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ABSTRACT 

Most of existing algorithms deal with the problem of 

collision risk assuming spherical objects. This 

assumption works fine if the size of the satellite is much 

smaller than the standard deviation of the position 

uncertainty and it shows approximately the same area 

for any attitude, as the collision risk will depend on the 

total area exposed and not to the precise shape of the 

objects. As the orbit determination algorithms and the 

surveillance systems improve, this assumption may fail 

for some satellites. This situation can be solved using 

complex geometries definition, where a satellite can be 

defined differently to an sphere.  

A method implemented in the ESA operational 

CORAM tool is presented in this paper. The method is 

based on addressing complex geometries by assuming a 

satellite composed of several oriented boxes. The 

algorithm is based on the computation of the collision 

volume accounting for the geometry of the two objects. 

While in the spherical case the hard-body object 

(collision volume) can be computed as another sphere 

whose radius is the sum of the radii of the two original 

spheres, in the complex case this hard body computation 

is more complicated. It is accomplished by assuming 

constant attitude and calculating the Minkowski sum of 

the two objects, and then projecting it onto the 

encounter plane..  

Together with a detailed description of the algorithms, 

its applicability to some cases is reported, considering 

different cases of geometries and orbital data accuracy. 

For spacecraft that cannot be considered as spheres, the 

consideration of the real geometry of the objects may 

allow to may allow accepting events which show lower 

risk than when assessed with the spherical model, or 

estimate with larger reliability the risk associated to the 

event. This is of particular importance for the case of 

large spacecraft as the uncertainty in positions of actual 

catalogues does not reach small values to make a 

difference for the case of objects below meter size. As 

the tracking systems improve and the orbits of 

catalogued objects are known more precisely, the 

importance of considering actual shapes of the objects 

will become more relevant.  

Demonstration of feasibility of this algorithm is done 

through Monte Carlo simulations. The Monte Carlo 

evaluation of the possible collisions between the two 

objects, where one of them is at least of complex 

geometry also require specific considerations 

summarised along the paper.  

These algorithms have been implemented in the ESA 

operational tool CORAM, developed by Elecnor 

DEIMOS, which is used for the evaluation of collision 

risk of ESA operated missions. 

 

1 OVERVIEW 

1.1 Collision Risk Computation and 

Limitations of the Spherical Assumption 

Common collision risk algorithms assume the two 

objects involved in an encounter event are spherical. 

This assumption allows to easily compute the collision 

volume projection as the circle of radius equal to the 

sum of the radii of the two objects. In order to safely 

evaluate the risk of an encounter with two non-spherical 

objects, most operators consider the radius of the sphere 

that includes the complete volume of every object. In 

this way, it is ensured that any encounter involving the 

two objects will be identified by evaluating the 

complete surrounding sphere. The drawback of this 

approach is that some events reporting large collision 

risk may not be associated to real high risk events when 

considering the real shape of the objects (especially for 

those cases where the objects are very elongated, e.g. 

having large appendages like solar panels or antennas). 

In order to prevent the large number of high risk events 

raised by the former approach, an equivalent circle can 

be used for collision risk integration. Such equivalent 

radius shall be computed to provide the same area as the 

projected collision volume of the two objects. Then, a 

method for actually computing the collision volume is 
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needed. Additionally, this approach may be appropriate 

only if the combined covariance is significantly larger 

than the equivalent radius. 

Several authors have proposed algorithms for handling 

non-spherical objects. [1] proposes the following 

approach: to obtain the collision cross section of each 

component and convert it to an equivalent circle having 

the same area and the same centroid.  In [2] Patera 

provides a method to calculate orbital collision 

probability without making any simplifying 

assumptions. A formulation was developed that reduces 

the two-dimensional integral to a one-dimensional 

integral involving only a simple exponential function in 

the integrand. Instead of integrating over an area, the 

integration can be done along the perimeter of the area, 

thereby reducing the number of evaluations of the 

integrand and increasing the computational speed.  

 

1.2 CORAM tool 

The algorithm described in this paper has been 

implemented in the Collision Risk Assessment and 

Avoidance Manoeuvres (CORAM) tool. The CORAM 

SW package is intended to support satellite operators in 

the assessment of conjunction events in regard to the 

collision risk evaluation and analysis of optimal 

avoidance manoeuvres. It has been designed to provide 

large flexibility, by reading the input orbit files in 

several formats: state vector at an epoch, ephemeris file 

for an interval, a TLE file or a CDM file; considering 

different risk evaluation methods, suitable for high and 

low relative speed encounters and allowing MonteCarlo 

execution. 

