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ABSTRACT

Efficient sensor tasking is a crucial step in building up
and maintaining a catalog of space objects at the high-
est possible orbit quality. With increased sensing capa-
bilities, also the amount of objects that can be and are
thought to be kept in the catalog is increasing. Realis-
tic object numbers can easily reach over 100000 objects.
It is crucial to note that for efficient collision avoidance
and surveillance, individual information of those objects
is sought rather than merely statistical information. Sen-
sor resources are necessarily of a much smaller number
compared to the number of objects. The object proba-
bility density function, and hence how good a catalog is,
is influenced by the number of observations, the spac-
ing and their quality. This makes sensor tasking a crucial
step in order to ensure the best possible space object cat-
alog. The best possible space object catalog can be de-
fined as fulfilling a number of criteria. In the approach in
this paper reformulates sensor tasking as an optimization
problem. A cost function that is apt to the SSA tracking
and cataloging problem is derived. The method is flexible
enough to being able to incorporate multiple sensors with
different observation schedules. The method can operate
on a known a priori catalog of objects or be started on
first principles. Computational feasible ways to evaluate
the optimization are are shown and evaluated. The result
shows a highly efficient sensor tasking scheme.
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1. INTRODUCTION

One of the aims of Space Situational Awareness (SSA)
and a prerequisite for Space Traffic Management (STM)
is the build-up and maintenance of an as complete and as
comprehensive as possible information on each individ-
ual space object. The set of information on the objects
is often referred to as a catalog; a catalog can include
a plethora of information; a minimum is dynamical
information, such as the state, position and velocity or
equivalent.Only a minority of the human-made objects
are active and of course communication is limited to the
owner-operator; furthermore direct communication does

not automatically guarantee a good determination of the
satellite state probability density function. Information
of uncooperative targets can be gained with active and
passive ground based or space based sensors. The
expected number of targets is in the order of 100’000
objects of interest [Pel16]. In comparison to this number,
the number of sensors to collect independent information
is relatively small. The large relative velocity differences
between sensors and objects in different orbital regions
prevent the simultaneous detection of very diverse
objects, even if the field of view of the sensor would
allow for it. The forces acting upon the object can
only be modeled to a limited accuracy. This leads in
combination with the non-linear nature of the space
object orbits to an increasing position uncertainty. This
makes re-observation of the objects necessary to keep
custody.

Well designed sensor tasking is hence crucial. Tradition-
ally, so-called surveys and follow-up observations are
discriminated. Traditionally, survey and follow-up strate-
gies have been developed for geosynchronous orbital
regions [ASM+, SHP99, Sch03, MSFB05, MSPB05].
Similar strategies have been adapted for the low Earth
region for radar sensors [ELB11]. In recent research,
these classical methods have been contrasted with other
sensor tasking strategies. Fujimoto and Nafi [NF16]
investigated different cost function models to evaluated
different sensor tasking scenarios, based upon the
traditional stripe scanning. Many publications however
focus on either high level structures or do not give details
on the merits that are actually gained, and are hence not
or only limited operational applicable, e.g.[HHG+16].
Some other strategies focusing on combining finite set
statistics with sensor tasking [FHGS16] or machine
learning [FSP16], or the use of genetic algorithms
[HFS16].

In this paper, a new way of planning and conduct-
ing surveys is presented, in treating the sensor tasking
and object coverage as an optimization problem via
a weighted sky area approach in combination with
diversification of the optimization scheme allowing for
a very fast computation of a near optimal solution. This
allows for a fast computation based on an a prior catalog,
alternatively, the optimization can also be started based
on first principles only. The method is flexible enough to
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incorporate any number of optical sensors with different
sensor characteristics. The paper is organized as the fol-
lowing: First the full optimization problem is introduced.
In the second section, a computationally fast and feasible
way of computing a near-optimal solution is shown. The
paper concludes with simulations of two different sensors
observing the geostationary ring with the aim to cover
each object once or twice within one summer night.
Their performances are compared. Preliminary research
on this topic has been published in [Fru16], where
one sensor was compared to a classical stripe-scanning
sensor tasking, as developed in [ASM+, SHP99, Sch03].

2. FORMULATION OF THE PROBLEM

2.1. Optimization Criteria

The optimization criteria that are sought to be maximized
are:

1) initial detection

2) initial orbit determination of new objects

3) keeping custody/orbit improvement of known ob-
jects

The first principle is equivalent to maximizing the proba-
bility of detection in a twofold:

1.1) probability of detection, when the object is in the
field of view (illumination etc.)

