
AN EFFICIENT AND AUTOMATIC DEBRIS DETECTION FRAMEWORK BASED

ON GPU TECHNOLOGY

Francesco Diprima
(1) (2)

, Fabio Santoni
(1)

, Fabrizio Piergentili
(1)

, Vito Fortunato
(2)

,

Cristoforo Abbattista
(2)

, Leonardo Amoruso
(2)

(1)
 La Sapienza,

(2)
 Planetek Italia

diprima@planetek.it, fabio.santoni@uniroma1.it, fabrizio.piergentili@uniroma1.it, fortunato@planetek.it,

abbattista@planetek.it, amoruso@planetek.it

1. ABSTRACT

This paper presents the implementation of an optimized

and performance-oriented pipeline for sources

extraction intended to the automatic detection of space

debris in optical images. Algorithm reliability has been

demonstrated in a prototypal environment, while the

overall process automation and efficiency have been the

main drivers in its final implementation. The

performance advantages obtained with the huge degree

of processing parallelism provided by General Purpose

computing on Graphics Processing Units (GPGPU) are

analyzed and demonstrated here: splitting data analysis

over thousands of threads allows for big datasets

processing with a limited computational time. The

implementation has been tested on a large and

heterogeneous images data set, containing both imaging

satellites from different orbit ranges (low, medium and

high orbits) and multiple observation modes (i.e.

sidereal and object tracking).

2. INTRODUCTION

The higher awareness of the space debris threat has

triggered the need of a distributed monitoring system for

the prevention of possible space collisions (as discussed

in Reference [1]). The increasing number of dedicated

sensors allows for a wide and continuous monitoring of

the space environment and then for an accurate

knowledge of debris and their orbit determination [2-4].

Alongside with this trend, the need of automatic data

analysis has being enhancing its importance in order to

manage the increased images volume and to provide a

quick and reliable toolbox able to identify candidate

space debris and support in their analysis. Each possible

debris characterization needs in fact an identification

phase; orbit and attitude determination and finally the

collision risks estimation are the next steps [5-8].

We present an optimized and performance-oriented

pipeline for sources extraction intended to the automatic

detection of space debris in optical images. In our work

the object detection does not need auxiliary information,

neither about the image acquisition (i.e. observed zone

and orbital regime of the observed object), neither the

star catalogue to perform stars subtraction before

detecting streaks. Furthermore it is based on the analysis

of a single image, thus the acquisition of consecutive

frames of the same field (for stars field subtraction) is

neither needed. The algorithm is able to detect both

kinds of features can be found in the optical image

(streaks and point-like objects), so allowing its adoption

in both the observation modes: sidereal tracking in

which the star are point-like object and the space debris

are streaks and object tracking in which features’

significance is inverted. We propose the use of the

GPGPU in the pipeline for sources extraction. The use

of the GPU in the image processing technique allow to

parallelize the operation with a considerably reduction

of the detection process time. Moreover, a validation

study was performed on a large and heterogeneous

dataset containing satellites from low to high orbits.

Proc. 7th European Conference on Space Debris, Darmstadt, Germany, 18–21 April 2017, published by the ESA Space Debris Office

Ed. T. Flohrer & F. Schmitz, (http://spacedebris2017.sdo.esoc.esa.int, June 2017)

mailto:diprima@planetek.it
mailto:fabio.santoni@uniroma1.it
mailto:fabrizio.piergentili@uniroma1.it
mailto:fortunato@planetek.it
mailto:abbattista@planetek.it
mailto:amoruso@planetek.it

3. IMAGE PROCESSING ALGORITHM

The pipeline for sources extraction is composed of three

main phases.

Figure 1 Pipeline for sources extraction

First one is pre-processing where a set of non-linear

digital filtering techniques are applied to the greyscale

image, achieving a noise reduction. The second phase

consists in segmentation and classification where all the

information about the connected components from the

binary image are extracted and subsequently classified.

Finally, the astrometry phase performs the astrometric

reduction of the detected objects.

3.1 Pre-processing

In the preprocessing phase, we are interested to

elaborate the input data in order to reduce the noise and

prepare the image for the segmentation.

