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ABSTRACT 

In this paper we present a nearly approximation-free 
semi-analytical method to compute the collision 
probability between two satellites. Unlike the standard 
methods [1-4], out method does not only perform the 
three-dimensional integration over the Gaussian position 
distribution, but also integrates over the three 
dimensional Gaussian velocity distribution. Our method 
also overcomes a few other approximations that are 
sometimes used in the computation of satellite collision 
probabilities and which are: (a) rectilinear relative 
motion, (b) small object size compared to the 
uncertainty of the position and (c) spherical shape of 
both objects. 

1 INTRODUCTION 

The aim of this paper is to develop a unified method for 
collision probability computation that can be applied to 
all situations where the collision risk of space vehicles 
needs to be evaluated. In the operational environment at 
SES where more than 50 geostationary satellites are 
controlled and monitored, mainly two use cases can be 
identified: 

The first use case is the evaluation of the collision risk 
of our own satellites with objects like space debris, 
inactive satellites or upper stages of launch vehicles. In 
this case the relative velocities are typically high, up to a 
few km/s, and the encounter times are short, usually not 
more than a few seconds. Encounters of this type are 
called short-term encounters in the literature. The orbits 
of the space debris are determined by JSpOC (Joint 
Space Operations Center) which tracks more than 
20,000 objects down to 10 cm with radar and optical 
telescopes. If the collision risk is higher than an action 
threshold, an avoidance manoeuvre will be scheduled in 
order to reduce the risk below a safety threshold.  

The second use case is the design of a colocation 
strategy and the monitoring of the collision risk of the 
co-located satellites. SES has a long experience in co-
location [9] and grouped up to eight Astra satellites at 
19.2°E. In this case the relative velocities are small, 
typically less than one m/s but the time interval of close 
approach is long or even permanent. Such events are 
called long-term encounters in the literature. 

2 OVERVIEW 

The usual formula for the cumulative collision 
probability 𝑃 between two objects (satellites, debris) is 
found by integrating the three-dimensional Gaussian 
probability density over the volume 𝑉 swept by the 
relative combined hard body of the two objects (see: 
F.C. Chan’s monograph on Spacecraft Collision 
Probability [7]): 

 

 
𝑃 = �𝑓(𝑥, 𝑦, 𝑧) 𝑑𝑥 𝑑𝑦 𝑑𝑧 

𝑉

 (1) 

If the positional errors are assumed to be zero-mean, 
Gaussian and uncorrelated between the two satellites, 
then the integrant 𝑓 is the normalized probability 
density for the 3x3 position covariance matrix 𝐶 which 
is the sum of the two individual covariance matrices 
𝐶 = 𝐶1 + 𝐶2: 

 𝑓(𝑥, 𝑦, 𝑧) =
1

(2𝜋)
3
2�|𝐶|

𝑒−
1
2𝑥

𝑇𝐶−1𝑥  (2) 

The function 𝑓 is normalized such that the integral over 
the entire space equals one.  

When the objects are spheres of radius 𝑟1 and 𝑟2, no 
attitude information is required and the volume 𝑉 is a 
tube with a radius equal to the sum of both radii 
𝑟 = 𝑟1 + 𝑟2. 

Assumptions that are often used are:  

• The relative motion is linear during the encounter. 
• The covariance matrix is constant during the 

encounter.  
• The objects are spheres. 
• The object size is small compared to the error 

ellipsoid. 
• The swept volume is replaced by cylindrical 

segments.  

Several methods were developed in the past to evaluate 
equation (1) and (2): the first one by Foster [1], used by 
NASA for debris avoidance operations for the 
International Space Station (ISS). Improvements and 
extensions were made by Chan [2, 7], Patera [3] and 
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Alfano [4, 5, 6]. The work of Coppola [8] is very similar 
to our approach, it also includes the velocity 
uncertainty, but only spherical objects are considered, 
while in our approach the primary object can be of 
arbitrary convex shape. Therefore the method is well 
adapted for large space vehicles like the ISS with 
complex structures larger than the error ellipsoid size. 

3 FIRST EXAMPLE 

As a boundary case, consider two co-located 
geostationary satellites where the nominal orbits are in 
perfect longitude separation and with non-vanishing 
covariance matrices. The usual formula for the collision 
probability given in the previous section in equation (1) 
equals the integral over the tube swept by the relative 
motion of the combined object and the integrant is the 
normalized Gaussian probability density. Because the 
relative velocity is zero, the volume 𝑉 is empty and 
hence the collision probability is zero too. What is 
neglected is the fact that the error ellipsoid is also a 
dynamical object and when it grows with time it will 
create also potential collisions, somehow like: "If the 
satellite won't come to the error ellipsoid then the error 
ellipsoid will go to the satellite". This proves that 
equation (1) can only be an approximation and that a 
generalisation is required. This has also been identified 
by Coppola in [8] where he emphasized the importance 
to include the velocity uncertainty in the probability 
computation. 