1.2) the number of objects observed simultaneously in
the field of view per viewing direction

For the initial orbit determination The first item refers to
getting the best possible signal to noise ratio (SNR) for
the objects that are sought to be detected. The latter just
means it is not very advantageous to observe regions of
the sky which contain no objects (if known beforehand).

The second principle entails that observations have
been collected in a manner, that a first orbit determina-
tion without a priori information is possible. First orbit
determination methods include classical solutions to
Lambert’s problem, or the time-ordered equivalent using,
Gauss or Lagrange method. The orbit improvement, the
third principle, aims to collect observations, to update
the probability density functions that are already known.
Through the non-linear propagation in the presence of
processing noise, the uncertainty grows over time. In
order to keep an object in custody observation updates
are needed to update the orbit with a smaller uncertainty
again. The second and the third principle can be merged,
if one views first orbit determination in a way that the
single tracklet allows to determine a first orbit, with
very large uncertainties, such as in an admissible regions
approach [MGF+09, TMFR09, MSC01].

2.2. Complete Formulation

Formulating the problem in the standard form leads to a
the constrained optimization problem:

max A =

l∑
g=1

rg∑
h=1

mg∑
f=1

jg∑
tg,f=1

[ n∑
i=1

µpast · p · d+ k
]
. (1)

αf,g −
1

2
FOV − αi ≤ 0, (2)

−αf,g −
1

2
FOV + αi ≤ 0, (3)

δf,g −
1

2
FOV − δi ≤ 0, (4)

−δf,g −
1

2
FOV + δi ≤ 0, (5)

R− σ ≤ 0. (6)

All function dependencies have been suppressed for a
abbreviated more legible display. A : Rk+4 → R being
the cardinality of the weighted viewing direction areas,
which is the quantity that is thought to be maximized.
It is computed as the sum over all sensors l that can be
employed at any time in the optimization interval. The
second sum is over the rg single time intervals for a
given sensor g within the optimization interval of length
tobs,g,h. A sensor might not be available during the
entire observation interval, for example optical sensors
during the day (although this could also be handled via
the probability of detection), because of maintenance
downtime, or time-slots that are pre-allocated to other
task in a shared use instrument. The third sum is over
all mg viewing directions that are possible to be fit
into the given observation interval for a given sensor.
mg is determined as mg = int(tobs,g/tframe,g), with
tframe = trepos + j · texp + (j − 1) · tread. tframes,g is the
time it takes the specific sensor to make a fixed number
of frames jg with exposure time texp, readout time tread
and repositioning time trepos, for the last frame in a
series, repositioning and readout can be done simultane-
ously. The optimization scheme is compartmentalized
into the single time steps, tf,g, that are corresponding
to each of the jg exposures. The time discretization
may be different for each sensor, based on the fact that
observations are started as soon as the sensor is available
in continuous time. µpast ∈ [0, 1] is the orbit quality
function. It is a probability function that is applied as a
weighting function, depending on the individual objects.
If the objects are sought to be observed disregarding
any prior history, µpast = 1. For all other cases, µpast

is a weight that rates, as of to when new observations
are most benefiting to improve the orbital quality of the
observed objects during the optimization interval. It is
strictly periodic with the orbital period of the object. The
orbit quality function is discussed in more detail in the
next subsection.

p(αi, δi,o, tg,f ) ∈ [0, 1] is the probability of detec-
tion of the single object of interest located at right



ascension αi,f and declination δi,f at the time tg,f .
The probability of detection is not only dependent on
the astrometric position of the objects, but also on
other parameters, conflated under o ∈ Rk including
distance to the observer and the sun, location of the
sun and object-dependent parameters, such as the
object’s size, shape, attitude, and surface reflection
properties. In the chosen representation, the function
d(αf,g, δf,g, αi, δi, tg,f ) : R4 → R has been defined to
represent the sensor to object association, for sensor g
and object i at time tg,f for a given viewing direction
of the sensor right ascension and declination, αf,g, δf,g,
respectively, at the same time. The association function
is one when the boundary conditions (Eq. 12 to 16) are
fulfilled and zero otherwise. Theoretically one could
merge functions p and d into one function, defining that
the probability of detection is zero when the object is
not in the field of view (FOV) of the sensor, however for
cleanness of representation and ease of understanding
the more extensive definition has been selected, treating
probability of detection as a weighting function for the
association.