Both impulsive and low-thrust manoeuvres can be 

configured by the operator or added by CORAM during 

the avoidance manoeuvre optimisation process. The 

force-model propagator can manage these manoeuvres, 

both for the state vector and for the covariance matrix, 

with thruster error modelled as an uncertainty in the 

acceleration and the direction of the manoeuvre, 

impacting the evolution of the covariance information. 

CORAM is divided in two main different modules.  

 CORCOS is the tool responsible for collision risk 

assessment, input/output of scenario files and 

propagation. 

 CAMOS makes use of CORCOS libraries to 

compute the optimal avoidance manoeuvre needed 

by the target satellite to reduce the collision risk (or 

increase the miss-distance) to a requested level. 

 

 

The Collision Risk Computation Software 

(CORCOS) is devoted to support the space debris 

analyst in computing the risk of collision between two 

objects.  

The risk assessment tool allows analysing the 

probability of collision between orbits with high relative 

velocity (assumption that allows simplifying the 

problem and finding simpler algorithms for the 

probability function) but also for low relative velocities 

(that in general forces to consider non-linear relative 

motion, and therefore requires more complex 

algorithms). As already mentioned, complex geometries 

(non-spherical objects) are considered (see Fig. 1 for an 

overview of the main interfaces of CORCOS). 

Additionally, the S/W provides all possible conjunctions 

between two given orbits, inside a predetermined 

temporal interval, when requested. 

 

CORAM 

For target object:  S/C 
state, Cd/SRP coeff 
covariance  / TLE 
uncertainties/CDM 

Manoeuvre 
information: number, 
type, duration, 
magnitude, 
uncertainty. 

Drag and SRP 
coefficents 

Geometry bodies 
information: size, 
shapes, attitude laws 

Scripts for 
gnuplot 

Covariance 
informationa at 
TCA 

For chaser object:  
S/C state, , Cd/SRP  
covariance  / TLE 
uncertainties/CDM 

Time interval of 
evaluation 

TCA, 
probability of 
conjunctions, 
distance at 
TCA, direction 
approach 

 

Figure 1.: Main interfaces of CORCOS 

 

The Collision Avoidance Manoeuvre Optimisation 

Software (CAMOS) is a tool devoted to the evaluation 

of different mitigation strategies for the avoidance of a 

collision risk through the optimisation of avoidance 

manoeuvres. The tool permits parametric assessments of 

different avoidance strategies, including the 

minimisation of a risk function calculated in the loop, or 

the minimisation of the fuel necessary to attain an 

acceptable risk level. The tool permits to consider both 

impulsive and low thrust control and to account for 

several constraints on the trajectory, as location for 

GEO satellites or eclipses. 
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2 ALGORITHM FOR COMPLEX 

GEOMETRIES 

Common collision risk evaluation algorithms deal with 

the problem of collision risk assuming spherical objects. 

This assumption may work fine if the size of the 

satellite is much smaller than the standard deviation of 

the position uncertainty and it shows approximately the 

same area for any attitude, as the collision risk will 

depend on the total area exposed and not to the precise 

shape of the objects. 

As the orbit determination algorithms and the 

surveillance systems improve, this assumption may fail 

for some satellites. This situation can be solved using 

complex geometries definition, where a satellite can be 

defined by some other parameters than a sphere. 

If one of the objects, or both, are complex (composed of 

oriented boxes), a new method to calculate the collision 

risk has been devised. 

While in the spherical case the hard-body object 

(collision volume) can be computed as another sphere 

whose radius is the sum of the radii of the two original 

spheres, in the complex case this hard body computation 

is more complicated. It is accomplished by assuming 

constant attitude and calculating the Minkowski sum of 

the two objects, and then projecting it onto the 

encounter plane.. This projection can efficiently treated 

by projection of the vertices only 

 

2.1 Minkowski Sum 

To easily compute the Minkowski sum [3] of two 

complex objects, it is better to divide the objects in 

convex shapes and compute the sum by pairs, for all 

combinations and then reconstruct the final object. The 

algorithm is based on the computation of  the 

Minkowski sum for every two boxes of the objects but 

only for the vertex points, without reconstructing or 

saving any information about the faces. The resulting 

sum will be also convex. 

