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ABSTRACT

In view of the high value of space assets and a grow-
ing space debris population, collision analysis is of
great significance. Collisions between space objects
can, at best, be determined in a probabilistic man-
ner. Collision probability between objects is closely
related to close approaches of the objects, where
the traditional approach to determining the collision
probability is predicated upon finding a time of clos-
est approach and bounding this with a deterministic
time interval. This paper investigates the application
of information theory to the determination of a con-
junction interval. Cases of two and more-than-two
objects in close proximity are considered, and meth-
ods for determining the interval in which the objects
are interacting are developed. Simulations are car-
ried out to compare the developed methods to more
conventional techniques.

Key words: Collision assessment, information theory,
space object tracking.

1. INTRODUCTION

The population of tracked space objects is constantly
increasing due to new launches, increases in sensor
tracking capabilities, fragmentation of existing space
objects, and the generation of new debris caused by
random or intentional collisions. Collisions between
space objects (either active spacecraft or space de-
bris) can only be determined in a probabilistic man-
ner due to the lack of perfect knowledge regarding
the parameters that characterize the motion of space
objects, i.e. the translational and rotational state of
the space objects as well as the environment in which
the space objects are operating. Fundamentally, col-
lision analysis that is predicated upon nominal orbit
parameters without taking into consideration the un-
certainty in the parameters is inaccurate.

The probability of collision between two space ob-
jects provides a quantitative measure of the likeli-
hood that the space objects will collide with each

other. Collision probability between two objects is
closely related to close approaches of the two ob-
jects. The traditional method for initializing a colli-
sion probability assessment is to determine the time
of closest approach (TCA) based on predictions of
the space object motion that are solely made with
estimates of the states of the objects. Determining
the TCA can be carried out in several ways. One
approach is to numerically propagate the state es-
timates and find the time at which the propagated
estimates come closest, particularly within a com-
bined hard body radius [24]. More sophisticated ap-
proaches employ Taylor series expansions [13] and
minimization of the relative position vector using
surrogate based optimization [9] to improve upon
the determination of the TCA. These approaches,
however, neglect the influence that the uncertainty
of the space object states may have on determining
when the objects are in close proximity to one an-
other. While the omission of such effects may be
appropriate for regularly tracked objects, it begins
to break down as the uncertainties in the estimates
of the states grows larger.

This paper investigates the connection between con-
cepts in information theory, such as information di-
vergence and entropic information, and those of colli-
sions between space objects. Such methods naturally
enable the inclusion of the uncertainty of the objects
and generalize the time of closest approach to a win-
dow of time over which the two objects are in close
proximity. The developments are first considered for
the case where the uncertainties in the space object
states are taken to be Gaussian, and then this as-
sumption is relaxed to handle the situations where
the uncertainties are non-Gaussian.

Another generalization to the problem of multi-
object collisions is also considered. Whereas a min-
imum approach distance can be employed for the
close encounter of two objects, there is no natural ex-
tension to the case where more than two objects are
in close proximity other than pairwise considerations
of two objects at a time. Close proximity of multiple
objects can readily occur in multi-spacecraft forma-
tions, such as those assembled from small satellite
platforms. The information theoretic approaches,
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unlike the traditional methods, can be naturally ex-
tended into multi-object domains in order to provide
a single framework for handling these problems.

Simulations are carried out to highlight the effi-
cacy of the developed methods using synthetic data
for space object collision scenarios. Two-object and
three-object collision scenarios are considered, and
the results of the information theoretic approaches
are compared to more traditional approaches for
determining the relevant characteristics involved in
space object collisions.

2. PROBLEM STATEMENT

The central focus of this paper is on the determina-
tion of an interval during which two or more space
objects are in close proximity and exhibit positional
interactions, where the uncertainty of the space ob-
jects, in addition to their nominal locations, is taken
into account. As such, a probabilistic quantification
of the states through the use of a probability density
function (pdf) is required. Assume that M objects
are considered. The states of the objects at time ¢
are defined as

where i € {1,2,..., M}, 'r,(j) is the position of the i*®

object at time tg, and ’U](:) is the velocity of the i*®
object at time ;. Additionally, the uncertainties in

the object states are represented by the pdfs p(:cl(;)).
In this paper, the pdfs of the single-object states are
taken to be either Gaussian distributions or Gaus-
sian mixture (GM) distributions. Regardless of the
distribution, it is assumed that the pdf is known at
a sequence of times, and these pdfs are the inputs to
the different methods described herein to determine
when the objects are or are not in close proximity.
For ease of notation, the time index will be dropped
in the following developments, with the understand-
ing that the results can be applied at any time.

3. TWO-OBJECT APPROACHES

Assume that there are two objects with states given
by £ = [(r)T (v)T]T, where i € {1,2}. Ad-
ditionally, it is assumed that the uncertainties of the
objects are Gaussian, such that the pdf of the i*®

object is

p(x) = py(a®;mi) PY),

where py(x; a, A) represents the Gaussian pdf in x
with mean a and covariance A = AT > 0, such that

py(x;a, A) = |27TA|_1/2
X exp {—;(w —a)"A  (x - a)} .

The mean and covariance of the Gaussian distribu-
tion can be partitioned into position and velocity el-
ements as

, (1) . (1) (2)
m(z) — mr] and P(?) — Prr Pm‘; 7
R S

v

where, for the i** object, m,(»i) is the position mean,
mff) is the velocity mean, P,,(f-) is the position co-
variance, Pﬁf, is the velocity covariance, and P,(f,) =

(Pg-))T is the position-velocity cross-covariance.