The constraints embed a twofold. For one, Eq. 12
to 15, the objects can only be observed if they are in
the field of view (FOV) (d=1) at the time of obser-
vation tg,f for given objects and viewing directions.
Currently, the location of the object (αi,f , δi,f ) is iden-
tified by the mean of its object probability density
function (pdf) at that time. Secondly, Eq. 16 repre-
sents the re-observation constraint. The association is
only valid (d = 1) when the object specific function
σ(αi, α̇i, δi, δ̇i, ρi, ρ̇i, ν, tg,f ) : R6+q → Rr is above or
at a threshold R ∈ Rr. σ is a function of the full state of
the object at minimum and potentially other parameters
represented in ν or explicit time dependence. One
interpretation of σ could be the object pdf covariance.
This way, objects are actively sought to be observed
when they experience a covariance above a certain
threshold, and do not count towards A, when their
covariance is small. This leads to holding objects in
custody, when for example U is set to be half of the
field of view in the project right ascension, declination
direction. Voluntarily, the two orbit criteria have been
chosen, threshold R and the orbit quality function µpast.
Theoretically, the two could be combined to avoid a
cutoff threshold R, however this comes at the huge
disadvantage of disregarding the dynamical distinctions
of the problem. Hence, it has been chosen to clearly
separate the effects that are periodic with the orbital
period from the secular effects in the optimization.

In the absence of already observed objects and their
location (pdfs respectively) or other a priori knowledge,
the first half of Eq.1 is zero. It will automatically
populated as soon as objects have been observed and
orbit determination has been performed. In order to
be able to start a scenario without a prior information,
or maintain a scenario not based upon single objects,
the function k(αf,g, δf,g, tg,f ) : Rk → R has been
introduced. k can be understood as a multi-variate

Figure 1: Binned TLE catalog object positions over
July 12th observation night relative to the Zimmerwald
(Switzerland) topocentric location.

weighting function that is projected in the observation
plane of right ascension and declination. The potentially
continuous function leads to a scalar value for each
viewing direction αf,g, δf,g for a given sensor at a given
time tg,f . The pdf itself can be hence understood as
mapping out probability in the physical surveillance
space. A representation of k binned in right ascension
and declination relative to an observer an be seen in
Fig.1. Based on the TLE catalog, regions have assigned
values between zero, no objects are likely to be present,
to the maximum number of objects are present within the
24h period. Alternatively, k can be based upon regions of
interest defined by a user or derived from astrodynamic
principles from scratch for all objects or objects of
interest. k has the advantage that it does not have to
define single objects that are counted but simple values
for given viewing directions. k can also be normalized to
represent a probability measure.

When computing the optimization, either k or p · d
or both can have assigned values. The advantage of
the formulation given in Eq.1 to 16 is that no hard
decisions need to be encoded, but the optimization itself
balances the single objects, initial detection upon a priori
information or first principles and keeping custody of the
objects that have been already observed. The problem
can be solved if it fulfills the convexity criteria both,
in time, that is at every time step, and over time as the
objects are not static. Although, the problem is solvable
(at least for static objects), e.g. via branching methods,
it is NP-hard, with object numbers of around n ≈ 1300
(corresponding to the number of GEO objects currently
in the TLE catalog) would take a long time to provide
an exact solution. The pick of the viewing direction of
the first frame even for a single sensor influences the
viewing direction of all subsequent viewing directions.
Solutions for the problem are along the lines of branch
and bound algorithms, and sequential methods.

2.3. Discussion of the Orbit Quality Weighting
Function

The orbit quality probability function is an periodic func-
tion. Based on past observations, not all observations



(a) KL information gain (b) Trace Information Covariance

Figure 2: Time history of (a) the Kullback-Leibler infor-
mation gain and (b) of the trace of the innovation covari-
ance.

Figure 3: Probability of orbit quality for three different
orbits with first observation at true anomalies of zero, 50,
and 95 degrees and eccentricities of zero, 0.3, and 0.8.

along the orbit have the same impact on improving the
orbit quality. There are several ways to evaluate how the
orbit quality can be best improved. One way is to use
observability as a measure, as shown in [FF17, FF16].
Alternatively, information measures have been evaluated
[DJ11, CVS16, HFS16] based on the orbital probability
density functions; often the Kullback-Leibler information
gain is used:

GKL =
1

2
log10

|P−|
|P+|

, (7)

|P−| and |P+| is the determinant of the covariance ma-
trix prior and after a measurement update, respectively.
The update is computed sampled from a predefined mea-
surement uncertainty. The Kullback-Leibler information
gain is displayed in Fig.2a. The same qualitative result
can be achieved computing the information covariance
without measurement updates, see Fig.2b:

W = HP−HT . (8)

H is the measurement matrix. It has the advantage that no
explicit update has to be computed; that means no sam-
ple needs to be drawn. It is simply the projection of the
covariance in the measurement space. A simplified sinu-
soidal curve can be chosen of the eccentric anomalyE, to
mimic the known uncertainty pattern in the measurement
space. It is shown in Fig.11.