4 THEORY 

Instead of computing the collision probability directly, 
let us first compute the hazard function ℎ which is the 
collision probability per time unit. 

For simplicity assume two objects, a primary satellite of 
arbitrary shape and with perfectly known orbit (zero 
covariance matrix) and a secondary object (either 
another satellite or a debris part) of zero size and 
arbitrary 6x6 covariance matrix 𝐶6. If both covariance 
matrices are non-zero the result is the same than for the 
case where the primary covariance matrix is zero and 
the secondary covariance matrix equals the sum of both 
covariance matrices. 

The origin of the reference frame is chosen at the centre 
of gravity of the primary satellite. The secondary is at 
relative position 𝑟𝑠��⃗ = (𝑥𝑠 ,𝑦𝑠, 𝑧𝑠) and has relative 
velocity 𝑣𝑠���⃗ = �𝑣𝑥𝑠, 𝑣𝑦𝑠 , 𝑣𝑧𝑠�. Both are grouped in the six 
dimensional vector  �⃗�𝑠. Take an infinitesimal surface 
element 𝑑𝑑 of the primary at position 𝑟𝐴���⃗ = (𝑥𝐴,𝑦𝐴 , 𝑧𝐴) 
with normal vector 𝑛�⃗  towards the inside.  

It is postulated here that the hazard function 𝑑ℎ 
associated with 𝑑𝑑 equals the six dimensional integral: 

𝑑ℎ = 𝑑𝑑 � 𝑛�⃗ ∙ 𝑣����⃗  𝛿(𝑟 − 𝑟𝐴���⃗ ) 𝑓6(�⃗� − �⃗�𝑠) 𝑑𝑥1..6

𝑛�⃗ ∙𝑣���⃗ >0

 (3) 

The probability that the surface is entered from the 
opposite direction is obtained by replacing 𝑛�⃗  by −𝑛�⃗ . 
The integration vector �⃗� = (𝑟, �⃗�) = (𝑥1. . 𝑥6) is a six 
dimensional vector composed of three position and three 
velocity components and the Dirac delta function 𝛿(⋯ ) 
imposes 𝑟 = 𝑟𝐴���⃗ . The integrant contains the normalized 
Gaussian probability density 𝑓6(�⃗�) for the covariance 
matrix 𝐶6 : 

𝑓6(�⃗�) =
1

(2𝜋)
6
2�|𝐶6|

𝑒−
1
2𝑥

𝑇�𝐶6
−1�𝑥  (4) 

For a finite surface element that is not small compared 
to the error ellipsoid size, an integration needs to be 
performed over the surface. 

Replace the integration variable �⃗� by �⃗� ’ = �⃗� − �⃗�𝑠 and 
rename �⃗� ’ back to �⃗� .i.e. �⃗� →  �⃗� + �⃗�𝑠. We then have: 

𝑑ℎ = 𝑑𝑑 � 𝑛�⃗ ∙ (𝑣 + 𝑣𝑠) 𝛿(𝑟 + 𝑟𝑠��⃗ − 𝑟𝐴���⃗ ) 𝑓6(�⃗�) 𝑑𝑥1..6

𝑛��⃗ ∙(𝑣��⃗ +𝑣��⃗ 𝑠)>0

 (5) 

We can select the reference system such that the x-axis 
is in direction of the normal vector 𝑛�⃗  . Assume that this 
transformation has already been performed with new �⃗� 
and new 𝐶6 . Therefore we have 𝑛�⃗ = 𝑒1 and: 

𝑛�⃗  ∙ (�⃗� + �⃗�𝑠) = 𝑥4 + 𝑣𝑥𝑠 (6) 

The rotation around 𝑛�⃗  can still be freely chosen if 
required, which will be done at a later stage.  