Those points are then projected onto the encounter 

plane, and the contour (convex hull) that the points form 

is calculated. This convex hull is the contour of the 

projected Minkowski sum, represented as a convex 

closed irregular polygon. This polygon defines the 

collision volume, similar to the combined sphere used in 

the special case. The next step for the developed 

algorithm is to identify the points in the B-plane that are 

included within the polygon (shadowed), and those 

which are outside the polygon. 

 

2.2 Z-buffer Computation 

The encounter plane is checked to evaluate which part 

of it is shadowed by the projected collision volume 

(complex geometry). This is a problem usually 

addressed in computer vision programs and games. In 

the frame of CORAM, it is decided to use the 

philosophy of the Z-buffer algorithm [4] used in 

computer vision system within the collision risk frame. 

Z-buffer refers to the evaluation of the Z value of a 3D 

object, being Z the direction along the “line of sight” 

resp. projection direction. In order to compute that, 

without the aid of graphical representation and visual-

tools, the approach considered in this algorithm is based 

on the evaluation of points in a plane belonging to a 

polygon. For the sake of the projected area evaluation, 

the actual Z value is not needed. It is only required to 

know if the point is shadowed by part of the object. 

The encounter plane is discretized and sampled. A z-

buffer grid is constructed where every cell of the grid is 

a true/false indicator of the “shadow” of the hard body 

onto the encounter plane (See Fig. 2). Every grid cell 

contains a small amount of contribution of the collision 

risk and the last step is to compute the risk associated to 

every shadowed grid cell and sum them up. 

 

Figure  2. Representation of Encounter plane with the 

projection of the boxes forming the collision volume the 

related contour for the case of two satellites and the Z-

buffer evaluation. 

 

Only cells not previously shadowed by another already 

tested polygon are checked by means of a fast point-in-

polygon algorithm. These steps are repeated for every 

polygon resulting from a box-box pair of the complex 

objects, and the resulting z-buffer grid is evaluated to 

calculate the collision risk. This approach solves the 

problem of self-shadowing effects and the impact on the 

evaluated risk. 
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For the collision risk computation, it is possible to use 

Alfriend & Akella or Patera methods on each cell. It can 

be easily done by replacing every cell by an equivalent 

circle in the encounter plane and applying a collision 

risk method to them. The final sum provides the total 

collision risk.  

2.3 Evaluation Against Monte Carlo Method 

Monte Carlo tests are normally used to evaluate the 

validity of algorithms. For collision risk evaluation, in 

the case of spherical objects, it is possible to check for 

collision by searching the Time of Closest Approach 

(TCA) by propagating both objects looking for the 

minimum distance between them, and then checking if 

the separation distance is lower than the sum of radii.  

In the case of geometries made of oriented boxes, 

however, the simple approach for Monte Carlo followed 

for the spherical cases is not necessary valid. A suitable 

algorithm is needed to efficiently implement a Monte 

Carlo simulation with oriented boxes, which can detect 

the overlapping of boxes along a period of time around 

the TCA. 

Such algorithm is detailed in [6]. It is based on an 

algorithm called separating axis test: Two oriented 

boxes are not separated (i.e. in collision) if, with respect 

to some axis L, the sum of their projected radii is less 

than the distance between the projections of their centre 

points. The separating axis test allows to conclude on 

absence of collision by testing for collision for a finite 

number of axes. In the case of two 3-dimensional boxes, 

it is necessary to check at most 15 of these separating 

axes to determine if they overlap. These axes 

correspond to the three coordinate axes of every single 

box and the nine axes perpendicular to an axis from 

each. If there is not overlapping in the projection of any 

of these 15 axes, then there is not overlapping between 

the two boxes. An example of this test for two 

dimensions is illustrated in Fig. 3. 

 

Figure 3. Separating axis test in two dimensions 

 

3 EXAMPLE CASE 

This test case demonstrates the capabilities of the 

developed algorithms for collision risk computation 

when complex geometries are involved in the event. 

Different cases of encounters with varying miss-

distances, approaching geometries and position 

uncertainty values are considered.  

The event is related to the case of one main object 

formed by 5 boxes (a main satellite body, two solar 

panels and two joints between the main body and 

panels). The second object is a small simple box of 10 

cm size. Fig. 4 below provides the encounter 

configuration of one of the simulated cases. 