The first operation is the histogram stretching, which is

a technique used to improve the contrast of an image by

stretching the original dynamical range of intensity in a

desired range [9]. To perform the stretching it is

necessary to specify the upper and lower input pixel

value limits over that the image has to be normalized,

and select the desired output range values.

Typically, space debris image data are stored as 16-bit

grayscale images in “fit” format; thus, in order to

contextually reduce image dimension while preserving

and highlighting image features, a remap of data in an

8-bit grayscale images, with pixel value in the range

from 0 to 255, is performed.

Once obtained such stretched image, a median filter is

applied with the purpose of noise removal.

The median filter is a nonlinear filter whose response is

based on ordering pixels contained in the mask and then

replacing the central point of the mask with the median

value [10]. Median filter removes random impulse

noise, it provides excellent noise-reduction capabilities,

with considerably less blurring than linear smoothing

filters of similar size. The median image is then

analyzed to estimate the image background.

To detect faintest objects in the image it is necessary to

compute accurate values of background level in the

image. In the context of space debris image processing,

we identify as background all the pixel that have not

gathered photons coming from a star or a space debris.

The analog-to-digital units (ADU) value of the

background pixels is the result of the sum of photons

coming from the black sky, plus a delta result from the

effect of dark current and read noise.

In order to take account of variation of the background

level in the image, a local analysis of the image is

performed. The local statistics analysis estimates the

background values in each mesh of a grid covering the

whole image. For each mesh the mean and standard

deviation value are computed. Iteratively, all pixels

with value higher than are discarded and a

new value of standard deviation is calculated

considering the remaining pixels, until the percentage

difference of the standard deviation change less than

20%. Assuming that space debris images are not

crowded and that most of the pixels represent the

background sky, this iterative process allows to reject

all the pixel belonging to a foreground object as a star or

space debris.

The obtained image is then subtracted from the median

image to obtain a background-subtracted image, in

http://physics.stackexchange.com/questions/149516/what-are-adu-analog-to-digital-units

which are present only foreground pixels. To suppress

possible local overestimations due to bright stars,

another median filter is applied at the background-

subtracted image.

3.2 Segmentation

The image segmentation includes all those operations

that tend to partition an image into significant regions.

The purpose of segmentation is to simplify the image

information in order to make easy the features

extraction. The first operation in image segmentation

procedure is the image binarization.

The transformation in binary scale reduces the

informative content of the image splitting the pixel in

only two categories, foreground and background.

Furthermore, the binary transformation decreases the

storage space and increases the code performance. Two

binary images are then obtained from the median

background-subtracted image, one for streaks and

another for points detection purpose. The difference of

these two images defines the used threshold: a higher

threshold enables the detection of point-like objects

characterized of high ADU pixel value due at the

concentration of photon on a little region of the CCD

array, while a lower threshold optimizes the detection of

streaks characterized of a lower ADU pixel value due at

the spreading of the photons coming from a moving

object. At this point, the two binary images following

different segmentation procedure in order to enhance

the researched features.

3.2.1 Segmentation for streaks detection purposes

In order to detect streaks, the distance transform is

applied to the binary image.

The distance transform of an image is defined as a new

image in which every output pixel is set to a value equal

to the distance to the nearest zero pixel in the input

image. The distance transform is performed by using a

mask of 3-by-3 pixels, in which each point in the mask

defines the distance to be associated with a point in that

particular position relative to the center of the mask

[11].

The distance transformation result values are then

normalized and the threshold to obtain the peaks value

corresponding to foreground objects is defined.

Considering this normalized distance transformed

image, a morphological dilatation filter is applied.

The morphological operations are non-linear

segmentation techniques exploiting the mathematical

morphology to isolate or connect objects in the image.

The application of a dilatation operator, actually bridges

gaps and connects disjoint parts of the same object

resulting from a threshold operation. In our case we

have selected a square structural element of 3-by-3

pixels.

Then, aiming at measuring the streaks inclination angle,

the Standard Hough transform is computed on the result

image. Finally, the results of the Standard Hough

transform are used to apply a morphological opening

filter. The morphology opening is the combination of

the two basic morphological operations, an erosion

followed by a dilatation. The morphological opening

effects are preserve regions with shape similar to the

structural element and deletes different ones. Using a

linear structural element rotated of an angle

correspondent at the peaks of the Standard Hough

transform we preserve all the streak-like objects and

delete all the other features. This operation is applied to

the first peaks of the Standard Hough transform in order

to take into account the possibility of a space debris

image with different object on diverse orbit.