3.1. Distribution Sampling

One straightforward approach to determine the in-
terval of interaction between two objects is to gener-
ate a number of samples from the pdfs of the objects
and determine the number of samples that are within
close proximity to one another. This process can be
carried out at any time, which enables the determi-
nation of the interval in which the objects are inter-
acting. Given the pdfs of the two objects, samples
can be drawn from the pdfs as

29~ py (2 m{), PY),

where () denotes the ;™ sample of the 7"
object. These samples can then be partitioned
into position and velocity components as a(%7) =
[(r@)T (v@INT)T . As only position interactions
are of interest, the velocity samples are not required.
Given a sample position from each object, the dis-
tance between the samples is computed as

r0) = ||p29) — @D |

where || - || represents the Euclidean norm. If the dis-
tance is not greater than a specified cutoff distance,
¢, ie. if r0) < ¢, then the j™ samples of the ob-
jects’ positions are deemed to be in close proximity.
This process is carried out for a set of N samples
taken from the pdfs of both of the objects. The
total number of interacting samples, i.e. the num-
ber of samples satisfying (/) < ¢, is denoted S, and
the percentage of interacting samples is computed as
T = 100(S/N). A tolerance, Ty, can then be set on
the percentage of interacting samples, and any time
at which T > Ty, the objects are in close proximity
to one another.

There is no restriction of this method to operating on
Gaussian distributions. While the preceding discus-
sion has focused on the Gaussian case, it is straight-
forward to extend it to non-Gaussian distributions,
provided that the distribution can be sampled.



3.2. Mahalanobis Distance

While the distribution sampling approach provides a
direct method for determining an interval over which
two objects are in close proximity, it also requires sig-
nificant computational effort. Therefore, alternative
methods are sought which can also provide a method
for determining the relevant interval while account-
ing for the uncertainties of the objects.

Let y be defined as the joint state of the two objects,
ie.

1)
x
Yy [ e } (1)
Provided that the two objects are uncorrelated and
that their individual distributions are Gaussian, the
pdf of y is also Gaussian, or

p(y) = py(y;my, P,),
where the mean and covariance of y are

(1) (1)
my: P, 0
my = [ (2) ‘| and Py = [ 0 P(2) ‘| :

When the two objects are correlated, the pdf of y is
still Gaussian; however, in this case, the covariance
of y will not be block diagonal.

Now, define z to be the relative position of the two
objects, which is to say

z=r® 0

It is clear that z is a linear transformation of y, where
the transformation is given by

z=[—-1 0 I O0]y=Hy.

If the dimension of (¥ is n,, then the dimension of
() is 2n,., and the dimension of H is n, X 4n,.. The
individual elements that comprise H are of dimen-
sion n, X n,.. Since z is a linear transformation of a
Gaussian random variable, it directly follows that z
is also Gaussian. The pdf of z is

p(2) = py(z;m;, P,),
where the mean and covariance are

m, = Hm,
P,=HP,H".
Alternatively, by applying the relationship for the
linear mapping, the mean and covariance of z can
be found to be
m, = mg) — mgl)

P.=P}Y +PY.

Given a sample from the distribution p(z), denoted
by z*, the squared Mahalanobis distance is [19]
= (z"—m.) P (2" —m.).

It is well known that the squared Mahalanobis dis-
tance, when calculated for samples drawn from Gaus-
sian distributions, is statistically described by the
chi-squared distribution, which is characterized by a
parameter that is known as the degrees-of-freedom.
The degrees-of-freedom employed in the chi-squared
distribution is equal to the dimension of the random
variable; hence, it follows that the distribution of the
squared Mahalanobis distance is [23]

p(d*) = py2(d®n,),

where p,2(a; k) represents the chi-squared pdf in
the variable a with parameter k (with k& degrees-of-
freedom). Making use of the chi-squared distribu-
tion, a probability gate, or threshold, can be used to
associate (or reject association of) a sample. If the
probability of accepting the sample is denoted by P,
then it is possible to tabulate values of v such that
d? < « indicates an associated sample. For instance,
when the probability gate is set to accept 90% of
the samples for a 2 degree-of-freedom case, the chi-
squared distribution dictates that v = 4.6052. This
method is often employed to establish confidence in-
tervals for data association [3, 16].

In the context of determining whether two objects
are in close proximity, the objective is to determine
if the origin, z* = 0, is associated to the relative po-
sition distribution, p,(z;m., P,). The Mahalanobis
distance, with respect to the origin and the relative
position distribution, is

d>=m.P 'm, (2)
= (mi® —m)7 (P + PL) (m® — ).

Then, the interval over which d?> < v, where v is
dictated by the probability gate, P, and the degrees-
of-freedom, n,, is the interval over which the objects
are in close proximity. Much as the distribution sam-
pling approach relies on selecting the cutoff parame-
ter, the Mahalanobis distance approach relies on se-
lecting the probability gate.

3.3. Kullback-Leibler Divergence

The Mahalanobis distance approach improves upon
the distribution sampling approach by removing the
computational complexity, but it is restricted to op-
erate on Gaussian distributions in order to establish
a probability gate. To begin generalizing the interval
determination to the realm of information-theoretic
quantities, which also provide the means for han-
dling non-Gaussian pdfs, the information divergence
is considered.



Generally speaking, an information divergence is a
measure of similarity or dissimilarity between two
pdfs. Given a generic information divergence de-
scribing the directed distance from p(x) to ¢(x) de-
noted by DIpl|q], the “distance” is called a metric
if [5

1. DIpl|lq] > 0 with equality if and only if p(x) =
q(x) (non-negativity and positive definiteness),

2. D[p|lq] = Dlql|p] (symmetry), and

3. D[p||r] < DIp||q]+ D]ql|r] (sub-additivity/trian-
gle inequality).

Information divergences that only satisfy the first
condition are not metrics and are referred to as asym-
metric divergences. Satisfaction of the second con-
dition necessarily removes the restriction of referring
to the divergence as asymmetric.

