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ABSTRACT 

Increase in debris density is a threat to the stability of 

the orbital environment. To alleviate this threat, 

collision prediction and debris removal must be 

addressed. The current orbit and collision prediction 

mechanisms are inaccurate. They attempt prediction 

using covariance matrices, debris density, atmospheric 

evolution models, Hamiltonian equations among others. 

This paper focuses on predicting collisions using 

dynamical systems theory and attempts to increase the 

accuracy of prediction. 

This paper models orbits with Cartesian ephemeris. 

Unlike the existing models such as SGP4 and OMOP, 

this paper approaches orbit determination from a wider 

perspective and attempts more accurate solution by 

developing mathematical models using chaos theory 

tools (Lyapunov Characteristic Exponent, Attractors 

among others). Dynamical systems theory describes the 

temporal evolution of a system. The deterministic model 

described in this paper will reduce the net requirement 

for orbital data. Simulation of the model supports the 

hypothesis. 

1 INTRODUCTION 

Earth Orbits (LEO, MEO and GEO) have more than 

170,000,000 space debris – every satellite in space is 

now vulnerable to collision with atleast 13000 debris 

objects of varying sizes [1][6]. With space debris 

accumulating in the Earth orbits, the chances for the 

occurrence of a Kessler Syndrome are on the rise.  

Space agencies all over the world are continuously 

tracking the trackable space debris and developing 

removal strategies to evade any possible Kessler 

Syndrome scenarios. Evasion of such scenarios require 

accurate orbit prediction and collision prediction [2]. 

Unfortunately, the current collision prediction and orbit 

determination mechanisms are not accurate enough [3]. 

The inaccuracy of orbit prediction mechanisms is 

evident from the Iridium – Kosmos collision. This was a 

collision between an active and an inactive satellite. 

These satellite – satellite collisions occur at much lower 

rates compared to satellite – debris or debris – debris 

collisions. Collisions can also happen between rockets 

and debris. While collision avoidance maneuvers can be 

executed, excess course changes will result in wastage 

of resources [4]. 

Accurate collision prediction has two significant 

components – data collection and orbit determination. 

The accuracy of these two components hugely 

influences the accuracy of the result, sometimes even 

exponentially. 

Why current orbit determination strategies are not 

accurate enough? 

1) There are several complex factors (atmospheric 

drag, lunisolar gravitational effects, solar 

radiation pressure and Earth's structure among 

others) influencing each other and the orbit up 

there – this causes the difference between 

expected orbit calculations and real values 

2) Two Line Elements (TLEs) are not accurate 

enough – they do not represent the values of 

the osculating orbit [5] and therefore are not 

sufficient for calculations, causing inaccuracies 

of hundreds of arcseconds 

3) Accurate orbital elements are not available for 

certain objects 

4) Atmospheric drag is highly unpredictable and 

is influenced by several factors, including the 

mass of the particles 

5) Position errors of even 3-4 metres can change 

the collision probability and subsequently 

determine if avoidance maneuvers have to be 

performed or not. [10][5] 

Space Debris orbit determination and collision 

prediction models have not effectively tapped the 

potential of deterministic chaos in evaluating collision 

probability. 

Recent force models in the LEO, MEO and the GEO 

have indicated that most orbit determination errors 

happen in the LEO [10]. The factors which contribute 

significantly to the uncertainty are the atmospheric drag 

(in LEO) and the solar radiation pressure. The errors 

caused due to geopotential models have been reduced 

by the advancement of technology [12]. Errors in 

relatively short data arcs are from the observational 

errors, regardless of the value of the error, whilst for 

long data arcs the uncertainty can be traced to the errors 

in the dynamic models [11]. This paper addresses the 

latter, by attempting to reduce errors in the dynamic 

models, especially the larger orbital uncertainties in the 

LEO. 
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This paper focuses on orbit prediction and 

determination, and methods to address challenges in 

prediction when minimum required data is already 

available. This paper also focuses on limiting the 

quantity of required data through changes in the 

mathematical modeling structure, introducing dynamical 

system theory in orbit prediction. 