3.2.2 Segmentation for points detection purposes

The first operation to detect the point-like objects in the

image is the application of a convolution filter. A square

kernel of 3-by-3 pixels scans the image and replaces all

image pixels under the central point of the kernel with

the value 1 if the sum of the image pixel under the

kernel is higher than a threshold. An higher threshold

value allows to delete single points as hot pixels or

cosmic ray, while contextually fill little holes in the

object and clean the object contours.

Following the application of convolution filtering, a

morphological opening operation is performed. Using a

circular structural element we obtain the removal of

linear object as streaks or noise effect preserving the

point-like objects.

Finally, to ensure the deletion of all streak-like objects

from the image, a subtraction operation is performed

between the morphological opening image and the

binary image obtained in the segmentation for streaks

detection purpose image.

With the end of the segmentation phase we presume that

the obtained images allows identifying clearly the object

contours and then classify them as stars or streaks.

3.3 Classification

This phase assumes that the input image is a well-

segmented binary image; in which are present only the

relevant features describing the geometrical

characteristics of the objects. The classification phase

starts with the identification of the objects contours. A

contour is a list of points that represent a curve in an

image. We assume that a pixel is a contour pixel if it is a

white pixel and if it has at least one adjacent black pixel

in his surroundings. Finally to obtain all pixels inside

the contour, the Ray-casting algorithm is applied.

Once terminated this identification phase, all the

detected objects are measured to distinguish if they are

stars or streaks.

To compute the object barycenter and elongation we use

the formulation of the image Moment [12]:

(1)

being and the coordinate of the pixel belonging at

an object. By this definition we obtain that the Moment

of zero order

(2)

is the area of the object express in pixel and

(3)

are the coordinate of the object’s barycenter.

Other descriptors of the object are the Central Moments

(4)

and the centered Central Moments

(5)

The centered Central Moments are used to describe the

object as an elliptical shape, obtained the semi-major

and semi-minor axis of the ellipse

(6)

(7)

With these measures explained above, we classify all

the detected objects as point-like or streak-like objects.

A first selection of the objects is performed taking into

account the object’s dimension. A detected object is

rejected if the zero order Moment is lower than a

threshold . For the threshold , a value of 5 has been

selected, in this manner all the false positive detection

objects resulting from noise or artifact are discarded.

The remaining objects are then studied to classify them

as point-like or streak-like objects. The study is based

on the analysis of the object’s semi-major and semi-

minor axis.

An object is classified as point-like object if the

following equation is satisfied:

(8)

Ideally, the parameter should be equal to one; but

considering the spreading of the photons, the effect of

the image noise, and the artifact due to the image

processing it is selected a value of .

On the contrary, an object is classified as streak if the

following inequality is satisfied

(9)

being . The parameter is function of the

observed object orbit, exposure time, optical and camera

features. Its value has been selected after a study of the

usual dimension and shape of the space image features

taking in different orbital debris, from LEO to GEO, in

order to be suitable for every image type.

The parameter has been tested for LEO space debris

image taken with long exposure time, characterized of

very long streak in the image FoV, and for GEO image

taken with a short exposure time (comparable with the

first one) that present very short streak.

3.4 Astrometry

Finally, for each detected object, the right ascension

and declination angles are measured using the

information contained in the USNO-B catalog. The

measurement is performed with the assumption of lost

in space, in which neither sky zone nor image scale are

required.

The object’s celestial coordinates on CCD image are

calculated by the plate reduction [13]. This technique

exploits the geometric gnomonic transformation to

transform coordinates of the tangential CCD plane to

the celestial coordinates.

The plate reduction is computed using at least four stars,

and results of this operation are the image reference

point in image coordinates and in celestial

coordinates and the transformation matrix that

take into account the image rotation, skew and scaling.

The conversion from image coordinates to celestial

coordinates is obtained by the following formula

(10)

in which and are the relative pixel coordinates with

origin in the image reference point

(11)

The matrixes together define a unique transformation

from pixel coordinates to the plane-of-projection.