The most often used information divergence is the
Kullback-Leibler (KL) divergence, which is given
by [6, 17]

B p(x)
Dicslplld] = /X peoel e @)

The KL divergence is defined for arbitrary pdfs, p(x)
and q(x), where x € X C R?. It is, however, only
possible to determine closed-form relationships for
certain cases, such as the case where both pdfs are
taken to be Gaussian. Let p(x) be a Gaussian pdf
with mean a and covariance A, and let ¢(x) be a
Gaussian pdf with mean b and covariance B; that
is,

p(x) = py(x;a,A) and g(x) = py(x;b,B). (4)

Substituting p(x) and ¢(z) from Eq. (4) into the KL
divergence of Eq. (3), it can be shown that the KL
divergence for Gaussian distributions is

Dk1rlpllg] = %[bg |BA™Y| + tr {B'A}
+(@a-bT"B (a—b)— d] ,

where tr {-} represents the matrix trace.

One downside to the KL divergence is that it is an
asymmetric divergence. While this does not prevent
one from forming the directed “distance” between
the two distributions p(x) and ¢(x), it does mean
that the “distance from p(x) to g(x)” is not the same
as the “distance from ¢(x) to p(x).” For instance, the
reverse KL divergence, which is given by

1
Dgrlallp] = 3 {log |AB7'| +tr {A7'B}

+(b-a)TA Y (b—a) - d} ,

is not equivalent to Dgp[p|lg]. Thus, an interval
determination using the KL divergence would differ
from an interval determination using the reverse KL
divergence. To circumvent this, the symmetric KL
divergence is defined as

Dslplla) = 5 (Drcelpllal + Dclallp])

Substituting for the relationships for the KL and re-
verse KL divergences, it follows that the symmetric
KL divergence can be expressed for Gaussian distri-
butions as

Dslpllg) = ;[ {B'A+ A7 B} (5)

+ =

(a—b)T(A'+ B Y(a—b)—2d|.

The relationship for the symmetric KL divergence
given in Eq. (5) holds for any Gaussian distributions
p(x) and ¢(x). The symmetric KL divergence is now
specialized to the space object collision case. First,
note that “collisions” in the velocity space are not of
interest; only collisions that occur in position space
are of interest. Therefore, p(x) and ¢(x) are chosen
to be the position marginal densities
p(r1) = py(ri;mY, PLY)

rr

q(rs) = py(ry;m, PY)).
As the symmetric KL divergence is under consider-
ation, it is not relevant which object is represented
by p(x) and which object is represented by g(x); for
either the KL or reverse KL divergence, this is not
the case. With this specialization of the pdfs, the
symmetric KL divergence is

1
Dslplia] = 7 [t {AZ PY + AQ PR} — 20, (6)

+ (m) = m®)T(AL) + AD)(m —m)|,

where A% = (P2,

An interesting connection between the symmetric
KL divergence and the Mahalanobis distance can
be established in the special case where the posi-
tion covariances of the two objects are identical. Let
P, = Pr(rl) = PT(,?); then, it can be shown that the
symmetric KL divergence given in Eq. (6) can be
expressed as

1
Dsfplla] = 5(m® —m()T P m® —m(V).

In a similar fashion, the squared Mahalanobis dis-
tance given in Eq. (2) becomes

@ = L(m@ — mOTPp=1(m@ _ D)
2 ks T rr T T



Thus, when the two objects possess the same posi-
tion covariance, the symmetric KL divergence and
the squared Mahalanobis distance (computed with
respect to the origin) coincide. This is, of course,
a rather specialized case. It does, however, provide
some insight into the nature of the symmetric KL
divergence.

4. MULTI-OBJECT APPROACHES

The methods described thus far are predicated and
built upon the assumption that the interval deter-
mination for the interaction of the objects is de-
termined for the case of only two objects. As de-
scribed, the distribution sampling, Mahalanobis dis-
tance, and symmetric KL divergence methods nec-
essarily depend upon the restriction to two objects.
One way of overcoming this shortcoming is to con-
sider all possible pairwise combinations of the set of
M > 2 objects and apply the methods as described
previously. Even when advanced screening methods
are employed to reduce the number of objects consid-
ered [1, 14], the combinatoric growth associated with
pairwise combinations can significantly increase the
required computational burden.

4.1. Information Entropy

An alternative approach is to further investigate
information-theoretic methods, like the symmetric
KL divergence, but within the context of multitarget
tracking. A related idea to the information diver-
gence is the information entropy, or simply entropy.

Information entropy originated in the context of
quantifying the amount of uncertainty in the gen-
eration of a received message or in the amount of
“choice” present in the transmission of a message in
communication [27], which built upon earlier works
that investigated descriptions of the amount of in-
formation present in an event space [12]. Essentially,
the entropy is a measure of the “size” of the uncer-
tainty of a random variable. The entropy is minimal
when there is no uncertainty present, i.e. the random
variable becomes deterministic; the entropy is maxi-
mal as all possible outcomes of the random variable
become equiprobable; and the entropy monotonically
increases as the uncertainty increases.

For the communication case, the random variable is
discrete in nature, and the uncertainty of the random
variable is described in terms of a probability mass
function (pmf). The resulting entropy is termed the
Shannon entropy, which is [27]

oo

Hlpl =~ > p(n)log{p(n)},

n—=—oo

where n is the random variable and p(n) is the pmf
of n. Subsequently, this definition was extended to
continuous random variables. For a probability den-
sity p(x) with support over the entire state space
X C RY, the Shannon (differential) entropy, H|[p], is
defined to be

Hipl = - /X p(@)log {p(x)} de.  (7)

The terminology differential entropy is often used to
distinguish between the entropy for discrete and con-
tinuous random variables, but this distinction will be
omitted herein. Whereas the Shannon entropy for
discrete random variables is absolute, the entropy of
Eq. (7) is relative to the coordinate system. That is,
if the coordinates are changed, including the units of
x, the entropy will change.