 

Figure  4. Simulated case for complex geometries. The 

impact is below the target nominal position.  

All the cases have been executed assuming different 

values of the uncertainty of the two objects’ position, 

resulting in combined accuracy (covariance) at the B-

plane of the order of magnitude of 0.2 m 2 m, 20 m and 

200 m and separations of 1, 2 and 3 m for the nominal 

position of the objects. 

Each case has been executed with different algorithms: 

The complex geometry algorithm defined in this paper, 

the Monte Carlo approach suitable for complex 

geometries, and the spherical Alfriend and Akella’s 

algorithm [5] for the case of same equivalent projected 

area in the B-plane. 

The simulated case where the nominal encounter point 

is below the target object does not correspond to an 

actual collision. When the covariance is very small, this 

fact can be clearly identified (see Fig. 5). Only the case 

of miss-distance equal to 1 m offers a relatively high 

collision risk of 1.9·10-2. For the rest of cases, the 

density function is almost null over the integration area. 
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Table 1. Probability Density Function for a test case varying Miss Distance and Combined Position Uncertainty. X 

direction in the figures below corresponds to Cross Track direction (miss vector direction) in Fig. 4 above. 
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 Probability Density Function 

Miss Distance 1m  Miss Distance 2 m Miss Distance 3 m  

0.2 m  

 

 
 

2 m  

 

 
 

20 m  

 

  

 

 
   

 

Table 1 provides the probability density function over 

the B-plane for the analysed cases). For larger 

uncertainty values, it can be seen that the density 

function provides significant contribution over the 

contour surface and thus the collission risk increases 

when the uncertainty is on the order of magnitude of the 

miss-distance. For larger uncertainties, the risk is similar 

for the three simulated miss-distances. 

Monte Carlo analysis results are provided below (see 

Fig. 5), showing a perfect match between the collision 

probability provided by the Monte Carlo and the 

probability computed by the algorithm. 

 

 

Figure 5. Collision probability for the complex 

geometries cases (CG algorithm and Monte Carlo 

comparison), for different miss-distances as a function 

of the projected covariance value.  
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Finally, for comparison, risks were computed assuming 

spherical objects projecting an equivalent area over the 

B-plane; see Fig. 6 for the results. The equivalent 

integration area includes the encounter point for the case 

of miss-distance equal to 1 m, resulting on a wrong 

large collision probability. For the miss-distance equal 

to 2 m, the density function still contributes to the 

equivalent circular integration area, providing larger risk 

than that computed with the complex geometries 

algorithm (demonstrated correct thanks to the Monte 

Carlo executions). 

 

 

 

Figure 6. Collision probability for the complex 

geometries cases (CG algorithm and A&A for 

Equivalent Area comparison), for different miss-

distances as a function of the projected covariance 

value.  

 

4 THE CASE OF A TETHERED 

SATELLITE 

The complex geometry algorithms are recommended for 

collision risk computation when the geometry of the 

involved objects is not similar to that of a sphere. One 

particular case of interest is that of the tethered 

satellites. In this type of systems, a very large tether is 

attached to the main body of a satellite. This creates a 

complex structure which normally has one dimension 

much longer than the others. There is a long history of 

such missions and long tethers up to 20 km length have 

been used in the past. 

In the analysis shown here, the relative dynamics of the 

tether with respect to the satellite is not considered, and 

the configured system does not intend to reflect any real 

case of a tethered system. 

The case of a satellite with a 10 km tether is simulated, 

in order to compute the collision risk for the case of an 

impact at different miss-distances. The configuration of 

the main satellite is provided in Fig. 7, with a overall 

spam of the main satellite of 4 meters and a tether 

thickness of 20 cm. In the first case shown below, the 

chaser object impacts the main satellite at the nominal 

position (miss distance = 0km). A number of additional 

cases have been simulated, with the miss distance equal 

to 0, 0.1, 0.5, 1, 10, and 15 km. In all these cases, the 

chaser object is located in nadir direction from the 

satellite. Then, for all cases, the chaser impacts the 

tether attached to the system (except for the case of 15 

km miss distance). 

 

Figure  7. Simulated Satellite for the case of Analysis of 

Tether case.  