4. GPGPU

The use of General Purpose computing on Graphics

Processing Units (GPGPU) is a technological choice

aimed at increasing the computational performance of

scientific and engineering applications for large scale

parallel processing applications [14]. In 2006, the

NVIDIA Company with the Compute Unified Device

Architecture (CUDA) has released the Application

Programming Interface (API) and Software

Development Kit (SDK) with the intent to simplify the

accessibility and the use of the GPU. The CUDA-C

language is totally integrable with the C++ code and its

APIs are quite similar to those of the C language

making it easy to understand.

Now let us examine how the GPU works. In general the

hardware of a computer is divided in host, which is a

traditional CPU architecture, and device, which is

massively parallel processor as GPU.

Figure 2 Heterogeneous programming

The host drives the computational process by a CUDA

program. The CUDA program is a heterogeneous code

consisting of many parts having phases that can execute

both on the host and device, thus having a unique source

code that contain both host and device code. The host

code is written in C++, while the device code is written

in CUDA-C code, which is an extended version of the C

language with special keywords for labeling data-

parallel kernels and their associated data structures.

Usually a CUDA program is composed at least of these

phases: read input data, copy input data from host

memory to device memory, process the data on the GPU

by parallel kernel and finally copy result data from

device memory to host memory

A kernel is a function written in CUDA-C language that

executes parallel code, it can run only on NVIDIAs

GPU. The kernel is executed by each GPU’s thread;

threads are identified by a unique ID, enabling the

programmer to address different parts of GPU memory

relative to the thread ID.

CUDA organizes threads in a Scalable Programming

Model: the GPU’s threads are grouped in block (mono-

/bi-/tri-dimensional) and identified by means of a thread

index called ; in turn blocks are grouped in a

grid (mono-/bi-dimensional) and identified with a block

index called . The GPU has a finite number of

threads per block and a finite number of blocks per grid,

and therefore has a limit to the amount of parallel

execution. If the number of blocks exceeds the max

limit, then the GPU sequentially processes the

maximum possible number of blocks, therefore a kernel

can be considered as executed in parallel manner in

function of the hardware limit.

Although the use of the GPU can achieve improvement

in the code performance, the advantage over CPU

computations is only gained if the mathematical

problem is parallelizable on a large scale. Fortunately

the image processing is one of the perfect fields to the

adoption of the GPU: the image elaboration enables

separation of the input data to process and large-scale

parallelization due to the not dependence of the

computation. For these reasons all the aforementioned

image processing techniques have been implemented as

GPU kernels and used to produce results for this paper.

Although the use of the GPGPU allows to obtain the

code parallelization, is not always possible to speed-up

the execution time because there are a number of

limitations and hurdles that must be judiciously

managed to achieve an effective system.

The first limitation of the GPU is due to the time it takes

to transfer information between computer memory and

GPU memory. The data needed for the computation are

transferred from the pc memory to the GPU memory

and after the processing back to the pc memory. This

means that the time saved in the parallel processing

must be great enough to warrant the time taken for

transferring the data. Conversely, the CPU although

take a long time to processes in synchronous the data

not require the data transfer because they are already

stored on pc memory. Additional limitations to GPGPU

are due to the absence of high-level libraries, only basic

libraries have been rewritten in GPU code, then some

image processing techniques have been developed for

this simulation. Another important limitation is the

difficulty of code debugging and of error information

due to a lack of structured of error handling.

5. RESULT

The proposed method was tested and validated on a set

of data containing both imaging satellites from different

orbit ranges and multiple observation modes (i.e.

sidereal and object tracking).

Fig. 3 shows the detection results for the GEO image in

which are present two space debris with different orbit,

while Fig. 4 shows a space debris in LEO orbit.

Detected streaks are marked in red while in green are

marked the point-like objects that in these cases, of

images take with sidereal tracking, correspond

respectively with space debris and star. An example of

object tracking image is shows in Fig.5, in this case,

unlike the others, the detected streaks and point-like

object correspond respectively with star and space

debris.

Figure 3 GEO image in sidereal tracking

Figure 4 LEO image in sidereal tracking

During the test phase some detection errors were found,

the error cases are:

- true positive, not existing objects detected;

- true negative, existing objects not detected;

- false positives, wrong objects detect as streak.

The most common cases of false positive detection are

two close stars confused as possible streak or a fainter

streak detected as two distinct ones (as show in the Fig.