This paper discusses a dynamic model to evaluate the 

probability for a debris or satellite to encounter a close 

approach or collision with target debris.  

2 RESEARCH QUESTION 

How to determine orbits and predict collisions between 

space objects and identify rocket launch paths, even 

with low accuracy data? 

3 HYPOTHESIS 

Modeling with dynamical systems theory and chaos 

theory predicts space debris collisions and close 

approaches with better accuracy in comparison with 

current collision prediction models (especially 

concerning the Lower Earth Orbit). 

4 CHAOS THEORY & DYNAMICAL SYSTEMS 

THEORY IN ORBIT DETERMINATION 

4.1 Chaos Theory 

Chaos, as a dynamical phenomenon, can be described 

by the sensitive dependency on initial conditions and 

unpredictability of evolution of an orbit in the phase 

space [13]. 

Chaos theory is a concept developed in the late 20
th

 

century that concerns with the behavior of highly 

sensitive, unpredictable and random systems [7]. 

4.2 Dynamical Systems Theory 

Dynamical systems theory describes the temporal 

evolution of a system. Dynamical systems can be 

deterministic or stochastic. Chaotic systems are always 

deterministic [15]. Deterministic systems display low 

dimensional chaotic behavior – short term prediction 

accuracy is the highest. Stochastic systems display high 

dimensional chaotic behavior. Deterministic systems 

have only one future state regardless of the varying 

initial states and influencing factors [8][14].  

Edward Lorenz elaborates on how a butterfly flapping 

its wings in one place can disproportionately influence 

the weather somewhere else. This, called Butterfly 

effect describes the sensitivity to initial conditions [9]. 

Chaos theory distinguishes chaotic and normal 

movement. 

Orbits in space are influenced by their initial states. This 

effect is more pronounced in orbits closer to the Earth 

(< 600 km) where atmospheric drag is stronger. At these 

altitudes, even relatively smaller errors and uncertainties 

in orbital state vectors or dynamic models will lead to 

an error of several meters in the resultant position 

vectors. Advancement in technology still leads to 

comparatively smaller, but yet large errors in orbit 

determination [5]. This paper has attempted to abate 

these errors by using dynamical systems theory and 

chaos theory. 

Orbits in space are evidently deterministic. But the 

prediction of deterministic systems cannot be done 

perfectly due to reduced accuracy of initial data / 

modeling structure [15]. Therefore, we need tools to 

assess the system’s sensitivity to initial conditions. This 

simultaneously predicts the object's future trajectory by 

evaluating how the system progresses even with the 

presence of these anomalies. This paper focuses on two 

major trajectories whose uncertainties influence the 

debris positions by the largest margin. Trajectory refers 

to a collection of states of the system which it follows. 

The trajectories considered in this paper are: 

1) The Atmospheric drag (including the molecular 

drag) exerted on the spacecraft and 

2) Solar radiation pressure  

The dynamical tools this paper uses to improve the 

accuracy of these trajectories are: 

i) Phase Space: It is the space of all possible 

states of a system. It contains the instantaneous 

description of the system with respect to the 

values of the different states which influences 

the system’s characteristics. Phase space is a 

perfect tool for the dynamical model since it 

helps analyze and determine the dynamic 

trajectory of the object’s state values. Since the 

state values are plotted on phase space, their 

continuation or future trajectory can be 

predicted easily by observing previous 

patterns, analyzing attractors (values in the 

phase space around which trajectories usually 

converge – if a disturbance is created in the 

trajectory near the attractor, its course will 

mostly not change, unlike in other phase space 

values), utilizing the Lyapunov Characteristic 

Exponent among others. 

