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1. ABSTRACT 

This paper presents the implementation of an optimized 

and performance-oriented pipeline for sources 

extraction intended to the automatic detection of space 

debris in optical images. Algorithm reliability has been 

demonstrated in a prototypal environment, while the 

overall process automation and efficiency have been the 

main drivers in its final implementation. The 

performance advantages obtained with the huge degree 

of processing parallelism provided by General Purpose 

computing on Graphics Processing Units (GPGPU) are 

analyzed and demonstrated here: splitting data analysis 

over thousands of threads allows for big datasets 

processing with a limited computational time. The 

implementation has been tested on a large and 

heterogeneous images data set, containing both imaging 

satellites from different orbit ranges (low, medium and 

high orbits) and multiple observation modes (i.e. 

sidereal and object tracking). 

2. INTRODUCTION 

The higher awareness of the space debris threat has 

triggered the need of a distributed monitoring system for 

the prevention of possible space collisions (as discussed 

in Reference [1]). The increasing number of dedicated 

sensors allows for a wide and continuous monitoring of 

the space environment and then for an accurate 

knowledge of debris and their orbit determination [2-4]. 

Alongside with this trend, the need of automatic data 

analysis has being enhancing its importance in order to 

manage the increased images volume and to provide a 

quick and reliable toolbox able to identify candidate 

space debris and support in their analysis. Each possible 

debris characterization needs in fact an identification 

phase; orbit and attitude determination and finally the 

collision risks estimation are the next steps [5-8]. 

We present an optimized and performance-oriented 

pipeline for sources extraction intended to the automatic 

detection of space debris in optical images. In our work 

the object detection does not need auxiliary information, 

neither about the image acquisition (i.e. observed zone 

and orbital regime of the observed object), neither the 

star catalogue to perform stars subtraction before 

detecting streaks. Furthermore it is based on the analysis 

of a single image, thus the acquisition of consecutive 

frames of the same field (for stars field subtraction) is 

neither needed. The algorithm is able to detect both 

kinds of features can be found in the optical image 

(streaks and point-like objects), so allowing its adoption 

in both the observation modes: sidereal tracking in 

which the star are point-like object and the space debris 

are streaks and object tracking in which features’ 

significance is inverted. We propose the use of the 

GPGPU in the pipeline for sources extraction. The use 

of the GPU in the image processing technique allow to 

parallelize the operation with a considerably reduction 

of the detection process time. Moreover, a validation 

study was performed on a large and heterogeneous 

dataset containing satellites from low to high orbits. 
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3. IMAGE PROCESSING ALGORITHM 

The pipeline for sources extraction is composed of three 

main phases. 

 

Figure 1 Pipeline for sources extraction 

First one is pre-processing where a set of non-linear 

digital filtering techniques are applied to the greyscale 

image, achieving a noise reduction. The second phase 

consists in segmentation and classification where all the 

information about the connected components from the 

binary image are extracted and subsequently classified. 

Finally, the astrometry phase performs the astrometric 

reduction of the detected objects. 

3.1 Pre-processing 

In the preprocessing phase, we are interested to 

elaborate the input data in order to reduce the noise and 

prepare the image for the segmentation. 

The first operation is the histogram stretching, which is 

a technique used to improve the contrast of an image by 

stretching the original dynamical range of intensity in a 

desired range [9]. To perform the stretching it is 

necessary to specify the upper and lower input pixel 

value limits over that the image has to be normalized, 

and select the desired output range values. 

Typically, space debris image data are stored as 16-bit 

grayscale images in “fit” format; thus, in order to 

contextually reduce image dimension while preserving 

and highlighting image features, a remap of data in an 

8-bit grayscale images, with pixel value in the range 

from 0 to 255, is performed. 

Once obtained such stretched image, a median filter is 

applied with the purpose of noise removal. 

The median filter is a nonlinear filter whose response is 

based on ordering pixels contained in the mask and then 

replacing the central point of the mask with the median 

value [10]. Median filter removes random impulse 

noise, it provides excellent noise-reduction capabilities, 

with considerably less blurring than linear smoothing 

filters of similar size. The median image is then 

analyzed to estimate the image background. 

To detect faintest objects in the image it is necessary to 

compute accurate values of background level in the 

image. In the context of space debris image processing, 

we identify as background all the pixel that have not 

gathered photons coming from a star or a space debris. 

The analog-to-digital units (ADU) value of the 

background pixels is the result of the sum of photons 

coming from the black sky, plus a delta result from the 

effect of dark current and read noise. 