While Shannon entropy provides a scalar measure for
characterizing the uncertainty of a random variable,
it is not the only option available. Shannon’s defini-
tion of entropy was generalized by Rényi to produce
a family of entropy measures [7, 25], which were orig-
inally termed “informations of order «,” but which
are now referred to simply as Rényi entropy. The
Rényi entropy is defined as

o] [ r@ae). ®)

where « is a control parameter. The Rényi entropy
is undefined for o = 1, but in the limit as @ — 1,
it is well known that the Rényi entropy reproduces
the Shannon entropy. Similar to the Shannon en-
tropy, the Rényi entropy is relative to the coordinate
system.

H@[p] =

Entropy can be used to describe the relative concen-
trations of uncertainty for different scenarios. That
is, a smaller entropy indicates a more highly con-
centrated, or more highly localized, uncertainty. As
an example, consider the schematic representation of
collisions occurring between three objects shown in
Fig. 1. In the beginning frame, which is the one de-
noted t1, the three objects are distinctly separated.
As time continues, Objects #2 and #3 begin to in-
teract, as observed in frame t5. This interaction con-
tinues through frame ¢3, at which time Object #1 be-
gins interacting with the other two objects. Finally,
in frame t4, the interaction between three objects has
returned to interaction between two objects. This ex-
ample shows that concentrations of uncertainty are
exactly representing interactions between objects.

Shannon entropy, as defined in Eq. (7), cannot be
used to describe the level of interaction between mul-
tiple objects, as it is the entropy obtained from a pdf
representing the uncertainty of a single object. Aug-
menting the state to include multiple objects, such
as is done in Eq. (1), also does not work. When
the objects are independent, it is straightforward to
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Figure 1. Schematic representation of collisions be-
tween three objects.

show that the entropy of the distribution for the aug-
mented state is equal to the sum of the entropies
of the distributions of the individual objects. In
essence, since the state space is extended to represent
the multiple objects, there is no collision between
the objects in this space. Instead, the appropriate
approach is to work within the realm of multitarget
tracking.

4.2. Random Finite Sets

When considering multi-object collisions using mul-
titarget tracking, the use of random vectors is no
longer appropriate for representing the state of the
system. Instead, random finite sets (RFSs) are used
to represent the multitarget state as [11, 22]

X = {a:(l),a:(Z),...,w(M)},

where there are M objects, or targets, in the mul-
titarget state. Bach of the distinct elements z(* €
X, Vi € {1,...,M} is a conventional target state,
such as the position and velocity of an object.

An RFS can also be described statistically with a
density, albeit a multitarget pdf, in a similar way
to describing a random vector using a conventional
(single-target) pdf. This is a fundamental element
of multitarget filtering using concepts from finite set
statistics (FISST) [11, 22]. One common assumption
is to take the the RFS, X, to be an independent and
identically distributed (i.i.d.) cluster process; then,
the multitarget pdf can be represented as

F(X) = nlp(n) [ ] s(2®), 9)

k=1

where n is the cardinality of the RFS, p(n) is the
cardinality distribution, and s(z(?) is the single tar-
get spatial density of the i*" target, which is taken to
be a valid (single-target) pdf. Further descriptions
can be obtained within the i.i.d. cluster process by
modeling the cardinality distribution as a Poisson
distribution, which is given by
1

pln) = N, (10)
where X is the rate parameter. It is also well known
that A is both the mean and the variance of the Pois-
son distribution.

Moment approximation methods are often employed
in multitarget tracking due to their ability to pro-
vide computationally tractable solutions. Two such
methods, referred to as the probability hypothesis
density (PHD) [20, 30] and cardinalized probability
hypothesis density (CPHD) [21, 31, 32] filters, ap-
proximate the multitarget Bayes filter by operating
on the intensity function, v(x), which is the first-
order moment of the multitarget pdf. The intensity
function is defined such that integrating over the en-
tire support of the intensity resolves to the expected
cardinality of the set, or

)\:/Xv(m)dzc. (11)

For an RFS with a Poisson cardinality distribution,
the intensity function is given by

v(x) = As(x) . (12)

The intensity function is commonly expressed as
a weighted sum of Gaussian distributions of the
form [22, 30]

L
v(x) =Y wpy(m;m®, PO), (13)
/=1

It is important to note that the GM of Eq. (13) is
slightly different from that of [2, 28] and subsequent
works in GM filtering methods. The difference is that
the conventional GM representation is constructed to
represent a pdf, and the weights must sum to unity.
From Egs. (11) and (13), it directly follows that A =
ZEL:1 w®. That is, when the GM is used to describe
an intensity function, the expected number of objects
in the state space is equal to the sum of the weights
in the GM representation of the intensity function.

4.3. Shannon Entropy

Just as the random vector is lifted to an RFS, the
single-target integral becomes a set integral; thus,
the Shannon entropy defined in Eq. (7) may be recast
for RFSs via the set integral, such that

HIf] = - /S f(X)log {F(X)}6X.  (14)



This definition of the multitarget Shannon entropy
depends upon the coordinate system in much the
same way that the Shannon entropy of Eq. (7) does.
For the multitarget problem, however, the situation
is compounded since the units change with the cardi-
nality of the RFS. As such, a more appropriate defi-
nition for the multitarget Shannon entropy is [4, 26]

_/Sf(X)log{u‘le(X)}(SX7 (15)

where u =X is the units of the FISST density, f(X),
and | X | is the cardinality of the RFS X. For simplic-
ity and consistency with existing results, the naive
form of the multitarget Shannon entropy will be used
in proceeding.

