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ABSTRACT 

Debris fragments from the hypervelocity impact testing 
of DebriSat are being collected and characterized for use 
in updating existing satellite breakup models. One of the 
key parameters utilized in these models is the ballistic 
coefficient of the fragment which is directly related to 
its area-to-mass ratio. By definition the area in the ratio 
is the cross-sectional area perpendicular to the direction 
of motion.  However, since the attitude of fragments can 
vary during their orbital lifetime, it is customary to use 
the average cross-sectional area in the calculation of the 
area-to-mass ratio. The average cross-sectional area is 
defined as the average of the projected surface areas and 
has been shown to be equal to the one-fourth of the total 
surface area of a convex object.  

An 3D imaging system was developed for use in 
determining the size characteristics (i.e., characteristic 
length) of the DebriSat fragments. The 3D imaging 
system consists of six cameras at equally spaced 
elevation angles, which means the resulting camera 
orientation vectors are not evenly spaced on the 
hemisphere above the fragment while it is imaged. This 
leads to the need for a weighting factor associated with 
the projected areas measured by the cameras. This paper 
investigates a notional imaging system where the 
orientation vectors of the cameras are inspired by the 
vertices of an icosahedron. An icosahedron is a platonic 
solid, which means the vertices of an icosahedron are 
evenly spaced from each other. Also, this paper explores 
the subdivided icosahedron for additional camera 
orientation vectors to improve the calculation of the 
average cross-sectional area of various objects. Finally, 
orientation vectors of the notional system are used to 
motivate a weighting factor for the existing 3D imaging 
system; that is, particular images from the 3D imaging 
system are weighted to approximate orientations from 
the notional system.  

1 INTRODUCTION 

The study of space debris remains an active area of 
research due to potential complications posed by space 
debris. It has been shown that debris fragments down to 
a size of 1 cm can cause catastrophic damage to space 
missions [1]. Additionally, a catastrophic collision 

between satellites has far-reaching effects due to the 
potential for subsequent collisions, which could result in 
the exponential growth of debris fragments (known as 
the Kessler effect) [2]. Therefore, accurate mapping of 
space debris is critical to prevent growth in the number 
of debris. In low Earth orbits (LEOs), larger debris 
fragments can be tracked with ground-based methods, 
but a number of debris fragments are too small to be 
tracked from the ground [3].  

DebriSat is a joint project between the National 
Aeronautics and Space Administration (NASA), the 
United States Air Force/Space and Missile Systems 
Center (USAF/SMC), The Aerospace Corporation, and 
the University of Florida (UF) to update the existing 
NASA and Department of Defense (DOD) standard 
breakup model for satellite debris fragments. The 
current standard breakup model is based on a Navy 
transit satellite that was fabricated in the 1960’s. After 
the accidental collision between the Iridium-33 satellite 
and retired Cosmos-2251 satellite in 2009, the need to 
update the standard breakup model was reinforced. The 
debris generated by the older Cosmos-2251 was 
accurately modeled by the standard breakup model, but 
the model under predicted debris from the newer 
Iridium-33 satellite [4]. The under prediction of the 
fragments from the Iridium-33 has been attributed to the 
use of new materials and technologies in its fabrication. 
To make the necessary updates to the standard breakup 
model a representative LEO satellite was fabricated and 
subjected to a hypervelocity impact. Processing and 
characterization efforts of the debris from the impact are 
ongoing at UF [4].  

One key parameter of the standard breakup model is the 
fragment’s ballistic coefficient since ballistic coefficient 
is used in determining the orbit lifetime of the fragment. 
The ballistic coefficient of the fragment is directly 
related to its area-to-mass ratio, where the area is the 
cross-sectional area of the fragment perpendicular to the 
direction of motion. However, since the attitude of the 
fragment can vary during its orbital lifetime, it is 
customary to use an average cross-sectional area 
(ACSA) to calculate the fragment’s ballistic coefficient. 
Average cross-sectional area is defined as the average 
projected surface areas of an object viewed from 4π 
steradians [5]. In the earliest documented study of 
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average cross-sectional area (referred to as average 
projected area) of three-dimensional (3D) objects, 
Cauchy proved that the average projected area of a 
convex object is one-fourth of the object’s total surface 
area [5]. Currently, ACSA of debris fragments is 
approximated in the satellite standard breakup model 
based on categorization of the fragments as either 
irregular or plate-like [6]. The ACSA approximations 
for irregular and plate-like classified fragments are 
given by Eq. 1 and Eq. 2, respectively. In these 
approximations, x is the longest dimension of the 
fragment, y is the longest dimension orthogonal to x, z is 
the longest dimension orthogonal to both x and y, and LC 
is the arithmetic mean of x, y, and z. 