Define 𝐷6 as inverse of 𝐶6 and the hazard function is: 

𝑑ℎ =
𝑑𝑑

(2𝜋)
6
2�|𝐶6|

� (𝑥4 + 𝑣𝑥𝑠)

∞,∞,∞ 

−𝑣𝑥𝑠,−∞,−∞

∙ 𝑒𝑥𝑒 �−
1
2
�⃗�𝑇𝐷6�⃗��  𝑑𝑥4..6 

(7) 

where now 𝑥1..3 are not integration variables anymore 
but have been defined as: 

𝑥1: = 𝑥𝐴 − 𝑥𝑠;   𝑥2: = 𝑦𝐴 − 𝑦𝑠;   𝑥3: = 𝑧𝐴 − 𝑧𝑠 (8) 

The integration over 𝑥6 will be now performed. We will 
see that its effect is a reduction of the dimension from 6 
to 5 without changing the structure of the remaining 
integral, although the intermediate steps are not trivial. 



 
 

First group the exponent in powers of 𝑥6: 

�⃗�𝑇𝐷6�⃗� = 𝐷666 𝑥62  + 2�𝑥𝑖𝐷𝑖66  𝑥6

5

𝑖=1

+ � 𝑥𝑖𝐷𝑖𝑖6 𝑥𝑖

5

𝑖,𝑖=1

  (9) 

Complete the square: 

�⃗�𝑇𝐷6�⃗�  = 𝐷666 �𝑥6 +
∑ 𝑥𝑖𝐷𝑖665
𝑖=1

𝐷666
�
2

 

 + � 𝑥𝑖𝐷𝑖𝑖6 𝑥𝑖

5

𝑖,𝑖=1

−
�∑ 𝑥𝑖𝐷𝑖665

𝑖=1 �2

𝐷666
 

(10) 

or 

�⃗�𝑇𝐷6�⃗�  = 𝐷666 (𝑥6 + 𝑥𝑐)2 + � 𝑥𝑖𝐷𝑖𝑖5 𝑥𝑖

5

𝑖,𝑖=1

 (11) 

where we defined 𝑥𝑐 whose value is irrelevant because 
the integration limits are -∞ to +∞. The new 5x5 matrix 
𝐷5 is defined as: 

𝐷𝑖𝑖5 ≝ 𝐷𝑖𝑖6 −
𝐷𝑖66 𝐷𝑖66

𝐷666
 (12) 

and it can be checked in fact that 𝐷5 is the inverse of 
𝐶5, the 5 × 5 submatrix of 𝐶6. In general, let us define 
𝐶𝑛 as the 𝑛 × 𝑛 submatrix of 𝐶6 and 𝐷𝑛 its inverse: 

𝐷𝑛 = 𝐶𝑛−1;    𝑛 = 1. .6 (13) 

The integration from -∞ to +∞ over 𝑥6 is the well-
known definite integral over the Gauss function: 

� 𝑒−
1
2𝐷66(𝒙𝟔−𝑥𝑐)2𝑑𝑥6 =

√2𝜋

�𝐷666

∞

−∞

 (14) 

Therefore one gets: 

𝑑ℎ =
𝑑𝑑

(2𝜋)
5
2�|𝐶5|

� (𝑥4 + 𝑣𝑥𝑠)  
∞ ∞

−𝑣𝑥𝑠−∞

∙ 𝑒𝑥𝑒�−
1
2 � 𝑥𝑖𝐷𝑖𝑖5 𝑥𝑖

5

𝑖,𝑖=1

�𝑑𝑥4..5  

(15) 

using the non-trivial result: 

|𝐶6| ∙ 𝐷666 = |𝐶5| 
(16) 

Thus we have achieved the reduction of the dimension 
from 6 to 5. Applying the same method for the 𝑥5 
integration yields: 

𝑑ℎ =
𝑑𝑑

(2𝜋)
4
2�|𝐶4|

� (𝑥4 + 𝑣𝑥𝑠)
∞

−𝑣𝑥𝑠

∙ 𝑒𝑥𝑒�−
1
2 � 𝑥𝑖𝐷𝑖𝑖4 𝑥𝑖

4

𝑖,𝑖=1

�𝑑𝑥4 

(17) 

The final integral is a bit more complicated because the 
lower integration limit is −𝑣𝑥𝑠 and not -∞ and because 
of the extra 𝑥4 + 𝑣𝑥𝑠 factor in front of the exponent. The 
exponent is grouped again in powers zero, one and two 
of 𝑥4 and similar to equation (11) we get: 

� 𝑥𝑖𝐷𝑖𝑖4 𝑥𝑖

4

𝑖,𝑖=1

 = 𝐷444 (𝑥4 + 𝑣𝑏)2 + � 𝑥𝑖𝐷𝑖𝑖3 𝑥𝑖

3

𝑖,𝑖=1

 (18) 

where 𝐷4 is the inverse of 𝐶4, the 4x4 submatrix of 𝐶6. 
With the definition of 𝑣𝑏 that has the dimension of a 
velocity: 