Substituting the i.i.d. cluster RFS distribution of
Eq. (9) and applying the definition of a set inte-
gral [22] to Eq. (14), the Shannon entropy of an i.i.d.
cluster RFS is given by

n

an/ ['p H (k)}

x log {n!p(n) H s(a:(i))} de® ... dz™

i=1

where X" is the Cartesian product of n copies of the
state space. The benefits of the logarithm become
apparent quickly, as this allows the logarithm to
be decomposed into terms dependent on the single-
target spatial densities and terms dependent only on
the cardinality n. Thus, the entropy may be ex-
pressed as

-5 oo [

} )| 1og {ntp(n)}
n=0 k=1
)£l ()]

X Zlog {s(m( ))} de™® .. ~dsc(”)} .
i=1

The product of the single-target spatial densities ap-
plies a sifting-like effect; since each logarithm term
is only dependent upon x(, the remaining n — 1
integrals can be evaluated over each spatial density.
The result of each of the n — 1 evaluations is unity,
as the single-target spatial densities are taken to be
valid pdfs. Therefore, only a sum of integrals over
the target state space, X', remains, and the result is
that the entropy is given by

X dw(l) . dxe

HIf = - i oo 1o o)}
ni[ Z/ (V) log {s(z™) }dw@]

While the variable (Y has been maintained up to
this point to distinguish between the multiple inte-
gration dimensions, it is recognized that the i.i.d. as-
sumption can now be used to simplify the expression
by replacing (¥ with a non-indexed @ since each n-
tuple integral has been reduced to a single integral
over the state space X. The result of dropping the
index is a sum of n identical integrals, or

Z[ ) log {n!p(n }}

— Z / (z)log {s(x)} dx.

The summation in the second term is simply the def-
inition of the mean of the cardinality distribution.
Denoting this mean by p, it follows that

o0

Hlf) == 3 ot og (o} (10

n=0
- M/X s(x)log {s(x)} da.

Equation (16) is the Shannon entropy for an RFS
under the assumption that it is distributed accord-
ing to an i.i.d. cluster process, which is defined by

Eq. (9).

The expression for the Shannon entropy of an
i.i.d. cluster process given in Eq. (16) can be spe-
cialized by making an assumption on the cardinal-
ity distribution. Substituting the Poisson cardinal-
ity distribution given by Eq. (10) into the entropy
relationship of Eq. (16), while noting that p = A, it
can be shown that the infinite summations are elim-
inated, resulting in

H[ﬂ:/\f/\log)\f/\/)(s(m)log{s(m)}d:c. (17)

Solving for the spatial density in terms of the in-
tensity function from Eq. (12) and substituting the
result into Eq. (17), it follows that the Shannon en-
tropy may be expressed solely in terms of the rate
parameter, A, and the intensity function, v(x), as

Hf] :A—AlogA—Av(x)log{v(m)}dx
+/Xv(a:)daclog)\.

The integral in the final term can be replaced by
recalling from Eq. (11) that it is simply the rate pa-
rameter, \; therefore,

=2~ [ v

The result of Eq. (18) is also given in [8].

log {v(z)} dz. (18)



Equation (18) is the Shannon entropy for an RFS
under the assumption that it is distributed accord-
ing to an i.i.d. cluster process, with the further stip-
ulation that the cardinality distribution is Poisson.
The result shows that the entropy is composed of a
cardinality entropy term and a spatial entropy term.
It should be noted that the spatial entropy term in
Eq. (18) still contains cardinality elements through
the representation of the intensity function. It is in-
teresting to note that the spatial entropy term is of
the exact form of the single-target entropy given by
Eq. (7), but with the multitarget intensity function
in place of the single-target pdf. Thus, the spatial
term will tend to exhibit the same characteristics ob-
served with the single-target entropy, lending intu-
ition to the analysis of multitarget entropy, and the
cardinality term will cause the entropy to rise as the
number of targets in the multitarget state increases.

Except in special cases of the intensity, such as
an intensity that is Gaussian, the Shannon entropy
of Eq. (18) cannot be found in closed-form. For
instance, when the intensity is represented as in
Eq. (13), no closed-form solution to the entropy of
Eq. (18) can be found. In such situations, numeri-
cal solutions to the integral, such as those obtained
through Monte Carlo integration, must be used.

4.4. Rényi Entropy

Similar to the concept of extending the Shannon en-
tropy into the multitarget domain, the Rényi entropy
is lifted from Eq. (8) through the definition of the set
integral to yield

Hf) = 1falog{ / f%X)éX},

where « is the control parameter. Just the same
as limy_,; H®[p] = HJpl], it can be shown that
limg_1 H[f] = HI[f]; that is, the multitarget
Rényi entropy is a generalization of the multitarget
Shannon entropy. As with the Shannon entropy, the
naive extension of Eq. (8) is considered herein; how-
ever, an extension similar to Eq. (15) to consider the
units of the FISST density for the multitarget Rényi
entropy can be carried out.

The definition of the set integral and the i.i.d. cluster
process definition from Eq. (9) can be applied to give
the Rényi entropy for i.i.d. cluster processes as

> /X [nto(n)

n=0

1
H[f] = T & log{
% s@D)- - s(@) dz ... d:c(”)} .

Distributing the exponent to each term within the
integrals and noting that each of the integrals can

be separated, it follows that

- 1og{ > e )

—

H[f] =

n=0

x/ s“(:c“))dm(l)---/ so‘(w(”))da}(”)}.
X X

As before, the indices on the x(* have been used
to distinguish between individual integration dimen-
sions; however, now that the integrals involving each
of the (" terms have been separated into a product
of n integrals, this index can be dropped to yield

O = oo { ) (19

—
n=0

[}

Equation (19) is the Rényi entropy for an RFS un-
der the assumption that it is distributed according
to an i.i.d. cluster process. Unlike the Shannon en-
tropy equivalent given in Eq. (16), there is no clear
separation between cardinality-induced entropy and
spatial-induced entropy.