𝐴𝐶𝑆𝐴$%%&'()*% = 	
2
9
𝑥 ∙ 𝑦 + 𝑦 ∙ 𝑧 + 𝑧 ∙ 𝑥  (1) 

𝐴𝐶𝑆𝐴4)*5& = 	
1
2
𝐿89 + 2𝐿8 ∙ 𝑧  (2) 

However, it has been shown that these models can 
produce large errors [6]. One aspect of the DebriSat 
project, explored in this paper, is to improve the 
calculation of ACSA of the debris fragments. 

In previous work on the DebriSat project, a 3D imaging 
system was developed to determine size characteristics 
of the fragments [7]. The 3D imaging system consists of 
six cameras (labeled A-F) at increasing elevation angles 
directed towards a turntable as shown in Fig. 1. 

   
Figure 1. 3D imaging system 

Fragments are placed on the turntable, which 
incrementally rotates while the fragment is imaged by 
the cameras. A turntable increment is defined as the 
number of equal rotations for the turntable to rotate a 
full 360º. Each image represents a projected area from 
an orientation vector that points from the camera to the 
object. A previous study utilized these projected areas 
recorded by the 3D imaging system to calculate the 
ACSA of test objects [8]. However, as shown in [8], the 
orientation vectors associated with the projected areas 

recorded with the 3D imaging system are not equally 
spaced around the object. This led to the need for the 
projected areas to be weighted when calculating ACSA. 
If the projected areas of the object were equally 
distributed around the object a weighting factor would 
be unnecessary when calculating ACSA.  

This paper investigates one way to generate projected 
areas of an object whose respective orientation vectors 
are equally distributed. The orientation vectors are 
inspired by a regular icosahedron, shown in Fig. 2, 
which is one of the five platonic solids.  

 
Figure 2. Regular icosahedron 

This paper is organized as follows: Section 2 describes 
calculating ACSA with a notional icosahedron-inspired 
imaging system where the orientation vectors 
correspond to the vertices of a regular icosahedron. 
Section 3 explores subdividing the edges of the 
icosahedron to generate additional orientation vectors. 
Section 4 uses the insight from the icosahedron-inspired 
imaging system to formulate a weighting factor that is 
then applied to an imaging system that emulates the 3D 
imaging system. In Section 5 the results of applying the 
weighting factor to images recorded by the 3D imaging 
system to calculate ACSA are presented as well as 
concluding remarks. Also, in Section 5 the calculated 
ACSA is compared to previous results as well as the 
ACSA model used with the current standard breakup 
model. Section 6 consists of future works. 

2 ICOSAHEDRON-INSPIRED IMAGING 
SYSTEM 

Figure 3 shows a unit orientation vector, 𝒗, defined by 
its azimuthal angle (φ) and polar angle (θ) that points 
from the observation point (denoted as the asterisk) to 
the origin of the coordinate system. In the icosahedron-
inspired imaging system the observation points are 
aligned with the vertices of a regular icosahedron. Since 
the regular icosahedron is a platonic solid, the vertices 
(and resulting orientation vectors) are equally spaced 
around the origin of the coordinate system. Table 1 
shows the locations of the twelve observation points 
(P1-P12) of the icosahedron-inspired imaging system. 



 

 
Figure 3. Orientation vector definition 

Table 1. Icosahedron-inspired imaging system 
observation point locations 
Observation 
Point 

Polar Angle 
(θ) 

Azimuthal Angle 
(φ) 

P1 0º 0º 
P2 63.44º 0º 
P3 63.44º 72º 
P4 63.44º 144º 
P5 63.44º 216º 
P6 63.44º 288º 
P7 116.57º 36º 
P8 116.57º 108º 
P9 116.57º 180º 
P10 116.57º 252º 
P11 116.57º 324º 
P12 180º 0º 

For the notional imaging system, the following convex 
objects are tested: a sphere of unit radius, a cylinder of 
unit radius and unit height, a cube with unit edge 
lengths, an octahedron with unit edge lengths, a square 
pyramid with unit edge lengths, and a tetrahedron with 
unit edge lengths. Since the test objects are convex, the 
true ACSA can be directly computed as one-fourth of 
the total surface area of the object. Table 2 shows the 
true ACSAs for the test objects. 