𝑣𝑏 =
∑ 𝑥𝑖𝐷𝑖443
𝑖=1

𝐷444
=
𝑥1𝐷144 + 𝑥2𝐷244 + 𝑥3𝐷344

𝐷444
  (19) 

and with the substitution 𝑥 = 𝑥4 + 𝑣𝑏  and after defining 
the auxiliaries: 

⎩
⎪
⎨

⎪
⎧

 

𝑣𝑐 ≝ 𝑣𝑏−𝑣𝑥𝑠

𝑎 ≝
𝐷44

4

2
 

𝜎𝑣𝑥 ≝
1
√2𝑎

 (20) 

the 𝑥4 dependent part of eq. (17) can be written: 

� (𝑥4 + 𝑣𝑥𝑠) ∙ exp �−
1
2
𝐷44

4 (𝑥4 + 𝑣𝑏)2� 𝑑𝑥4

∞

−𝑣𝑥𝑠

 
(21) 



 
 

=  � 𝑥𝑒−𝑎𝑥2𝑑𝑥
∞

𝑣𝑐

− 𝑣𝑐 � 𝑒−𝑎𝑥2𝑑𝑥
∞

𝑣𝑐

 

=
𝑒−𝑎𝑣𝑐2

2𝑎
− 𝑣𝑐  ∙

√𝜋
2√𝑎

∙ �1 − erf  �𝑣𝑐√𝑎�� 

=
√𝜋
2𝑎

�
𝑒−𝜉2

√𝜋
− 𝜉 ∙ erfc  (𝜉)� 

where we have defined the dimensionless: 

𝜉 ≝ 𝑣𝑐√𝑎 = 𝜎𝑣𝑥
√2

(𝑥1𝐷144 + 𝑥2𝐷244 + 𝑥3𝐷344 − 𝑣𝑥𝑠𝐷444 ) (22) 

Therefore: 

𝑑ℎ =
𝑑𝑑

(2𝜋)
4
2�|𝐶4|

∙ 𝑒𝑥𝑒 �−
1
2
�𝑥𝑖(𝐶3−1)𝑖𝑖𝑥𝑖

3

𝑖,𝑖

�

∙
√𝜋
𝐷44

4 �
𝑒−𝜉2

√𝜋
− 𝜉 ∙ erfc  (𝜉)� 

(23) 

Using a result similar to eq. (16): 

|𝐶4| ∙ 𝐷44
4 = |𝐶3| (24) 

we get: 

𝑑ℎ = 𝑑𝑑 ∙ 𝑓3(𝑟) ∙
𝜎𝑣𝑥
√2

∙ �
𝑒−𝜉2

√𝜋
−  𝜉 ∙ erfc(𝜉)� (25) 

with the spatial probability density:  

𝑓3(𝑟) =
1

(2𝜋)
3
2�|𝐶3|

𝑒−
1
2𝑟

𝑇𝐶3
−1𝑟  (26) 

Remember that the x-axis is in direction of the normal 
vector 𝑛�⃗  of the surface element of area 𝑑𝑑 at 𝑟 which 
has a spatial probability density function 𝑓3(𝑟). 

For a finite planar surface like a rectangle of a triangle, 
we have to perform the integral over equation (25):  

ℎ = � 𝑓3(𝑟)
𝜎𝑣𝑥
√2

�
𝑒−𝜉2

√𝜋
−  𝜉 erfc(𝜉)�  𝑑𝑦 𝑑𝑧

𝑦,𝑧∈𝐴

 (27) 

The integral runs over 𝑦 = 𝑥2 and 𝑧 = 𝑥3 only. The 

variable 𝑥 = 𝑥1 is constant because we selected the 
normal vector in x-direction. We still have one degree 
of freedom to rotate around the x-axis, and this now 
allows us to set 𝐷34 equal to zero and thus 𝜉 becomes 
independent from 𝑧 = 𝑥3 in equation (22). Then the z-
integration can be performed analytically and the result 
is a difference of two error functions. Only the 
remaining y integration needs to be performed 
numerically. In order to keep the handling of the 
integration limits tractable, it is best to choose a simple 
two dimensional surface and the simplest one is a 
triangle.  