All the cases have been executed assuming different 

values of the uncertainty of the two objects position, 

resulting in combined accuracy (covariance) at the B-

plane of the order of 2 m, 200 m, 2km and 20 km 

Each case has been executed using different algorithms. 

The complex geometry algorithm defined in this paper 

has been executed for two configurations: the main 

satellite with the attached tether, and the main satellite 

without the tether. Additionally, the simple 

Alfriend&Akella’s method for spherical objects has 

been executed. In this case, the configuration is chosen 

so the equivalent diameter of the cross-section in the B-

plane is equal to the one resulting from the tether case. 

This resulting diameter is 49 m. 

From next Fig. 8, where the complete tethered system is 

considered, the probability evolves similarly for all the 

analyzed miss-distances (between nominal center of the 

main satellite and the chaser) but for the case where the 

theoretical impact occurs out of the tether nominal 

position (15 km miss-distance). As the chaser object 

impacts the tether system, when applying the algorithm 

for complex geometries, similar collision probabilities 

are obtained for all the different distance values between 

nominal positions when the same uncertainty is 

considered. The probability diminishes for all cases as 

the uncertainty increases, as the chances that the chaser 

impacts the nominal position reduce when increasing 
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the uncertainty of those nominal positions. The case of a 

15 km miss-distance, which is not a real encounter 

(conjunction leading in an actual hit), provides null 

probability for combined uncertainties in the B-Plane 

around 200 m and below. For larger uncertainties, a 

non-zero probability results, being this risk similar to 

the other miss distance cases.  

 

Figure  8. Collision probability for the Tethered 

Satellite, for different miss-distances as a function of the 

projected covariance value. 

If the tether system is not considered for evaluation of 

collision risk, the resulting probabilities are similar to 

those of the former case for the miss-distance equal to 

zero. For the other cases, and when the position 

uncertainty is small, the collision probability is very 

low, as it is only evaluated over the main satellite, and 

not over the tether (where the actual collision occurs). 

When the uncertainty is large (larger than the miss-

distance) the collision probability is similar among all 

the cases. Still, the collision probability is below that 

from the complete tethered system. This fact 

demonstrates that the complete system shall be 

considered for reliable computation of collision risk in 

those tethered satellite systems. 

The complex geometry case with the complete tethered 

system provides an equivalent projected area of 49 m 

span over the collision B-plane. Considering this 

diameter, and applying the spherical case algorithm 

defined by Alfrend&Akella, the resulting collision 

probability is only close to the actual risk for the case of 

very small miss-distance or for the case of large 

uncertainties (where the integral of the density function 

over the equivalent area result in similar probability 

than integrating over the actual area). To obtain realistic 

risk figures using this spherical model, it is needed that 

the miss distance is on the order of magnitude of the 

uncertainty value. 

 

 

Figure  9. Collision probability for the Main Satellite, 

for different miss-distances as a function of the 

projected covariance value. 

 

Figure  10. Collision probability for the Equivalent 

Sphere than the Tethered system, for different miss-

distances as a function of the projected covariance 

value. 

In order to evaluate the risk by A&A algorithm as 

above, it is needed to know the projected area over the 

B-plane. For that, the Z-buffer algorithm presented 

above has been used. Even for those cases, with large 

uncertainties, where the spherical assumption may be 

acceptable, the developed algorithm is useful for the 

computation of such projected area. 

In the case the projected area cannot be computed, and 

for the safest configuration. All conjunctions over the 

sphere including the complete system should be 

considered. This would correspond to an enormous 20 

km diameter sphere, resulting on a non-reliable collision 

risk computation approach. For those cases, it would be 

needed to estimate, instead of the collision risk, the 

miss-distance, and only in case of having an impact in 

the nadir direction; it would be required to analyze it 

further. This option is not recommended, especially due 

to the performances of the developed algorithm and the 

simplicity of its implementation. 
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In the following, each miss distance case is shown for 

the three executed approaches. It can be observed that 

for the miss distance equal to 0, the collision risk 

reported by the complex geometry case does not reach 

1. This is caused by the density function to be spread 

over a longer area than that used for integration.  

 

Figure  11. Collision probability for tether system with 

different collision risk computation approaches, for 

different miss-distances (0 and 0.1 km) as a function of 

the projected covariance value. 