Table 2. True ACSA (in unit2) of test objects 
Test Object True ACSA 
Sphere 3.142 
Cylinder 3.142 
Cube 1.500 
Octahedron 0.866 
Square Pyramid 0.683 
Tetrahedron 0.433 

Before the ACSA of the test objects can be computed, 
the projected area (A(θ,φ)) of the objects must be 
accurately represented as a function of φ and θ. This is 
accomplished by representing the test objects by their 
area vectors. An area vector is the area of the face of the 
test object multiplied by the unit normal of the face. For 
example, Fig. 4 shows the unit cube and its respective 
area vectors. 

With each test object represented by its area vectors the 
projected area (A(θ,φ)) of the test object from a 

particular orientation vector 𝒗 is computed with Eq. 3 
where k is the index associated with the total number of 
faces of the test object. 

𝐴(𝜃, 𝜙) = 	 −𝑨𝒌 ∙ 𝒗 ×𝐻 𝑠𝑔𝑛 −𝑨𝒌 ∙ 𝒗
	

H

 (3) 

In Eq. 3 the minus sign accounts for the orientation 
vectors being defined in the opposite direction of the 
surface normal. Also the Heaviside function, defined as 

𝐻 𝑥 =
0	𝑖𝑓	𝑥 < 0	
1	𝑖𝑓	𝑥 ≥ 0 , accounts for the area vectors on 

the opposite side of the test object from the observation 
vector.  

 
Figure 4. (a) Unit cube and (b) respective area vectors 

With the projected areas computed for the twelve 
orientation vectors of the icosahedron-inspired imaging 
system, the ACSA is determined by averaging the 
twelve projected areas. Table 3 shows the percent error 
of the computed ACSA for the test objects with respect 
to their true ACSA values. A positive percent error 
means that the computed ACSA is larger than the true 
ACSA. 

Table 3. Percent error of computed ACSAs 
Test Object Percent Error (%) 
Sphere 0.00 
Cylinder 1.39 
Cube -1.30 
Octahedron 1.48 
Square Pyramid 3.82 
Tetrahedron 3.32 

The zero percent error for the sphere means that the 
computed ACSA is unbiased since the projected area of 
a sphere is constant regardless of the orientation of the 
orientation vector. A comparison of the results shown in 
Table 3 with those in [8] shows promise for computing 
the ACSA without a weighting factor since similar 
errors require at least twice as many observation vectors 
in the ideal case [8]. This motivates a desire to increase 
the number of orientation vectors to investigate if the 
magnitude of the percent errors for the computed 
ACSAs will decrease similar to the trends displayed in 
[8]. 



 

3 SUBDIVIDED ICOSAHEDRONS 

One method to increase the number of orientation 
vectors that remain nearly evenly distributed is 
subdividing the twenty equilateral triangles that make 
up a regular icosahedron as described in [9]. After the 
triangles have been bisected, the new vertices are 
normalized to ensure that all of the observation points 
lie on a unit sphere. Fig. 5 is the observation points of 
the icosahedron after one subdivision, referred to as a 
level 1 icosahedron where the regular icosahedron is 
referred to as a level 0 icosahedron. 

 
Figure 5. Level 1 icosahedron observation points 

After subdivision, the number of orientation vectors 
increases from 12 to 42. Table 4 shows the percent 
errors of the computed ACSAs for the orientation 
vectors associated with the and level 1 icosahedron as 
well as the previous results. 

Table 4. Percent error of computed ACSAs for level 0 
and level 1 icosahedrons 

Test Object Level 0 Percent 
Error (%) 

Level 1 
Percent 
Errors (%) 

Sphere 0.00 0.00 
Cylinder 1.39 -2.24 
Cube -1.30 -2.32 
Octahedron 1.48 0.10 
Square Pyramid 3.82 -1.27 
Tetrahedron 3.32 -0.89 

Overall, Table 4 shows no significant improvements in 
the errors for most of the test objects. In fact, the 
magnitude of the percent error increases for the cylinder 
and cube.  