 
Figure 1: Approximation of a spherical surface by 
triangles starting from an icosahedron with successive 
refinements. Shown are approximation of a sphere by 
icospheres with 20, 80, 320, 1280, 5120 and 20480 
triangles (plot from [10]). 

Any arbitrary non-planar 3D surface can be split into a 
finite number of triangles by the triangulation method 
and for any convex object, the total hazard function is 
the sum of the contributions of elementary triangles. For 
non-convex objects, summing up the individual triangle 
hazard function might result in a too high collision 
probability because of multiple correlated ‘impacts’ on 
aligned structures. Possible shapes are: 

• A cuboid (or rectangular parallelepiped or box) for 
instance has six rectangular faces, each of which 
can be cut into two triangles, resulting in 12 
triangles in total.  

• A spherical surface can be approximated by 
triangles starting from an icosahedron with 
successive refinements (see figure 1).  

• A simple satellite body could be modelled as a box. 
A solar array can be modelled as a rotating pair of 
rectangles with opposite normal vectors (not done 
in this paper). 

• Even a complex structure like the ISS can be 
modelled with finite elements (not done in this 
paper). 

For each elementary triangle, by the choice of the 



 
 

normal vector, the triangle lies in the y,z plane and the 
requirement that 𝐷34 equals to zero uniquely defines the 
three corners of the triangle (𝑇1,𝑇2,𝑇3) assumed sorted 
in y. The z-integration is performed analytically and the 
y-integration by numerical trapezoidal rule. For 
numerical accuracy reasons we cut the triangle into two 
triangles (𝑇1,𝑇2,𝑇𝑃) and (𝑇2,𝑇𝑃 ,𝑇3) where 𝑇𝑃 is the 
projection of 𝑇2 onto the line 𝑇1,𝑇3 along the z direction 
(see figure 2). By this choice, the convergence is 
quadratic instead of only linear with the y step size. 

 
Figure 2. elementary triangle(s) for numerical 
integration. 

We typically need less than 100 terms to reach the 
wanted accuracy, the number mainly driven by the ratio 
of the error ellipsoid size over the object size. 

In summary one can conclude that the hazard function 
from such an elementary triangle surface element is a 
five dimensional integral: a two-dimensional integral 
over the triangle surface and a three-dimensional 
integral over the velocity distribution from which, four 
can be performed analytically, and one must be 
evaluated numerically.  

The total collision probability is the time integral of the 
hazard function, and this integration is also performed 
numerically where the step size control is important to 
find the best compromise between computational 
performance and numerical accuracy. The time step size 
is selected to be the maximum of: 

• A factor 𝛼1  times the time to reach the minimum of 
the Mahalanobis distance  �𝑟𝑇𝐶3−1�⃗� gives ∆𝑡1: 

∆𝑡1 = 𝛼1
𝑟𝑇𝐶3−1�⃗�
�⃗�𝑇𝐶3−1�⃗�

 (28) 

• A factor 𝛼2 times the time to double the square of 
the Mahalanobis distance from the minimal value 
gives ∆𝑡2: 

∆𝑡2 = 𝛼2�
𝑟𝑇𝐶3−1𝑟
�⃗�𝑇𝐶3−1�⃗�

− �
𝑟𝑇𝐶3−1�⃗�
�⃗�𝑇𝐶3−1�⃗�

�
2

 (29) 

• A factor 𝛼3 times the time to cross the object size 
plus the uncertainty gives ∆𝑡3:  

∆𝑡3 = 𝛼3 ∙ max
𝑖=1,3

�
𝑠𝑠𝑧𝑒𝑖 + 𝜎𝑖

⌊𝑣𝑖⌋
� (30) 

but never bigger than the “nominal” step size ∆𝑡0. 

∆𝑡3 = min �∆𝑡0,𝑚𝑎𝑥(∆𝑡1,∆𝑡2,∆𝑡3)� (31) 

The dimensionless tuning factors 𝛼1..3  should be smaller 
than unity, the values used for the comparison were 
(α1=0.05, α2=0.05, α3=0.02). 

The time dependency of the position and velocity 
covariance matrix can be included without difficulties, 
and we can use without problems a propagator with a 
force model including full earth potential, third body 
perturbations by Sun and Moon, solar radiation pressure 
and maneuvers. 

Implementing this method gives acceptable computation 
times, such that for long encounters and simple shapes 
like a cuboid, the collision probability evaluation 
requires CPU time in the order of 10 ms, which is less 
than for a typical orbit and covariance propagation. For 
more complex shapes, like an icosahedron composed of 
about 20000 triangles, the CPU time is in the order of 
10 s.  