It can be easily observed that the collision probability 

when considering only the main satellite (without the 

tether) is well below the collision risk of the complete 

system. Only in the case of the chaser nominally 

impacting the main satellite, this approach would result 

in adequate probabilities for the very accurate 

covariance cases (on the order of meters).  For more 

realistic cases (over 20 m), the results with this 

approach are not considered reliable. 

The case of equivalent area used for a simple algorithm 

is suitable when the position uncertainty values are 

large. It can be observed that, the larger the miss-

distance is, the larger the position uncertainty is needed 

to get a collision probability equivalent to that from the 

complex approach. Additionally, as it has already been 

mentioned, this approach requires a method to compute 

the projected area allowing to derive the equivalent 

sphere diameter, for which the developed Z-buffer 

algorithm can be considered. 

 

 

 

Figure  12. Collision probability for tether system with 

different collision risk computation approaches, for 

different miss-distances (0.5, 1, 10 and 15 km) as a 

function of the projected covariance value. 
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If we consider now a conjunction with nominal 

encounter which does not impact exactly at the tether, 

but 100 meters apart, we see that the collision risk 

evaluation is more useful than simple distance 

evaluation: For two scenarios of a close approach at 100 

resp. 500 m distance from the main object along the 

tether direction two cases each are considered, one 

nominally impacting the tether, i.e. 0 distance to the 

tether, and the other one having a miss-distance of 100 

m, perpendicular to the tether direction (additional to the 

100 resp. 500 m separation from the main body). The 

combined uncertainty in the B-plane is 200m. 

Table 2. Comparison of Conjunction cases for a 

tethered satellite 

Distance to Main 

Satellite (along 

tether direction) 

Distance to 

Main Satellite 

(perpendicular 

to tether 

direction) 

Collision 

Probability 

with Main 

Satellite Only 

Collision 

Probability with 

Satellite plus 

Tether 

100 m 0 m 3.4·10-6 2.43·10-4 

100 m 100 m 3.12·10-6 2.18·10-4 

500 m 0 m 3.07·10-7 3.48·10-4 

500 m 100 m 2.82·10-7 6.08·10-5 

 

For the scenario of a miss-distance of 100 m along the 

tether direction from the main-body the two cases of 

nominally hitting the tether or passing by 100 m 

perpendicular to it show similar risks. As the uncertainty 

is on the level of the miss-distance perpendicular to 

tether, there is a significant part of the risk integrated 

over the collision area for both cases. Additionally, the 

probability density function over the main satellite is 

also similar. In this particular case, it can be seen that, 

typically used collision probability thresholds (between 

10
-5

 and 10
-4

) would force on an avoidance manoeuvre 

for the case of considering the tether when integrating 

the risk (using complex geometries algorithms). 

In the case of 0.5 km distance to the main satellite along 

the tether direction, for both cases (miss-distance 

perpendicular to the tether direction 0 or 100 m) the 

collision risk when considering only the satellite is very 

small, in spite of having a significant risk to collide with 

the tether. When considering the complex system 

composed by main satellite and tether, the estimated risk 

reaches levels in the range which usually trigger an 

avoidance manoeuvre. 

 

 

5 CONCLUSIONS 

Most of the existing algorithms dealing with the 

problem of collision risk assume spherical objects. This 

assumption works fine if the size of the satellite is much 

smaller than the standard deviation of the position 

uncertainty and it shows approximately the same area 

for any attitude, as the collision risk will depend on the 

total area exposed and not to the precise shape of the 

objects.  

A new method that allows the consideration of complex 

geometries is presented in this paper and its 

applicability to a very elongated spacecraft is reported. 

Demonstration of feasibility of this algorithm is done 

through Monte Carlo simulations. 

From the presented cases, it can be seen that an 

algorithm accounting for the actual shape of the 

colliding objects may allow accepting (i.e. not 

performing an avoidance manoeuvre) conjunctions 

which would show a high risk assuming spherical 

shape. This is particularly the case if the uncertainty 

associated to the objects’ positions is below the order of 

magnitude of the conjunction miss distance and the size 

of the object in some direction.  

The use of appropriate collision risk algorithms 

accounting for objects geometry is of particular 

importance for the case of large spacecraft as the 

uncertainty in positions of actual catalogues does not 

reach small values to make a difference for the case of 

objects below meter size. As the tracking systems 

improve and the orbits of catalogued objects are known 

more precisely, the importance of considering actual 

shapes of the objects will become more relevant.   
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