One potential cause for the increased magnitude of the 
percent error can be attributed to the fact that the 
orientation vectors of the level 1 icosahedron are not 
equally distributed, but the projected areas are all 
weighted equally. When the edges of the icosahedron 
are bisected the new vertices are equidistant from each 
other, but the new vertices are not a unit away from the 
geometric center of the icosahedron. The vertices are 
then normalized to a unit length. This causes the 

distance between a new vertex to a new vertex to be 
13% farther than the distance between a new vertex and 
an original vertex. 

To investigate the trends seen by increasing from a level 
0 to a level 1 icosahedron, the edges of the level 1 
icosahedron are subdivided to form a level 2 
icosahedron. Now the number of orientation vectors is 
increased to 162. Table 5 is the percent error of the 
computed ACSA from the level 1 and level 2 
icosahedron orientation vectors.  

Table 5. Percent error of computed ACSAs for level 1 
and level 2 icosahedrons 

Test Object Level 1 Percent 
Error (%) 

Level 2 Percent 
Errors (%) 

Sphere 0.00 0.00 
Cylinder -2.24 -0.51 
Cube -2.32 -0.62 
Octahedron 0.10 -0.04 
Square 
Pyramid 

-1.27 -0.34 

Tetrahedron -0.89 -0.17 

As can be seen in Tab. 5, the magnitude of the percent 
error of the computed ACSA decreases for all of the 
shapes (except for the sphere). Part of the decreased 
magnitude of the percent errors can be attributed to the 
orientation vectors of the level 2 icosahedron being 
more equally spaced than the level 1 icosahedron. The 
distance between a new vertex to a level 1 vertex is 3% 
longer than the distance between two new vertices. 
These results show promise for calculating ACSA of 
objects without a weighting factor as long as the 
orientation vectors are equally distributed. 

The main drawback of results presented for the 
icosahedron-inspired orientation vectors is that to 
recreate the orientation vectors with a physical system 
many stationary or mobile cameras would be needed. 
This would greatly increase the measurement time to 
determine the ACSA of the thousands of DebriSat 
fragments when compared to the existing 3D imaging 
system. However, insight from the icosahedron-inspired 
orientation vectors is applied in the form of a weighting 
factor that is first tested with a system that emulates the 
3D imaging system. 

4 ICOSAHEDRON WEIGHTING FACTOR 

As discussed in [8], the projected area of an object from 
a particular orientation vector is equal to the projected 
area of the object from the reflection of the orientation 
vector. Therefore, the geometry of an icosahedron 
allows for the twelve orientation vectors of the level 0 
icosahedron to be replicated with a two camera system. 
One camera at a polar angle of 0º and the second 
camera at a polar angle of 63.44º. With five equal 
turntable increments the 63.44º polar angle camera 



 

would record five projected areas and with one 
projected area from the 0º polar angle camera the 
orientation vectors of the level 0 icosahedron are 
replicated.  

Unfortunately, none of the cameras in the 3D imaging 
system have a polar angle of 63.44º. The two cameras 
with polar angles closest to the ideal polar angle are 
Cameras B and C, which have polar angles of 70.16º 
and 53.17º, respectively. To approximate five of the 
orientation vectors of the level 0 icosahedron, Cameras 
B and C are weighted based on their angular distance 
away from the ideal polar angle. To determine the 
weighting factor for Camera B (WB) and Camera C 
(WC) the system of equations in Eq. 4 are solved 
simultaneously. In Eq. 4, θicos is the ideal polar angle of 
a regular icosahedron (equal to 63.44º), θB is the polar 
angle of Camera B (equal to 70.16º), and θC is the polar 
angle of Camera C (equal to 53.17º).  

𝑊O×𝜃O +𝑊8×𝜃8 = 𝜃$PQR 
𝑊O +𝑊8 = 1 (4) 

At each turntable increment WB and WC contribute one 
effective projected area. The last vertex of the 
icosahedron is represented by weighting the projected 
areas from Camera F with 0.2 so that for five turntable 
increments, the summation of 𝐴S,T 𝜃S, 𝜙TU

TVW 𝑊S 
results in one effective projected area. Table 6 shows the 
resulting icosahedron weighting factor for the six 
cameras of the 3D imaging system. 