So far, we have assumed that the secondary object is a 
point of zero size. If the secondary object is a debris 
part, it is usually modelled as sphere because we do not 
know its attitude or its behavior over time. It is probably 
rotating and tumbling and we can only approximate it as 
a sphere with an effective cross-section r. Then we we 
can still assume zero size for it, but the primary object 
will be replaced by a combined hard body which is the 
primary ‘inflated’ in each direction by r; a sphere of 
radius 𝑅 becomes a sphere of radius 𝑅 + 𝑟; a box 
becomes a ‘box with rounded edges’ that can be 
approximated by a box where each side is increased by 
2𝑟. For two co-located satellites with aligned spatial 
orientation and modelled as boxes, the combined hard 
body volume is again a box where each side length is 
the sum of the individual size lengths.  

5 VALIDATION 

5.1 Comparison with literature test cases 

As validation we use the first eight test cases created by 
S. Alfano in [6] where he runs Monte Carlo (MC) 
simulations with pure Keplerian propagation of the state 
vector and the associated covariance. Case 1 to 4 
describe the relative motion for two satellites in 
geosynchronous orbits (GEO), case 5 to 7 are two low 
earth orbits (LEO) and the last one two mid-earth orbits 
(MEO).  



 
 

Unfortunately all test cases objects are spheres, not a 
single one is a box. Therefore, in order to reach a 
sufficiently good numerical match with the reference, 
we replace the sphere as a subdivided icosahedron 
composed of 81920 triangles. Such a large number is 
not as efficient as the method described in [8], but we 
just use them exceptionally for the validation of the 
method, while for operational use, the primary is usually 
modelled as box. 

The results are shown in table 1. For all test cases our 
method is able to match the MC results of [6] with a 
typical difference of 0.6%, unlike other semi-analytical 
methods [1-4] which give only approximate results. 
Coppola [8] ran test cases 4 and 8 and is also able to 
reproduce the MC results. 

5.2 Comparison with Monte Carlo simulation 

In parallel to the analytical computation, a Monte Carlo 
simulator as independent validation was set up, also in 
view of non-spherical objects for which no test cases 
were found in the literature.  

Monte Carlo can be considered as the gold standard for 
collision probability validations because the method is 
mathematically simple; you merely need a propagator 
and need to detect collisions. It might be too slow for 
operational use, but for a validation run a few minutes 
or hours of CPU time is affordable. 

In each run, we add to both state vectors random errors 
using a Cholesky decomposition of the covariance 
matrix. The state vector is propagated by freezing the 
first five Kepler elements and the true anomaly is 
obtained from the time using Kepler’s equation. A 
variable step size is used to detect the collision, which is 
the entry of the secondary, modelled as point mass, into 
the primary, which in the current MC implementation 
can be either a sphere or a box. 

The monitoring interval can be reduced to the time 
interval where the analytical hazard function is non-
vanishing. For the comparison with the analytical 
computation, violations present already at the initial 
epoch are disregarded because the entry happened 
before. Multiple violations in a single MC run should be 
counted each, but they did only occur for test case 8 
with a probability of 1·10-8. For each test case, N=7·108 
runs were performed. With a collision probability of p 
for a single event, the standard deviation of the MC 
probability is: 

𝜎 = �𝑒 ∙ (1 − 𝑒)
𝑁  (32) 

The results are shown in the last column of table 1 and 
can be compared to the analytical results and to the MC 
results from [6]. The match with the former is good with 

an average difference of 0.1% which is a bit more than 
the MC standard deviation especially for case #6. 
Reasons for this larger difference could be the icosphere 
approximation, the finite time step size, the discrete 
numerical y-integration, the different orbit integrator 
(numerical vs. usage of Kepler equation).  

 
Obj. 
size 

Rel. 
vel. 

at TCA 
collision probability 

# m (m/s) analytical Monte 
Carlo [6] 

Monte 
Carlo 

1 15 0.01 0.216801 0.217467 0.216818 
± 0.000016 

2 4 0.01 0.015558 0.015737 0.015569 
± 0.000005 

3 15 16 0.100347 0.100846 0.100346 
± 0.000011 

4 15 0.02 0.073633 0.073090 0.0736337  
± 0.000010 

5 10 0.5 0.044489 0.044499 0.044504 
± 0.000008 

6 10 0.2 0.004317 0.004301 0.004334 
± 0.000002 

7 10 0.2 0.0001616 0.0001615 0.0001615 
± 0.0000005 

8 4 0.001 0.035249 0.035256 0.035239 
± 0.000007 

Table 1. Comparison of analytical results with MC runs 
of Alfano [6] and with our own MC runs. Matching 
digits are displayed in bold blue.  