Figure 4: Diversification in time and over time for local
optimization via the urgency probability function.

3. FAST NEAR OPTIMAL SOLUTION

In order to reduce the computational burden, the problem
is reformulated, allowing for a near-optimal solution of
the problem. Two simplifications have been made. The
first one, is that not all viewing directions are allowed,
but only fixed grid points in the right ascension, declina-
tion space can be visited. The grid is sized by the size
of the field of view of the given sensor, such that all of
the sky is covered without gaps. Although there is no
physical reason fir this, it greatly reduces the load on the
optimization problem. The second approximation that is
made to avoid one of the sums of expression Eq. 1. In-
stead of optimizing for the exact observation times tg,f ,
which are jg time steps for each viewing direction, the
mid-exposure time of the series is selected as the opti-
mization criteria. This would be one time mg → τg,f for
each observation direction f . A third simplification is to
evaluate the expression at the local optimum instead of
the global one. The local optimum however does not co-
incide with the global optimum, in general. This is only
the case when no conflicts. Conflicts can be divided into
two groups, in-time conflicts and over-time conflicts. In-
time conflicts mean, that for the same time step, more
than one viewing area has the same value. It is hence not
immediately clear, which one to choose. More severely,
however, are over-time conflicts. This means, that the
overall at a time a viewing direction area might have a
lower value, but at later times, selecting the lower value
area will lead to a more optimal overall result. In order to
counteract time conflicts, the so-called urgency function
u has been added in the expression. he urgency func-
tion u(t) is simply evaluating for how long an object is
visible in the given optimization scenario and creating a
function that linearly increases with the decrease of the
remaining time at any given time step. A representation
can be found in Fig.4. As a side effect, it also diversi-
fies the values at the same time step and hence reduces
in-time conflicts as well.

This leads in summary to the following, altered, compu-
tationally faster formulation of the optimization problem,
described in Eq.1 that allows for evaluation via the local



optimum:

max Ã =

l∑
g=1

rg∑
h=1

mg∑
f=1

[( n∑
i=1

u · µpast · p · d+ k
]

(9)

αf,g = {α1, α2, ...., αm},m ∈ N (10)
δf,g = {δ1, δ2, ...., δm},m ∈ N (11)

αf,g −
1

2
FOV − αi ≤ 0 (12)

−αf,g −
1

2
FOV + αi ≤ 0 (13)

δf,g −
1

2
FOV − δi ≤ 0 (14)

−δf,g −
1

2
FOV + δi ≤ 0 (15)

R− σ ≤ 0 (16)

Again, the function dependencies have been omitted in
the above expressions for tidier representation.

4. SIMULATIONS FOR PROBABILITY OF DE-
TECTION EQUAL ONE

Two different sensors are compared. According to the
SMARTnet sensors of the German Aerospace Center
(DLR), one sensor holding a 3.77 x 3.77 degrees FOV,
denoted large FOV, or LFOV in the following, and one
sensor holding a 0.6115 by 0.6115 degrees FOV has been
modeled, denoted small FOV, or SFOV, respectively. The
sensors have been chosen to be located in Zimmwald,
Switzlerand. Ther sensor characteristics besides the field
of view are chosen to be identical. Exposure time of
eight seconds, readout time of seven seconds, reposition-
ing within the stripe nine seconds and a repositioning to
the beginning or the next stripe 30 seconds. Seven ex-
posures per declination point are taken. Eight declina-
tion positions are chosen to cover the dispersion of the
known objects in inclination. Whereas the LFOV tele-
scope is a classical survey telescope, the SFOV has dis-
advantages in that respect. However, the SFOV allows
for larger apertures, which gives a better probability of
detection, in general. The common opinion is that the
SFOV should not be used in survey; classical stripe scan-
ning is not possible. In our scenario, we can still find a
strategy for both sensors. Fort he sake of demonstration,
probability of detection of one for all objects is assumed.
As the underlying catalog the TLE catalog, provided by
the USSTRATCOM is used, from the date July 12, 2016,
observing from astronomical sunset to sunrise; compris-
ing a short 360 minute observation night. The catalog has
been filtered for near-gesynchronous objects with an alti-
tude over 34’000 km. The grid for the viewing directions
is finer for the SFOV and wider for the LFOV.

