer
and the noise to be added to the observations. The
output of the VO is the Observation Set, which is used
by the DAIOD algorithm to find the OS by exploiting
the well-known Gauss’ and Lambert’s problems in DA
environment. With the DA tools it is indeed possible
to use an implementation of a new algebra of Taylor
polynomial, where a function evaluation is expressed as
a Taylor expansion in the neighborhood of the evaluated
point. In this way, the OS is represented as a TPS
that depends on the uncertainties in the observations
and is centered in the solution of the IOD problem.
The advantage of finding the solution in terms of a
polynomial is that the effect of a perturbation on the
initial domain can be computed by means of a func-
tion evaluation, instead of repeating the whole procedure.

The results obtained by the DAIOD were shown in
terms of the AR, already known in literature, to underline
their features visually. The remarkable consideration



is the improvement of the solution with respect to the
classical method, by exploiting DA and by considering
the uncertainties in the observations, instead of using a
deterministic approach with physical constraints.

The DA representation of the function as a TPS
has a good enough approximation close to the expansion
point, but lacks of precision at the boundaries of the
domain. The ADS tool has then been implemented to
estimate and control the error introduced by the TPS,
by halving the domain and re-evaluating new functions
as long as the tolerance criterion is met. By merging
the DAIOD and the ADS, we obtained a substantial
improvement of the description of the OS. First of all,
the size of the OS is reduced and secondly the error
introduced by the TPSs is known and controled. By
analyzing the sensitivity of the OSs with respect to the
separation time between subsequent observations, it is
possible to appreciate that better solutions are found
for Observation Sets defined on longer time spans, in
accordance with the literature.

The generation of accurate OSs from independent
Observation Sets is built with the goal of propagating
them to a common epoch to look for correlations within
the OSs. We are currently working on the two main
tools necessary for this. The first one is a propagator
that includes perturbations and is able to work within the
DA framework and with the ADS tool. Indeed, due to
the nonlinear nature of the dynamics, the uncertainties
in the OSs will increase during the propagation, so that
the ADS tool will be applied to the propagation too. The
second one is a method to assess the likelihood of two
observations pertaining to the same object starting from
the analysis of the intersection of their OSs. The trivial
outcome is that if the regions do not overlap, the objects
are uncorrelated. On the other side, if two or more
OSs are linked, the orbit of the object can be refined by
performing AOD.
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