The Rényi entropy for an i.i.d. cluster process may
be specialized by providing a further restriction on
the cardinality distribution. The Poisson cardinality
distribution defined by Eq. (10) is now considered.
Substituting Eq. (10) for the cardinality distribution
in Eq. (19) and reducing yields

) = o (e S L (20
n=0

x UX (As(z))” dw} n} .

From the series expansion of the exponential func-
tion, e* = Y7 ;2™ /nl, it can be seen that the sum-
mation term appearing in Eq. (20) may be written
as an exponentional, such that

HOf) =

log e—a/\—i-fx(/\s(m))“da:

J— a ’
which may be further reduced by taking the loga-
rithm to be base e to yield

[a)\Jr/X()\s(:c))adm}

From the definition of the intensity function for a
Poisson RF'S in Eq. (12), the Rényi entropy is given
in terms of the rate parameter, A, and the intensity
function, v(x), to be

HO[f) = —

a 1
l-a 1—«

H[f] = -

/Xv”‘(:l:) de. (21)



Equation (21) is the Rényi entropy of order a for
an RFS under the assumption that it is distributed
according to an i.i.d. cluster process, with the fur-
ther stipulation that the cardinality distribution is
Poisson. The result, much like the Shannon entropy,
shows that the entropy is composed of a cardinal-
ity entropy term and a spatial entropy term, where
it is worth noting that the spatial entropy term in
Eq. (21) contains cardinality elements through the
representation of the intensity function. Unlike the
Shannon entropy, however, the spatial element of the
Rényi entropy does not take on the same form as the
single-target Rényi entropy, which can be seen by
comparing Eqgs. (8) and (21).

In contrast to the Shannon entropy of Eq. (18), the
Rényi entropy of Eq. (21) can be found in closed-
form for certain choices of the control parameter «
when the intensity function is given by Eq. (13). For
instance, when o = 2, the Rényi entropy is

H®[f] =2x - /X v?(x) da . (22)

Substituting for the GM representation of the inten-
sity function, it can be shown that

L L L
2O =23 0@ -3 % {wu)w(j) (23)
(=1

i=1 j=1
x T(m( — m) PO 4 P(j))] 7
where

I(a,A) = |27TA|_1/2 exp {—;aTAla} .

The first term in Eq. (23) is the cardinality entropy
and is simply given as the sum of the weights of the
GM representation of the intensity; for a constant
number of guaranteed existing objects, it is constant.
The spatial component of Eq. (23), i.e. the double
summation term, is of prime interest when consid-
ering the determination of an interval of close ap-
proaches. From Eq. (23), the spatial element of the
Rényi entropy may be expressed as

L L
P @) =-3 % [w@)w(ﬂ') (24)

i=1 j=1
x T(m® —m) PO 4 p(a‘))} ’

where ©® is the collection of parameters that de-
fines the GM representation of the intensity for
which the spatial entropy is computed, i.e. @ =
{w® m®, P(Z)}ZL:1 when all parameters of the GM
representation of the intensity are considered.

5. RESULTS AND DISCUSSION

The methods developed for the determination of an
interval during which two or more objects are inter-

acting, or the interval during which the calculation
of the probability of collision should be carried out,
are applied to three test cases. The first test case
examines a two-object collision case, where the un-
certainty in the states of the objects is Gaussian, and
compares all of the techniques presented in this work.
The second test case examines a three-object colli-
sion case, again with Gaussian uncertainty, and com-
pares the distribution sampling method to the Rényi
entropy method. The final case examines a two-
object collision case with non-Gaussian uncertainties
and compares the distribution sampling method to
the Rényi entropy method.

For simplicity, the dynamic motion of the objects
considered in this work is taken to be represented
using relative motion dynamics. A fictitious refer-
ence object is used to describe the center of a ro-
tating frame, and the motion of nearby objects is
taken to be described by the relative motion with re-
spect to this reference object. The reference object
is taken to be in a circular orbit, and a local-vertical,
local-horizontal frame (with the z-axis representing
the cross-track direction and the y-axis representing
the along-track direction) is attached to the refer-
ence object. Furthermore, only planar motion will
be considered in order to simplify the analysis. The
Clohessy-Wiltshire (CW) model is used to represent
the dynamics of the nearby objects, such that, for
a state defined as the relative position and velocity
of the form z;, = [r] wv[]”, the dynamics of the
state are given by the linear, discrete-time, noiseless
system

Ty = Fr 1xp1,

where Fj_1 is the state transition matrix of the CW
model, which is taken to be

@T'I" @T’U
Fie-1= [ o, B, ] :

where
b — 4—3cosyy O
T 6(sing —4p) 1
. [ Lsiny 2(1 — cos )
" 2(cosyp— 1) L(4siny —3¢)
d - [ 3nsiny 0
vr | bnfcosy—1) 0
d — [ cos 2siny
v | —2sing —3+4cosyp |

and ¢ = n(ty —tg_1), where n is the mean motion of
the reference object. Note that the CW model is only
one of many available relative motion models. Other
options for relative motion [10, 15, 18, 29] can be
used, or non-relative motion, such as inertial, cen-
tral body motion, can also be employed. The CW
model is chosen here because of its linear nature,
which allows for simple state propagation.