4.1. One Observation per Geosynchronous Mean
Motion Object

In the first scenario one observation per GEO object is
sought. Fig.5 shows the visible objects and the cho-
sen viewing directions for both sensors (based on local
horizon, sun set and rise times; earth shadow neglected).
Based on the different FOV, the strategy is different for
the two sensors. The optimization as shown above is

(a) all visible objects

(b) SFOV (c) LFOV

Figure 5: (a) All near geosynchronous objects that are
visible in at July 12, 2016 at the beginning of the obser-
vation scenario (based on the TLE catalog), chosen grid
point viewing directions (b) SFOV and (c) LFOV by the
optimization scheme.

based on the simple formulation taking the local opti-
mum 9. For the validation of the performance, the exact
scenario with the exact exposure times are use. In Fig.6
the detected objects are shown in turquoise and the unde-
tected objects in dark blue for both sensors. The rates are
shown in Fig.7. It shows that with the large FOV, all vis-
ible objects can be detected in the single night (assuming
probability of detection equal to one). The small FOV, al-
though a lot less suited us able to to observe a significant
amount of the visible objects, over 30 percent.

4.2. Two Observations per Geosynchronous Mean
Motion Object

In the second scenario two observations per GEO object
is sought. Fig.8 shows the chosen viewing directions
for both sensors (based on local horizon, sun set and
rise times; earth shadow neglected). As the objective
changed, for both sensors the strategy is altered signifi-
cantly.

In Fig.9 the detected objects are shown in turquoise and



(a) SFOV (b) LFOV

Figure 6: July 12, 2016 detected (turquoise) and unde-
tected objects (dark blue).

(a) SFOV (b) LFOV

Figure 7: July 12, 2016 detected object rate.

(a) SFOV (b) LFOV

Figure 8: July 12, 2016, chosen grid point viewing direc-
tions SFOV and LFOV optimized for two observations
per object.

the undetected objects in dark blue for both sensors. The
rates are shown in Fig.10. It shows that with the large
FOV, all visible objects can be detected in the single
night (assuming probability of detection equal to one).
For the large field of view, almost 90 percent of the
visible objects can actually be observed twice during the
single summer observation night. Interestingly enough,
the small FOV sensor is able to observe over 40 percent
of the objects twice, which is actually a larger rate than
the number of objects that have been observed once.
The reason lies in the optimization scheme. In the first
scenario, objects that have been already observed do not
count any more, and are hence avoided. Here, it is a
benefit to observe objects twice, so viewing directions
that are able to observe more objects at once are observed
twice, resulting in a higher rate in total. Fig.11 shows
the spread in anomaly that has been achieved. The

(a) SFOV (b) LFOV

Figure 9: July 12, 2016; objects detected once
(turquoise), twice (magenta) and undetected objects (dark
blue).

(a) SFOV (b) LFOV

Figure 10: July 12, 2016 rate of two observations per
object.

(a) SFOV (b) LFOV

Figure 11: July 12, anomaly differences between the two
observation batches.

largest anomaly differences are achieved by the drifters.
For the actual geostationary orbits, anomaly differences
of on average around 50 degrees can be achieved within
the same night.

5. CONCLUSIONS

The problem of efficiently cataloging all space objects
has been reformulated as an optimization problem. In
order to reduce the computational complexity, a grid
based viewing direction formulation has been introduced
at averaged times has been introduced. In introducing
the urgency function, it has been made possible to to
find a near-optimal solution to the optimization problem
via local optimum evaluation. The very fast algorithm



produces excellent results for the sensor tasking of two
different sensors, a large field of view sensor (LFOV) and
a small field of view sensor (SFOV). The LFOV sensor
has a field of view of 3.7 by 3.7 degrees, a classical
survey telescope the SFOV sensor only has a FOV of
0.6115 by 0.6115 degrees. It used to be judged that the
SFOV cannot perform surveys in an efficient manner.

In the simulations, using probability of detection of
one at all times (neglecting earth shadow), the LFOV
sensor operating by itself, was able to observe all
visible objects once per night during a 360 minute
observation night. Running the night again, it was able
to observe over 90 percent of the objects twice with a
good anomaly spread of the observations. The SFOV
sensor still reached a coverage of over 30 percent for one
obseravtion per object. For two observations per object,
the same scenario could even reach a coverage of over
40 percent of the objects in the single observation night.

Future work includes the extension of the frame-
work to derive survey fields based on first principles
independent of the two line element data sets and the
inclusion of full object probability density functions and
the operation of the sensors in a synchronous scenario.
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