Table 6. Icosahedron weighting factor 
Camera Weighting Factor (W) 
A 0.0000 
B 0.6041 
C 0.3959 
D 0.0000 
E 0.0000 
F 0.2000 

To account for the fact that the summation of the 
weighting factor does not equal one, the projected areas 
are normalized by n+0.2n where n is the number of 
turntable increments. This allows the icosahedron 
weighting factor to be applied to turntable increments 
other than five while maintaining the same ratio of 
effective projected areas from Cameras B, C, and F.  

With the icosahedron weighting factor formulated, its 
effectiveness is tested in an updated emulated imaging 
system from [8]. In [8], the orientation vectors of the 
cameras were assumed to be evenly spaced between 
polar angles of 0º and 90º. However, the updated 
emulated imaging system uses the physical positions of 
the cameras and then generates unit orientation vectors 
from the camera positions. Fig. 6 shows the physical 
positions of the cameras (denoted as asterisks) in the 3D 
imaging system (with 20 turntable increments) used 

with the updated emulated imaging system. Each color 
represents one of the six cameras of the 3D imaging 
system. Also, the origin of the coordinate system is the 
center of the turntable. 

 
Figure 6. Emulated imaging system camera locations 
for 20 turntable increments 

Table 7 shows the measured initial camera positions for 
the emulated imaging system.  

Table 7. Initial camera positions in the emulated 
imaging system 
Camera X (mm) Y (mm) Z (mm) 
A 498.48 0.00 23.39 
B 466.37 0.00 168.26 
C 404.04 0.00 302.57 
D 301.80 0.00 410.69 
E 151.14 0.00 480.99 
F 0.00 0.00 504.41 

The projected area (A(φ,θ)) of the test object is 
computed at each camera location and the ACSA is 
computed (ACSAC) with Eq. 5. 

𝐴𝐶𝑆𝐴P =
1

𝑛 + 0.2𝑛
𝐴$,T 𝜃$, 𝜙T

Y

$VW

Z

TVW

𝑊 (5) 

To test the effectiveness of the icosahedron weighting 
factors the following turntable increments were 
considered for all six test objects: 4, 8, 10, 12, 16, 20, 
40, 60, 72, 80, 100, and 120. Figure 7 shows the percent 
error for ACSAC for the test objects at all of the turntable 
increments. 

The main takeaway from Fig. 7 is that for low numbers 
of turntable increments the percent error fluctuates, but 
as the number of turntable increments is increased past 
12 the percent error of ACSAC essentially levels off 
within ±5% for all of the tested shapes. Therefore, when 
the icosahedron weighting factor is tested with the 
physical 3D imaging system the number of turntable 
increments tested are 12, 20, and 40. 



 

 
Figure 7. ACSAC for all tested shapes and turntable 
increments 

5 TEST RESULTS AND CONCLUSION 

To test the effectiveness of calculating ACSA with the 
icosahedron weighting factor on physical objects the six 
shapes tested with the emulated imaging system were 
3D printed. Since the shapes tested are convex, the true 
ACSA is determined as one-fourth of the total surface 
area of the objects. The dimensions of the objects were 
physically measured before calculating the total surface 
area of the objects. Table 8 shows the true ACSAs of the 
test objects used to calculate the percent error of ACSAC 
from the 3D imaging system.  

Table 8. True ACSA (in mm2) of test objects 
Test Object True ACSA 
Sphere 700.3 
Cylinder 1077 
Cube 1355 
Octahedron 767.5 
Square Pyramid 608.6 
Tetrahedron 711.3 

Next, the icosahedron weighting factor was applied to 
projected areas recorded from the 3D imaging system in 
the process detailed in [8]. Note that since [8], the 
location of the turntable relative to the cameras was 
shifted and the calibration was then redone. Figure 8 
shows the resulting percent errors of the ACSAC for the 
tested shapes at turntable increments of 12, 20, and 40. 

 
Figure 8. ACSAC from the 3D imaging system 

The main takeaway from Fig. 8 is that the magnitude of 
the percent error of ACSAC is within ±8% for all of the 
test objects. This is larger than the errors from the 
emulated imaging system which means there are some 
errors introduced by the 3D imaging system. Also, the 
percent errors remain relatively constant as the number 
of turntable increments is increased. It is interesting that 
the ACSA of the test objects can be calculated only 
using projected area information from three of the six 
cameras. 