The hazard function which is the rate of collisions per 
time interval is displayed for test case 1 in figure 3, and 
shows a very good match between the analytical 
computation and the MC simulation. 

 
Figure 3: hazard function for test case 1. The collision 
risk is highest between 5:30 and 6:30 s and between 
8:40 and 9:30 s. The solid red line is the analytical 
result, and the MC result are displayed as black 
crosses. 

6 TEST CASES FOR BOX SHAPED 
OBJECTS 

We present here three test cases for non-spherical 
objects. Table 2 summarizes the collision probability 
obtained by the analytical method and by Monte Carlo 



 
 

simulation with 7·108 runs. The match is good, with an 
average difference of 0.2% but larger than the MC 
standard deviation. 

It is assumed that the attitudes of the satellites are 
aligned with their respective orbital frames. 

case 
Primary and 
secondary 
size (m) 

Collision probability 

analytical Monte Carlo 

A 5x5x5 
5x5x5 0.012866 0.012851 

±0.000004 

B 20x20x20 
Point mass 0.204266 0.204096 

±0.000015 

C 3x2x4 
Point mass 0.133152 0.132902 

±0.000013 

Table 2: Collision probabilities for rectangular cuboids. 
Matching digits are displayed in bold blue.  

6.1 Case A: zero relative velocity. 

Here we consider the example mentioned in section 3 
with two geostationary satellites separated 100 m 
tangentially and with zero relative velocity for their 
nominal orbits for which the “classical” collision 
probability equation gives zero. 

The combined covariance is diagonal with radial, 
tangential, normal (RTN) position uncertainties of (1, 1, 
1) m and RTN velocity uncertainty of (0.01000, 
0.01414, 0.00141) m/s (all data specified in appendix 
A). The satellites bodies are modelled as cubes with a 
side length of 5 m. Assuming that their attitudes are 
aligned (because their orbits are nearly identical), this is 
equivalent to a combined cubic object size of 10 x 10 x 
10 m. The monitoring interval is one orbital period i.e. 
one sidereal day.  

The hazard function is displayed in figure 4, 
differentiated per face plus the sum of them. It starts 
from a low value at the initial epoch because of the 
initial guaranteed tangential separation of 100 ± 1 m, but 
then the velocity uncertainty makes the East face risk 
grow fast to reach a maximum of about 2·e-6 s-1 around 
01:00 later and to fall below 1·10-10 s-1 around 14:00. 
The risk for the Anti Earth face varies in a similar way, 
while the others faces contribute less and later to the 
overall risk. For low values of the hazard function, one 
might note the increasing numerical noise of the MC 
hazard function, because only a few events are found in 
the corresponding time bins of five minutes. 

The total collision probability is 0.012868 for the 
analytical method compared to 0.012851 for the MC 
computation. 

  
Figure 4: hazard function of two geostationary satellites 
differentiated per face (coloured lines) and summed up 
(solid black line) and which matches well the Monte 
Carlo result (black crosses). 

6.2 Case B: long-term encounter 

Here we use the same orbit than test case 1 of [6] (see 
figure 3) but with different object shape and slightly 
different covariance.  The miss distance of about 5 m is 
less than the combined object size of 20 x 20 x 20 m and 
the of same order of magnitude than the radial, 
tangential and normal position uncertainty of (2, 80, 2) 
m. Figure 5 shows the hazard function over one hour 
covering the first peak. Four faces contribute to the 
collision risk, mainly the Earth face then later East face, 
small risk for North and South face and no risk for the 
West face and Anti-Earth face. 

 
Figure 5: hazard function for case B differentiated per 
face (coloured lines) and summed up (solid black line) 
confirmed by Monte Carlo (black crosses). 

6.3 Case C: short-term encounter with higher 
relative velocity. 

This case validates the method for a short encounter 
with higher relative velocity, for which in principle 
equation (1) could be used and where the time 
integration could be performed analytically. The aim is 
to demonstrate that the time step choice described by eq. 
(28) to (31) produces sufficiently precise results. 



 
 

Let us consider a box shaped primary geostationary 
satellite of 3x2x4 m and a secondary point mass. The 
closest relative RTN position is (2,2,2) m, with a 
relative RTN velocity of (100,-100, 100) m/s and a RTN 
position uncertainties of (1,2,3) m.  