In order to take account of variation of the background 

level in the image, a local analysis of the image is 

performed. The local statistics analysis estimates the 

background values in each mesh of a grid covering the 

whole image. For each mesh the mean   and standard 

deviation   value are computed. Iteratively, all pixels 

with value higher than        are discarded and a 

new value of standard deviation is calculated 

considering the remaining pixels, until the percentage 

difference of the standard deviation change less than 

20%. Assuming that space debris images are not 

crowded and that most of the pixels represent the 

background sky, this iterative process allows to reject 

all the pixel belonging to a foreground object as a star or 

space debris. 

The obtained image is then subtracted from the median 

image to obtain a background-subtracted image, in 
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which are present only foreground pixels. To suppress 

possible local overestimations due to bright stars, 

another median filter is applied at the background-

subtracted image. 

3.2 Segmentation 

The image segmentation includes all those operations 

that tend to partition an image into significant regions. 

The purpose of segmentation is to simplify the image 

information in order to make easy the features 

extraction. The first operation in image segmentation 

procedure is the image binarization. 

The transformation in binary scale reduces the 

informative content of the image splitting the pixel in 

only two categories, foreground and background. 

Furthermore, the binary transformation decreases the 

storage space and increases the code performance. Two 

binary images are then obtained from the median 

background-subtracted image, one for streaks and 

another for points detection purpose. The difference of 

these two images defines the used threshold: a higher 

threshold enables the detection of point-like objects 

characterized of high ADU pixel value due at the 

concentration of photon on a little region of the CCD 

array, while a lower threshold optimizes the detection of 

streaks characterized of a lower ADU pixel value due at 

the spreading of the photons coming from a moving 

object. At this point, the two binary images following 

different segmentation procedure in order to enhance 

the researched features. 

3.2.1 Segmentation for streaks detection purposes 

In order to detect streaks, the distance transform is 

applied to the binary image. 

The distance transform of an image is defined as a new 

image in which every output pixel is set to a value equal 

to the distance to the nearest zero pixel in the input 

image. The distance transform is performed by using a 

mask of 3-by-3 pixels, in which each point in the mask 

defines the distance to be associated with a point in that 

particular position relative to the center of the mask 

[11]. 

The distance transformation result values are then 

normalized and the threshold to obtain the peaks value 

corresponding to foreground objects is defined. 

Considering this normalized distance transformed 

image, a morphological dilatation filter is applied. 

The morphological operations are non-linear 

segmentation techniques exploiting the mathematical 

morphology to isolate or connect objects in the image. 

The application of a dilatation operator, actually bridges 

gaps and connects disjoint parts of the same object 

resulting from a threshold operation. In our case we 

have selected a square structural element of 3-by-3 

pixels. 

Then, aiming at measuring the streaks inclination angle, 

the Standard Hough transform is computed on the result 

image. Finally, the results of the Standard Hough 

transform are used to apply a morphological opening 

filter. The morphology opening is the combination of 

the two basic morphological operations, an erosion 

followed by a dilatation. The morphological opening 

effects are preserve regions with shape similar to the 

structural element and deletes different ones. Using a 

linear structural element rotated of an angle   

correspondent at the peaks of the Standard Hough 

transform we preserve all the streak-like objects and 

delete all the other features. This operation is applied to 

the first peaks of the Standard Hough transform in order 

to take into account the possibility of a space debris 

image with different object on diverse orbit. 

3.2.2 Segmentation for points detection purposes 

The first operation to detect the point-like objects in the 

image is the application of a convolution filter. A square 

kernel of 3-by-3 pixels scans the image and replaces all 

image pixels under the central point of the kernel with 

the value 1 if the sum of the image pixel under the 



kernel is higher than a threshold. An higher threshold 

value allows to delete single points as hot pixels or 

cosmic ray, while contextually fill little holes in the 

object and clean the object contours. 

Following the application of convolution filtering, a 

morphological opening operation is performed. Using a 

circular structural element we obtain the removal of 

linear object as streaks or noise effect preserving the 

point-like objects. 

Finally, to ensure the deletion of all streak-like objects 

from the image, a subtraction operation is performed 

between the morphological opening image and the 

binary image obtained in the segmentation for streaks 

detection purpose image. 

With the end of the segmentation phase we presume that 

the obtained images allows identifying clearly the object 

contours and then classify them as stars or streaks. 

3.3 Classification 

This phase assumes that the input image is a well-

segmented binary image; in which are present only the 

relevant features describing the geometrical 

characteristics of the objects. The classification phase 

starts with the identification of the objects contours. A 

contour is a list of points that represent a curve in an 

image. We assume that a pixel is a contour pixel if it is a 

white pixel and if it has at least one adjacent black pixel 

in his surroundings. Finally to obtain all pixels inside 

the contour, the Ray-casting algorithm is applied. 