ii) Lyapunov Characteristic Exponent (LCE): The 

rate of divergence of two infinitesimally close 

or neighboring trajectories in phase space, 

LCE, is an indicator of the sensitivity to initial 

conditions of a system [15] [16] [17]. LCE 

finds average divergence of these trajectories 

in the state space values. It is a measure of how 

chaotic the system is. A system is usually 



defined through its maximum Lyapunov 

exponent. 

iii) Lyapunov time: Measure of the predictability 

of the system. It is the time taken by the system 

to forget its past states. If the time exceeds the 

Lyapunov time, accurate prediction cannot take 

place due to the effect of chaos. It is quantified 

as the inverse of the Lyapunov exponent of a 

system. 

4.3 Collision Probability and Convergence in Phase 

Space 

Collision probability is the probability of two random 

objects to collide and in this case, it is either satellite – 

satellite or a satellite – debris or debris – debris 

collision. It must be noted that in this paper dynamical 

systems theory and chaos theory are applied to 

supplement the current modeling structures (i.e. 

covariance matrices etc.) – to find the deviation in the 

predicted future trajectories. 

The dynamic model deploys the LCE and Lyapunov 

time in the phase space to determine convergence and 

collision probability. For this purpose, this paper  

considers these following trajectories: 

i. The instantaneous plot of original values of 

states collected 

ii. The plot of a random phase line which is 

infinitesimally close to the original trajectory at 

a certain point of time (from which prediction 

must occur)  

The modeling structure is illustrated in Fig. 1. 

 

Figure 1: Detailed outline of modeling structure 

Since the collision probability is computed for a pair of 

objects, analysis will be made by comparing the 

trajectories of both the objects in a radius-time phase 

space. 

 

While the LCE and the Lyapunov time factor will help 

determining the orbit (until the system reaches 

Lyapunov time), the collision probability is the 

convergence in phase space values of the two orbits (in 

radius-time plots). 

 

5 MODEL DEVELOPMENT 

 

This paper considers the following phase spaces, the 

respective quantities and time being the axes of phase 

space: 

 

1. Radius - Velocity - Time 

2. Radius - Time 

3. Atmospheric drag acceleration - Radius - 

Velocity - Time 

4. Atmospheric drag acceleration - Time 

5. Solar radiation pressure - Time 

Following are the steps for developing the model: 

i) Introduction of new data analysis systems to 

suit the requirements of this orbit 

determination model – analyzing the model in 

the perspective of dynamical systems theory – 

collecting data relevant to the model (chaos 

theory can supplement other models to 

minimize the errors in data collection, but for 

this improved accuracy, we will need a chaos-

based interpretation of the data).  

ii) This data will be plotted in the respective phase 

space graphs for both bodies 

iii) Chaoticity and LCE of these phase space 

trajectories will be evaluated (these 

calculations will initially be performed in the 

state spaces involving Atmospheric Drag and 

Solar Radiation Pressure – AD and SRP) 

iv) Lyapunov Time, LCE and Chaoticity will 

supplement non-chaotic calculations (unless 

these calculations are completely inaccurate 

and insufficient) and will be used to predict the 

development of the trajectory 

v) These calculations will identify a certain area 

of the phase space as possible future values – 

consisting of several points – each representing 

one possible value of AD or SRP 

vi) The range of the net acceleration (  ) on the 

body will be identified 

vii)          will identify the            . This 

predicted range of the radius and velocity will 

be plotted in the phase space 

viii) This range in state space will cover an area 

ix) The collision probability will be the proportion 

of convergence of the areas of the range plots 

of both the objects 



5.1 Data Collection and Analysis 

Data collection and analysis is not within the current 

scope of this paper as this paper focuses on formulating 

a model for orbit determination. 

5.2 Phase Space Trajectory Development 

 

Figure 2: Atmospheric Drag Phase Space for Body #1 

 

Figure 3: Atmospheric Drag Phase Space for Body #2 

The data collected will be plotted in the phase space. 