The hazard function shown in figure 6 is nonzero only 
in a 0.2 second time interval. Only the Earth-, East and 
South face can be hit. In general the hazard function 
peaks are earlier than the time of closest approach (of 
the center of gravity) because of the finite size of the 
primary. In this example the Monte Carlo simulation 
also differentiates per face. 

 
Figure 6: analytical and Monte Carlo hazard function 
for case C (large relative velocity) differentiated per 
face. 

7 CONCLUSION 

As a conclusion we obtain a method that is nearly 
approximation-free, computationally fast and that can be 
used in the day-to-day close approach monitoring of the 
SES fleet. It can be applied for short and long term 
encounters, for any satellite shape and it does not only 
give the total collision probability, but also the 
instantaneous hazard function.  

The method has been successfully validated against 
Monte Carlo simulations to sub percent accuracy. 
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Appendix A: test cases 
 

Case 1..8 can be found in [6] 

Case A: 

PRIMARY_SIZE_3D=5 5 5 m 
PRIMARY_EPOCH=01-Mar-2016:00:00:00 
PRIMARY_POSITION=42164170.3 0 0 m 
PRIMARY_VELOCITY=0 3074.6600525 0 m/s  
PRIMARY_COVARIANCE=36*0 
SECONDARY_SIZE_3D=5 5 5 m 
SECONDARY_EPOCH=01-Mar-2016:00:00:00 
SECONDARY_POSITION=42164170.3 100 0 m 
SECONDARY_VELOCITY=-0.0072921151467064 3074.6600525 0.0 
SECONDARY_COVARIANCE=DIAG(1,1,1,0.0001, 0.0002, 0.000002) m^2,..m^2/s^2 
START=01-Mar-2016:00:00:00  END=01-Mar-2016:23:56:04 

 

Case B: 

PRIMARY_SIZE_3D=20 20 20 
PRIMARY_EPOCH=04-Mar-2016:06:00:00 
PRIMARY_POSITION= 153446.7645602800 41874155.8695660000  0.0000000000 
PRIMARY_VELOCITY= 3066.8747609105    -11.3736149565  0.0000000000 
PRIMARY_COVARIANCE=36*0 
SECONDARY_SIZE_3D=0 0 0 
SECONDARY_EPOCH=04-Mar-2016:06:00:00 
SECONDARY_POSITION=153447.2642029000 41874156.3699030000  4.9999660258 
SECONDARY_VELOCITY=3066.8647607073    -11.3636148179  -0.0000013581 
SECONDARY_COVARIANCE= 
6494.224931854500000000000 -376.156116653730000000000 -0.0000449172919882650000   
  0.0159921727609040000000  -0.4942721017592600000000 -0.0000000590183593374380 
 
-376.156116653730000000000   25.000000000000000000000  0.0000025501472714422000  
 -0.0009884645809796500000   0.0285707587266520000000  0.0000000034187295427319 
 
  -0.000044917291988265000    0.000002550147271442200  4.0000000000000000000000  
 -0.0000000001180334503685   0.0000000034189216426795 -0.0000607153456131910000 
 
   0.015992172760904000000   -0.000988464580979650000 -0.0000000001180334503685  
  0.0000000443830127867320  -0.0000012124371638594000 -0.0000000000001447705672 
 
  -0.494272101759260000000    0.028570758726652000000  0.0000000034189216426795  
 -0.0000012124371638594000   0.0000376237233528210000  0.0000000000044920403553 
 
  -0.000000059018359337438    0.000000003418729542731 -0.0000607153456131910000  
 -0.0000000000001447705672   0.0000000000044920403553  0.0000100000000000000000 
 
START=04-Mar-2016:05:30:00    END=04-Mar-2016:06:30:00 

 

Case C: 

PRIMARY_SIZE_3D=3 2 4                       
PRIMARY_EPOCH=01-Apr-2017:00:00:01 
PRIMARY_POSITION=42164170 0 0  
PRIMARY_VELOCITY=0 3074.66 0 
PRIMARY_COVARIANCE=36*0 
SECONDARY_SIZE_3D=0 0 0 
SECONDARY_EPOCH=01-Apr-2017:00:00:01 
SECONDARY_POSITION=  42164172 2 2  
SECONDARY_VELOCITY= 100 2974.66  100 
SECONDARY_COVARIANCE=DIAG(1,4,9,0.01,0.01,0.01) 
START=01-Apr-2017:00:00:00.8 END=01-Apr-2017:00:00:01.2 
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