Once terminated this identification phase, all the 

detected objects are measured to distinguish if they are 

stars or streaks. 

To compute the object barycenter and elongation we use 

the formulation of the image Moment [12]: 
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being   and   the coordinate of the pixel belonging at 

an object. By this definition we obtain that the Moment 

of zero order 
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is the area of the object express in pixel and 
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are the coordinate of the object’s barycenter. 

Other descriptors of the object are the Central Moments 
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and the centered Central Moments 
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The centered Central Moments are used to describe the 

object as an elliptical shape, obtained the semi-major   

and semi-minor   axis of the ellipse 
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With these measures explained above, we classify all 

the detected objects as point-like or streak-like objects. 

A first selection of the objects is performed taking into 

account the object’s dimension. A detected object is 

rejected if the zero order Moment is lower than a 

threshold  . For the threshold  , a value of 5 has been 

selected, in this manner all the false positive detection 

objects resulting from noise or artifact are discarded. 

The remaining objects are then studied to classify them 

as point-like or streak-like objects. The study is based 

on the analysis of the object’s semi-major and semi-

minor axis. 

An object is classified as point-like object if the 

following equation is satisfied: 

  

 
   

(8) 



Ideally, the   parameter should be equal to one; but 

considering the spreading of the photons, the effect of 

the image noise, and the artifact due to the image 

processing it is selected a value of      . 

On the contrary, an object is classified as streak if the 

following inequality is satisfied 
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being    . The   parameter is function of the 

observed object orbit, exposure time, optical and camera 

features. Its value has been selected after a study of the 

usual dimension and shape of the space image features 

taking in different orbital debris, from LEO to GEO, in 

order to be suitable for every image type. 

The   parameter has been tested for LEO space debris 

image taken with long exposure time, characterized of 

very long streak in the image FoV, and for GEO image 

taken with a short exposure time (comparable with the 

first one) that present very short streak. 

3.4 Astrometry 

Finally, for each detected object, the right ascension   

and declination   angles are measured using the 

information contained in the USNO-B catalog. The 

measurement is performed with the assumption of lost 

in space, in which neither sky zone nor image scale are 

required. 

The object’s celestial coordinates on CCD image are 

calculated by the plate reduction [13]. This technique 

exploits the geometric gnomonic transformation to 

transform coordinates of the tangential CCD plane to 

the celestial coordinates. 

The plate reduction is computed using at least four stars, 

and results of this operation are the image reference 

point        in image coordinates and in celestial 

coordinates        and the transformation matrix   that 

take into account the image rotation, skew and scaling. 

The conversion from image coordinates to celestial 

coordinates is obtained by the following formula 
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in which   and   are the relative pixel coordinates with 

origin in the image reference point        

            
           

 
(11) 

The matrixes together define a unique transformation 

from pixel coordinates to the plane-of-projection. 

4. GPGPU 

The use of General Purpose computing on Graphics 

Processing Units (GPGPU) is a technological choice 

aimed at increasing the computational performance of 

scientific and engineering applications for large scale 

parallel processing applications [14]. In 2006, the 

NVIDIA Company with the Compute Unified Device 

Architecture (CUDA) has released the Application 

Programming Interface (API) and Software 

Development Kit (SDK) with the intent to simplify the 

accessibility and the use of the GPU. The CUDA-C 

language is totally integrable with the C++ code and its 

APIs are quite similar to those of the C language 

making it easy to understand. 

Now let us examine how the GPU works. In general the 

hardware of a computer is divided in host, which is a 

traditional CPU architecture, and device, which is 

massively parallel processor as GPU. 

 

Figure 2 Heterogeneous programming 



The host drives the computational process by a CUDA 

program. The CUDA program is a heterogeneous code 

consisting of many parts having phases that can execute 

both on the host and device, thus having a unique source 

code that contain both host and device code. The host 

code is written in C++, while the device code is written 

in CUDA-C code, which is an extended version of the C 

language with special keywords for labeling data-

parallel kernels and their associated data structures. 

Usually a CUDA program is composed at least of these 

phases: read input data, copy input data from host 

memory to device memory, process the data on the GPU 

by parallel kernel and finally copy result data from 

device memory to host memory 

A kernel is a function written in CUDA-C language that 

executes parallel code, it can run only on NVIDIAs 

GPU. The kernel is executed by each GPU’s thread; 

threads are identified by a unique ID, enabling the 

programmer to address different parts of GPU memory 

relative to the thread ID. 