The reference object is chosen to have a mean motion
of n = 15.91 rev/day and the time step is taken to
be a constant At = ¢, — t_1 = 10 sec. In all three
examples, initial pdfs for the objects under consid-
eration are specified by either Gaussian or GM pdfs
through the specification of means, covariances, and,
for the case of GMs, weights of the GM. All weights
are held constant, and all of the means and covari-
ances are propagated using the linear dynamics of
the CW model.

5.1. Example #1

The initial means of the two objects considered for
the first example are given in Table 1. In addition,
the uncertainties of the two objects are Gaussian,
with diagonal covariance matrices. The standard de-
viations are given in Table 2.

Table 1. Initial means for Example #1.

Object a[m] y[m] &[mm/s] ¢[mm/s]
1 5.0 383 4.4 —11.2
2 5.4 18.5 —7.2 —7.7

Table 2. Initial standard deviations for Example #1.

Object a[m] y[m] &[mm/s] ¢[mm/s]
1 1.0 0.5 1.0 2.0
2 0.5 1.0 2.0 1.0

The time history of the means for the two objects
is computed for 300 time steps, and the resulting
trajectories are illustrated in Fig. (2). Similarly, the
covariance histories are computed and plotted at 5-
step intervals in Fig. (3). Based on these figures, it is
observed that there is likely a time interval for which
the two objects experience close interaction.
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Figure 2. Mean trajectories for Example #1.
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Figure 8. Uncertainty trajectories for Example #1.

To determine when the two objects are in close inter-
action, the distribution sampling, Mahalanobis dis-
tance, symmetric KL divergence, and Rényi entropy
methods are applied at each step of the simulation.
For each method, the position marginal distributions
are obtained from the propagated means and covari-
ances of each object.

First, consider the distribution sampling, Maha-
lanobis distance, and symmetric KL divergence
methods. The position marginal distributions are
sampled 1 x 108 times, the relative distance between
the samples are computed, and the number of sam-
ples with a relative distance less than ¢ = 1 m are
counted. This provides the percentage of interacting
samples shown in Fig. (4). The position marginal
distributions are used to compute the squared Ma-
halanobis distance from Eq. (2). The Mahalanobis
distance, along with a 90% confidence interval, which
is obtained from the chi-squared distribution, is il-
lustrated in Fig. (5). The position marginal distri-
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Figure 4. Application of the distribution sampling
method to Example #1.

butions are furthermore used to compute the sym-
metric KL divergence from Eq. (5). For scaling, the
square root of the symmetric KL divergence is shown
in Fig. (6). Each of these three methods shows a



similar time of closest approach for the two objects,
where the uncertainty is included in each method.
The symmetric KL divergence, however, provides an
analysis from which it is difficult to determine the
interval over which the two objects are interacting.
For this reason, this method will not be considered
in the following analyses.
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Figure 5. Application of the Mahalanobis distance
method to Example #1.
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Figure 6. Application of the symmetric KL diver-
gence method to Example #1.

Now, consider the Rényi entropy method. The prop-
agation of the means and covariances for the two
objects yields the position marginal means as m&’)
and the position marginal covariances as Pr(f«) for
i € {1,2}. To each of these means and covariances,
a weight of w(? = 1 is assigned, indicating one tar-
get per mean and covariance. These parameters are
then used to form @ = {w® m P} as the
set of parameters for each object. The total set
of parameters is denoted ® = O U ©?. Using
the parameters ®, the spatial Rényi entropy is com-
puted from Eq. (24), and the result is illustrated in
Fig. (7). Inspection of Fig. (7) shows that the inter-
val in which the objects are interacting is obscured
by other trends contained in the spatial Rényi en-
tropy. As the entropy accounts for changes in the
size of the individual distributions, as well as the

translational motion of the individual distributions,
the interval of interaction is not immediately appar-
ent. To more clearly see the interval of interaction,
the relative spatial Rényi entropy (not to be confused
with the concept of relative entropy) is defined as

M
AHY =H (©)-> H (©W).
=1

The relative spatial Rényi entropy can be viewed as
the difference between the spatial entropy and the
spatial entropy under the assumption of no interac-
tion between the objects. The relative spatial Rényi
entropy is illustrated in Fig. (8), from which the in-
terval of interaction is immediately clear. Comparing
Figs. (4) and (8), it is seen that the relative spatial
Rényi entropy method provides excellent agreement
to the more computationally expensive distribution
sampling method.
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Figure 7. Application of the spatial Rényi entropy
method to Example #1.
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Figure 8. Application of the relative spatial Rényi
entropy method to Example #1.



5.2. Example #2

To further investigate the methods developed in this
paper, a three-object case is considered. The initial
means of the three objects are given in Table 3, and
the initial standard deviations are given in Table 4.
As with the first example, the initial covariances are
taken to be diagonal.

Table 3. Initial means for Example #2.

Object z[m] y[m] &[mm/s] y[mm/s|
1 0.0 50.0 0.0 0.0
2 0.0 -30.0 —68.9 52.8
3 30.0 0.0 —87.7 —17.3

Table 4. Initial standard deviations for Example #2.
Object a[m] y[m] &[mm/s] ¢[mm/s]

1 1.0 0.5 1.0 1.0
2 0.8 1.2 1.0 1.0
3 0.6 0.5 1.0 1.0

The time histories of the means and covariances
for the three objects are computed for 200 time
steps, and the resulting trajectories are illustrated
in Fig. (9). The resulting covariances histories are
plotted at 3-step intervals in Fig. (10).
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Figure 9. Mean trajectories for Example #2.

Based on the analysis of Example #1, the distri-
bution sampling and relative spatial Rényi entropy
methods are implemented to determine when the
three objects are interacting. For each method, the
position marginal distributions are obtained from the
propagated means and covariances of each object.