Every point in Fig. 2 and Fig. 3 represent one state in 

which the system can exist or had existed. The 

trajectories in the phase spaces are the system's previous 

states. 

5.3 Application of Dynamical Systems Theory 

Calculating the LCE: 

         
 

 
   

       

       
   (1) 

[18] 

where, 

o   is the LCE 

o       is the final separation between the two 

trajectories 

o       is the initial separation between the two 

trajectories 

An arbitrary, linear phase line is the reference trajectory 

for the calculation of the Lyapunov Exponent of the 

body’s phase space trajectory. 

Larger timescales can also be considered for evaluating 

the LCE, creating different values and a range for the 

LCE. LCE also represents the chaoticity of trajectories 

in the phase spaces. We can also consider the motion of 

the trajectory’s attractor to understand its chaoticity. 

Using attractors will supplement atmospheric drag and 

solar radiation pressure prediction models by reducing 

the range of possible values. This will necessitate a 

phase plot without the use of time. 

 

Figure 4: Atmospheric Drag LCE and LCE range 

calculation (Body #1) 

 

Figure 5: Atmospheric Drag LCE and LCE Drag 

Calculation (Body #2) 

5.4 Predicting the Future Trajectory 

Step #1: Non – Dynamical Orbit Calculations 

(i) Atmospheric Drag Acceleration: 

This equation is most widely used to calculate the drag 

force: 
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where, 

o   is the atmospheric density 

o    is the drag coefficient of the body, which 

describes its resistance to air flow 

o   is the area of perpendicular cross section 

o              =                             (Vector Addition) 

o                   is the acceleration caused due to drag on the 

body 

To calculate the drag force, the geometry and 

characteristics of the body must be known. The drag 

coefficient of a body is the representation of its 

geometry and surface structure. To calculate the CD 

there must be complete understanding of debris 

structure. Our debris surface descriptions too are 

insufficient. Simpler calculation of the CD: 

    
                                    

      
              

   (3) 

[19] 

Since the drag coefficient does not change on an 

infinitesimal time scale, the same coefficient can be 

applied to both the equations, but with different vector 

values. Since accuracy of       is low,      ’s value is 

used as a boundary for the area of possible trajectories, 

A. 

(ii) Solar Radiation Pressure: 

Solar cycle predictions are necessary to determine the 

orbit of space debris with high accuracy [20]. Solar 

radiation pressure is the pressure caused due to events 

like the Solar Wind, Coronal Mass Ejection among 

others. It influences the conditions of the atmosphere. 

This must also be taken into consideration. 

Solar cycles and the magnitude of the solar wind cannot 

be predicted with high certainty [19]. Most equations 

are dependent on empirical pattern observations. 

Predicting RZ (maximum sunspot number) is very 

important to determine solar cycle patterns. Aggregated 

parameters like F10.7 are required in computing the value 

of the solar radiation acceleration [19]. Empirical 

equations used in solar radiation acceleration prediction 

are: 

F10.7 = 63.7 + 0.728 R + 0.000 89R2  (4) 

F10.7 = 145 + 75cos(0.001696t + 0.35SIN(0.000016 
95) )     (5) 

[19] 

where ‘t’ is the time from January 1, 1981. 

In the LEO, the effect of solar radiation is smaller than 

the effect of atmospheric drag. Nevertheless, it is a 

major influencing factor of the properties of the 

atmosphere [19]. 

Step #2: Identifying Lyapunov time: 

Lyapunov time determines the time till when accurate 

prediction can be performed. 

For any finite accuracy of the initial data, 

                (6) 

The dynamics of the system and the system trajectory is 

predictable only up to a finite Lyapunov time (      : 

        
  

 
           (7) 

[18] 

where L =         

The Lyapunov time can be considered for all the values 

of the LCE within the range of LCEs. This paper will be 

considering the least of these Lyapunov times for the 

model, usually the most chaotic system. 