CUDA organizes threads in a Scalable Programming 

Model: the GPU’s threads are grouped in block (mono-

/bi-/tri-dimensional) and identified by means of a thread 

index called          ; in turn blocks are grouped in a 

grid (mono-/bi-dimensional) and identified with a block 

index called         . The GPU has a finite number of 

threads per block and a finite number of blocks per grid, 

and therefore has a limit to the amount of parallel 

execution. If the number of blocks exceeds the max 

limit, then the GPU sequentially processes the 

maximum possible number of blocks, therefore a kernel 

can be considered as executed in parallel manner in 

function of the hardware limit. 

Although the use of the GPU can achieve improvement 

in the code performance, the advantage over CPU 

computations is only gained if the mathematical 

problem is parallelizable on a large scale. Fortunately 

the image processing is one of the perfect fields to the 

adoption of the GPU: the image elaboration enables 

separation of the input data to process and large-scale 

parallelization due to the not dependence of the 

computation. For these reasons all the aforementioned 

image processing techniques have been implemented as 

GPU kernels and used to produce results for this paper. 

Although the use of the GPGPU allows to obtain the 

code parallelization, is not always possible to speed-up 

the execution time because there are a number of 

limitations and hurdles that must be judiciously 

managed to achieve an effective system. 

The first limitation of the GPU is due to the time it takes 

to transfer information between computer memory and 

GPU memory. The data needed for the computation are 

transferred from the pc memory to the GPU memory 

and after the processing back to the pc memory. This 

means that the time saved in the parallel processing 

must be great enough to warrant the time taken for 

transferring the data. Conversely, the CPU although 

take a long time to processes in synchronous the data 

not require the data transfer because they are already 

stored on pc memory. Additional limitations to GPGPU 

are due to the absence of high-level libraries, only basic 

libraries have been rewritten in GPU code, then some 

image processing techniques have been developed for 

this simulation. Another important limitation is the 

difficulty of code debugging and of error information 

due to a lack of structured of error handling. 

5. RESULT 

The proposed method was tested and validated on a set 

of data containing both imaging satellites from different 

orbit ranges and multiple observation modes (i.e. 

sidereal and object tracking). 

Fig. 3 shows the detection results for the GEO image in 

which are present two space debris with different orbit, 

while Fig. 4 shows a space debris in LEO orbit. 

Detected streaks are marked in red while in green are 

marked the point-like objects that in these cases, of 



images take with sidereal tracking, correspond 

respectively with space debris and star. An example of 

object tracking image is shows in Fig.5, in this case, 

unlike the others, the detected streaks and point-like 

object correspond respectively with star and space 

debris. 

 

Figure 3 GEO image in sidereal tracking 

 

Figure 4 LEO image in sidereal tracking 

During the test phase some detection errors were found, 

the error cases are: 

- true positive, not existing objects detected; 

- true negative, existing objects not detected; 

- false positives, wrong objects detect as streak. 

The most common cases of false positive detection are 

two close stars confused as possible streak or a fainter 

streak detected as two distinct ones (as show in the Fig. 

5), while the true positive and negative errors are due to 

the image noise. 

The hardware used in the simulation is the NVIDIA 

Jetson Tegra K1, a quad-core ARM Cortex-A15 CPU 

processor with 2GB of RAM with a NVIDIA Kepler 

GPU of 192 cores capable of over 300 GFLOP/s of 32-

bit floating-point computation. 

 

Figure 5 GEO image in object tracking 

The mean execution time for image of 4096x4096 is 

23.36 seconds for the CPU version of the pipeline and 

3.19 seconds for the GPU version with a speedup factor 

of 7.3x. 

The total number of processed images is 400, 547 

objects were checked by visual inspection in 356 

images. The pipeline detects correctly 469 objects in 

308 images with a success ratio of 85%. 

Considering that the analyzed image are in raw format, 

subtracting the bias frame and dividing by a normalized 

flat field it is reasonable to assume that the success ratio 

could be increase and that the detection errors could be 

decrease. 

6. CONCLUSION 

In the paper the speedup and the efficiency of the 

proposed pipeline for sources extraction is 

demonstrated. 



The pipeline detects space debris without any a priori 

information and it is based on the analysis of a single 

image. The pipeline is able to detect space debris in 

both the tracking mode sidereal and object tracking. 

A GPU approach was introduced in order to reach near 

real-time performance. The mean execution time for 

image of 4096x4096 is 3.19 seconds with a speedup of 

7.3x respect the CPU version. 

The pipeline was tested on 400 images with a success 

ratio of 85%. 
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