At each time step, the position marginal distribu-
tions are sampled 1 x 10° times, the relative distance
between the samples are computed, and the number
of samples with a relative distance less than ¢ =1 m
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Figure 10. Uncertainty trajectories for Example #2.

are counted. The percentage of interacting samples is
then determined, and this is shown in Fig. (11). Fig-
ure (11) illustrates the pairwise interactions between
the three objects based on the pairwise percentage of
interacting samples, as well as the total percentage
of interacting samples obtained from considering all
three objects. From Fig. (11), it is observed that the
second and third objects begin interacting first, then
the first and second objects interact, and finally the
first and third objects interact.
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Figure 11. Application of the distribution sampling
method to Example #2.

The position marginal means and covariances are ob-
tained from the uncertainty propagation for each ob-
ject, and these are denoted by mg) and PT(Z), respec-
tively, for ¢ € {1,2,3}. To each position marginal
distribution, a weight of w(® = 1 is assigned, indi-
cating one target per mean and covariance. These
parameters are the set of parameters for each ob-
ject: e — {w(i),mg-l),Pg')}. The total set of
parameters is denoted ® = e ue®uye®,
The relative spatial Rényi entropy, as defined pre-
viously, is then computed from the individual and
collective parameter sets, and it is illustrated in
Fig. (12). The separate intervals of interaction are
clear from Fig. (12), and remarkable agreement with



the distribution sampling method is again observed.
One downside to the relative spatial Rényi entropy
method is that the information on the pairwise inter-
actions is lost. This could be recovered by consider-
ing pairwise combinations of the objects in a similar
manner to that undertaken in the distribution sam-
pling method, but this would come at an increase in
computational burden.
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Figure 12. Application of the relative spatial Rényi
entropy method to Example #2.

5.3. Example #3

The final example considered applies and compares
the distribution sampling and relative spatial Rényi
entropy methods to a non-Gaussian problem. The
first object in this problem is taken to be described by
a GM pdf, where the pdf is constructed for demon-
stration purposes only, and is not intended to rep-
resent a real-world scenario. It is assumed that the
uncertainty of the first object is uniform in angular
space, centered at zero in the cross-track direction,
with a +20° extent in the angular direction. Addi-
tionally, the range is taken to be 50.0 m from the
origin, with a Gaussian uncertainty (1o) of 2.0 m.
The initial velocity is taken to be Gaussian with zero
mean and standard deviations of 1.0 mm/s in both
directions. Each component has equal weight in the
GM representation of the pdf, and there are L com-
ponents in the mixture.

The second object is taken to be described by a Gaus-
sian distribution. The mean of the Gaussian distri-
bution is m = [-25.0 25.0 11.6 50.0], with po-
sition units of meters and velocity units of mm/s.
The covariance of the Gaussian distribution is diag-
onal with position standard deviations of 1.0 m and
velocity standard deviations of 1.0 mm/s. Contours
of the initial position distributions are illustrated in
Fig. (13). The pdfs of the two objects are propagated
for 350 time steps, and the trajectory of the mean of
the distribution for the second object is shown in
Fig. (13). As the mean of the first object has zero

initial velocity and is in only the along-track direc-
tion, it remains stationary. The distribution, how-
ever, moves in time, but this is not illustrated.
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Figure 13. Trajectories for Example #3.

As with the preceding examples, the position
marginal distributions are obtained for each object
at each time step. These distributions are sampled
1 x 108 times, the relative distance between the sam-
ples are computed, and the number of samples with
a relative distance less than ¢ = 1 m are counted.
The percentage of interacting samples is shown in
Fig. (14). It is interesting to note that this example
of a two-object collision exhibits two separate colli-
sions between the objects. Examination of Fig. (13)
shows that the second object “loops around” and
passes nearby the first object twice.
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Figure 14. Application of the distribution sampling
method to Fxample #35.

Given that the first object is represented by a GM
pdf, the position marginal pdf is obtained by col-
lecting the position elements of the mean and co-
variance while preserving the weights of the GM
pdf. These parameters are denoted by ol =
{w(l’[),mgnl’z),Pﬁ’f)}{%:l, where 21122:1 wh = 1,
The second object is represented by a Gaussian pdf,
meaning that its parameters are simply given by



0 = {w(2),m£2),Pr(3)}, where w?) = 1. The to-
tal set of parameters is denoted & = e ye®.
The relative spatial Rényi entropy is computed from
the parameters and is shown in Fig. (12).
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Figure 15. Application of the relative spatial Rényi
entropy method to Example #3.

To provide a more direct and visceral comparison of
the relative spatial Rényi entropy and the distribu-
tion sampling methods, the results from Figs. (14)
and (15) are plotted together in Fig. (16), except
that the relative spatial Rényi entropy is negated to
possess the same sign as the percentage of interact-
ing samples. From Fig. (16), it is seen that the two
methods perform identically, modulo scaling, in de-
termining the intervals during which the two objects
are in close proximity and the distributions are in-
teracting.

6. CONCLUSIONS

This paper addresses the problem of determining
an interval during which two or more objects are
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Figure 16. Comparison of the distribution sampling
and relative spatial Rényi entropy methods for Ezx-
ample #3.

in close proximity to one another, including the ef-
fects of uncertainty in the states of the objects, with
the motivation of better informing the determination
of the probability of collision between the objects.
Conventional methods are discussed, and new ap-
proaches based on the information-theoretic concepts
of information divergence and information entropy
are developed. The methods are implemented and
compared for two-object and three-object close ap-
proach scenarios, assuming both Gaussian and non-
Gaussian state uncertainties. It is found that the
information entropy approach that makes use of the
multitarget Rényi entropy produces intervals of close
proximity that are nearly identical to a more stan-
dard distribution sampling technique while naturally
supporting close approaches between more than two
objects and uncertainties that are represented by
Gaussian mixture probability density functions.
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