5), while the true positive and negative errors are due to

the image noise.

The hardware used in the simulation is the NVIDIA

Jetson Tegra K1, a quad-core ARM Cortex-A15 CPU

processor with 2GB of RAM with a NVIDIA Kepler

GPU of 192 cores capable of over 300 GFLOP/s of 32-

bit floating-point computation.

Figure 5 GEO image in object tracking

The mean execution time for image of 4096x4096 is

23.36 seconds for the CPU version of the pipeline and

3.19 seconds for the GPU version with a speedup factor

of 7.3x.

The total number of processed images is 400, 547

objects were checked by visual inspection in 356

images. The pipeline detects correctly 469 objects in

308 images with a success ratio of 85%.

Considering that the analyzed image are in raw format,

subtracting the bias frame and dividing by a normalized

flat field it is reasonable to assume that the success ratio

could be increase and that the detection errors could be

decrease.

6. CONCLUSION

In the paper the speedup and the efficiency of the

proposed pipeline for sources extraction is

demonstrated.

The pipeline detects space debris without any a priori

information and it is based on the analysis of a single

image. The pipeline is able to detect space debris in

both the tracking mode sidereal and object tracking.

A GPU approach was introduced in order to reach near

real-time performance. The mean execution time for

image of 4096x4096 is 3.19 seconds with a speedup of

7.3x respect the CPU version.

The pipeline was tested on 400 images with a success

ratio of 85%.

7. REFERENCE

1. Klinkrad H. Et al, “Space Debris Activities in

Europe”. Proceedings of the 4th European

Conference on Space Debris, 18-20 April 2005,

ESA/ESOC, Darmstadt, Germany, p.25.

2. Piergentili F. et al. “EQUO: an Equatorial

Observatory to improve the Italian space

surveillance capability”. 66th International

Astronautical Congress, Jerusalem, Israel, 2015,

12 – 16 October.

3. Diprima F., Cardona T., “Lessons learned in

automatic operation of observatories for space

debris observation”. 67th International

Astronautical Congress, Guadalajara, Messico,

2016, 26 – 30 September.

4. Piergentili, F., Porfilio, M., Graziani, F., “Optical

campaign for low earth orbit satellites orbit

determination”, (2005) 4th European Conference

on Space Debris, 8-20 April 2005, ESA SP-587,

pp. 689-692.

5. Diprima F., “Automatic object tracking for space

based space debris observation”. 65th

International Astronautical Congress, Toronto,

Canada, 2014, 29 September – 3 October.

6. Piergentili, F., Ravaglia, R., Santoni, F., “Close

approach analysis in the geosynchronous region

using optical measurements”, Journal of Guidance

Control and Dynamics, Vol.37, n.2, 2014, pp. 705-

710. DOI: 10.2514/1.59821

7. Piergentili, F., Ceruti, A., Rizzitelli, F., Cardona,

T., Battagliere, M.L., Santoni, F., “Space debris

measurement using joint mid-latitude and

equatorial optical observations”, IEEE

Transactions on Aerospace and Electronic

Systems, 50, (1), 2014, pp. 664-675. DOI:

10.1109/TAES.2013.120272

8. Santoni, F., Cordelli, E., Piergentili, F.,

“Determination of disposed-upper-stage attitude

motion by ground-based optical observations”,

(2013) Journal of Spacecraft and Rockets, 50 (3),

pp. 701-708. DOI: 10.2514/1.A32372

9. Nixon M. S., Aguado A. S., Feature Extraction

and Image Processing, Newnes, 2002.

10. G. Bradski e A. Kaehler, Learning OpenCV,

O'Reilly, 2008.

11. Borgefors G., “Distance Transformations in

Digital Images”. Computer vision, graphics, and

image processing, vol. 34, pp. 344-371 (1986)

12. Hu M. K., “Visual Pattern Recognition by Moment

Invariants”, IRE Transactions on Information

Theory, vol. 8, pp. 179-187, 1962.

13. Kovalevsky J., Seidelmann P. K., Fundamentals of

astrometry, Cambridge University Press, 2004.

14. NVIDIA Corporation, [Online], CUDA Toolkit

Documentation v8.0.61, Available from:

http://docs.nvidia.com/cuda/#, 2017