Step #3: Identifying the Separation in Trajectory 

The separation of two infinitesimally close trajectories 

in phase space in time t is quantified as: 

                     (8) 

[18] 

Equation 4 dictates the mean separation between the 

two trajectories at time t, and with the range of 

exponents, this trajectory will have a range of values in 

the phase space encompassing area A. 

 

Figure 6: Predicting Future Trajectory for Body #1 



 

Figure 7: Predicting Future Trajectory for Body #2 

5.5 Range of LCE and Area of Phase Space 

Let the range of LCE’s be expressed as   . The area of 

phase space encompassed by the probable future 

trajectories in radius - time phase space is A. We need to 

express    in terms of A. This is done with equation (8). 

The value         takes different values with differing 

expressions for LCE (and Lyapunov time too). This 

results in varying values of acceleration from non-

gravitational forces. This acceleration determines the 

range and thus influences A. 

5.6 Range of Net Acceleration of the Bodies 

        
  

                   (9) 

[10] 

The net acceleration is the vector sum of all contributing 

accelerations, where: 

o     is the vector sum of all gravitational forces 

including perturbations from other planets 

o      is the vector sum of all non-gravitational 

accelerations (atmospheric drag, Solar and 

Earth radiation pressure and Albedo effect) 

o           radius vector. 

The range of net accelerations for two bodies at time t 

(within their respective Lyapunov times) is: 
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where mau is maximum uncertainty and miu is 

minimum uncertainty. 

5.7 Evaluation of             

Conversion of acceleration to radius and velocity terms: 

The r and v vectors are the Cartesian orbital elements. 

The Cartesian state vectors incorporate  perturbations 

better than Keplerian state vectors. 

      
  

  
  

      
  

  
   

      
   

   
  

The range predicted values of radius and velocity will 

form the future plot in phase space covering an area A. 

5.8 Collision Probability 

 

Figure 8: Identifying the collision probability (area 

shaded black is the convergence of trajectories in the 

radius-time space) 

In this paper, collision probability (PC) at a certain point 

or interval of time is:  

    
           

                                       
 (11) 

where the numerator (Common Area) is the area of 

overlap of the areas encompassed by the trajectories of 

both bodies and the denominator (Total Area Covered 

By Future Trajectory) is the area of all possible radius - 

time states of one of the bodies for which the Pc is 

calculated. The probability that satellite or debris # 1 

may collide with satellite or debris # 2 need not be equal 

to the inverse. The common area (A2) is a different 

fraction of the areas of the individual states. 

           
           

                
  

      

     
       

           
           

                
  

      

    
     

These are the values of the simulation results. This is the 

expression of ratio of convergence of trajectories and 

the total possible states. 

 



6 SUMMARY 

Chaos theory has been put to use especially in weather 

prediction and stock markets for event prediction. 

Application of deterministic Chaos (Lyapunov 

exponents in particular) for space debris collision 

prediction and probability evaluation is a novel 

approach by this paper. 

This paper has attempted to address the problem of 

inaccurate space debris orbit determination. 

Inaccuracies arise due to two reasons - the uncertainties 

in the initial position of the space debris / satellite and 

the uncertainties in the modeling structures. For orbit 

prediction, dynamical systems theory has necessitated 

the use of relevant real time space debris data, empirical 

relation derivation and accuracy analysis of the model. 

This paper attempts higher accuracy in orbit prediction 

and collision probability evaluation using the tools of 

chaos theory and dynamical systems theory. New 

method for identifying collision probability has also 

been discussed. The results of the simulation support the 

hypothesis. 

7 FUTURE SCOPE 

The model can be strengthened using relevant and real 

time data. This model can utilize other facets of chaos 

theory and dynamics (for example, attractors among 

others) and involve Equinoctial orbital elements instead 

of Cartesian state vectors for making the collision 

prediction results more accurate. 
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