To put the presented results in perspective, the percent 
error of the ACSAC for the icosahedron weighting 
factor at 20 turntable increments is compared to the 
ACSAC for the weighting factor introduced in [8] 
(referred to as the radial weighting factor) and the 
ACSAC from the standard breakup model. All of the 
tested shapes fall into the irregular category, and 
therefore Eq. 1 is applied. However, x, y, and z (the size 
characteristics) must first be determined for the test 
objects. The size characteristics of the sphere are all 
equal to the diameter of the sphere (29.86 mm), but 
determining the size characteristics for the other test 
objects is more difficult. One way to determine the size 
characteristics of the other test objects is to use a 
numerical algorithm previously developed for the 
DebriSat project [10]. The input for the algorithm is a 
3D point cloud of the object, which was numerically 
generated for each test object. Table 9 shows the size 
characteristics of the test objects. 

Table 9. Size characteristics of the test objects 

Test Object x (mm) y (mm) z (mm) 

Sphere 29.86 29.86 29.86 
Cylinder 42.72 42.72 32.16 
Cube 52.07 49.12 42.48 
Octahedron 42.10 42.10 42.10 
Square 
Pyramid 42.21 42.21 21.11 

Tetrahedron 40.53 40.53 28.66 

With the size characteristics calculated for the test 
objects, Eq. 1 can be applied to determine the ACSAC 
of the satellite standard breakup model. Table 10 shows 
the percent errors of the ACSAC for the icosahedron 
weighting factor, the radial weighting factor, and the 
satellite standard breakup model. 

Table 10. Percent error of ACSAC for all test objects 

Test Object 

Icosa-
hedron 
Weighting 
Factor 

Radial 
Weighting 
Factor 

Standard 
Breakup 
Model 

Sphere 0.12% 0.70% -15.12% 
Cylinder -6.74% -5.20% -5.65% 
Cube -6.38% -4.71% 12.44% 
Octahedron 5.56% 3.46% 54.96% 
Square 4.83% 1.66% 30.13% 



 

Pyramid 
Tetrahedron 7.03% 4.48% 23.90% 
Average 
Magnitude 5.11% 3.37% 23.70% 

As can be seen in Tab. 10, the trends for the two 
approaches with the 3D imaging system are similar in 
that the sign of the percent error for the shapes are the 
same. When comparing the results of the icosahedron 
and radial weighting factors, the magnitude of the 
percent error with the radial weighting factor is smaller 
for all of the test objects except the sphere. One possible 
reason for the anomaly in the results of the sphere with 
the radial weighting factor could be due to the projected 
area of the sphere is constant regardless of the direction 
of the orientation vector; therefore, small positive errors 
in the projected areas measured with the 3D imaging 
system could be compounding since twice as many 
images are used with the radial weighting factor when 
compared to the icosahedron weighting factor. 
However, the small errors associated with the projected 
areas of the other test objects are sign indefinite and 
therefore with the radial weighting factor seem to 
contribute to a smaller overall percent error than the 
error introduced from not using half of the projected 
area information (as in the icosahedron weighting 
factor). Another trend evident from Tab. 10 is that both 
approaches with the 3D imaging system show 
improvement when compared to the ACSA 
approximation utilized in the current standard breakup 
model.  

6 FUTURE WORKS 

Work continues on the 3D imaging system for other 
purposes, which could result in the location of the 
turntable and cameras shifting again. Therefore, the 
weighting factors could slightly change when the 
locations are finalized. After all of the components are 
fixed the weighting factors will be recalculated if the 
locations shift. Also, if the locations do shift, the percent 
errors of the ACSAC for the weighting factors will be 
recalculated. Also, in this study the notional icosahedron 
imaging system showed promise for calculating ACSA 
from projected areas that are equally spaced around an 
object. In theory a physical system that mimics the 
orientation vectors of the notional icosahedron system 
could be built, but that is beyond the scope of this 
project given the results presented for the two 
approaches that utilize the projected areas measured 
with the current 3D imaging system. When moving 
forward with computing ACSA for the DebriSat project, 
the author recommends the radial weighting factor since 
the average magnitude of the percent error of the tested 
shapes is lower than the icosahedron weighting factor.  
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