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ABSTRACT 

The information content of light curves is examined using 

an innovative “functional” approach, as opposed to the 

time and frequency domain analyses now being applied, 

to characterize physical and dynamic attributes 

(information) of orbital debris from non-resolved 

photometric observations.  The information content is 

examined in a probabilistic context where a set of 

simulated light curves for a diverse set of object shapes, 

sizes and dynamics are used to demonstrate the 

application and value of Functional Data Analysis, 

Clustering and Information Theory.  The results confirm 

the value of these approaches by correctly categorizing 

independent sets of light curve measurements and 

quantifying the reliability of a given light curve being 

associated with a specific object. These analytical tools 

can also be applied to better understand how well a given 

set of observations characterizes an object and, hence, 

guides the necessity of future observations. 

1 INTRODUCTION 

Photometric signatures are the time histories of visible 

light reflected from Earth orbiting space objects, such as 

debris, as observed by a ground or space-based optical 

sensor.   They are a function of the relative geometry 

between the sun-object-observer, object size, shape, 

material makeup and attitude dynamics.  The attitude 

dynamics are coupled to the orbital dynamics – e.g. 

through area-to-mass ratio variations which affect solar 

radiation pressure and drag – and hence, through dynamic 

mismodeling, affects our ability to accurately track and 

predict the orbital motion of uncontrolled debris.  The 

challenge is that signatures from a group of detected 

objects may be collected in one or more frames over 

different time spans on objects that have not been 

correlated to a catalogued object.  How do we know 

which sets of photometric signatures are associated with 

the same object?  … or to a different object?  The analysis 

presented here attempts to approach these questions from 

an information content perspective.  Accurate and 

appropriate correlation of signatures will lead to more 

accurate shape and attitude retrieval, as well as more 

efficient tasking of observations of debris for the purpose 

of physical and dynamic characterization. 

In space surveillance, Earth-orbiting debris objects that 

are too small or too far away from an optical sensor 

cannot be spatially resolved in the observed images.  

Thus, photometric time-histories of the visible 

radiometric signatures collected from ground and space-

based sensors are now being used to extract stability, 

size, shape, and attitude information about objects being 

observed to support Space Situational Awareness (SSA).  

The radiometric signature is a function of the size, shape, 

reflective characteristics, attitude dynamics and space 

environment of the object, in addition to the phase angle 

defined by the sun-object-observer geometry.  Though it 

is difficult to separate these physical attributes 

unambiguously, in particular in the absence of a priori 

information as is the case for orbital debris, one could 

assume that each object should have combined 

characteristics that are unique to the individual object 

being observed.   

Two questions to ask are: (1) If two or more sets of 

signatures are collected from one or more sensor 

locations, and no a priori association between them is 

known, can one associate two or more of the signatures 

as having similar content to a quantifiable degree of 

certainty? (2) If one or more sets of signatures are 

collected from one or more sensor locations that are 

known to associate with a common object, how can one 

determine when sufficient observations have been 

collected to unambiguously characterize the size, shape, 

periodicity and attitude information content of the object 

data?   

This work establishes a set of scenarios whereby 

simulated observations that encompass object size, shape 

attitude and reflective characteristics are generated for a 

variety of “typical” space debris objects and Information 

Theoretic algorithms are applied to assess the 

information content towards answering the two questions 

above.  The results demonstrate the value of associating 

multiple signatures and enabling space surveillance 

analysts to determine when sufficient data have been 

collected to unambiguously determine stability, size, 

shape and attitude. These attributes are directly related to 

the attitude and orbital dynamics and so will benefit the 

tracking and prediction of space debris objects. 

The paper is organized as follows. Section 2 describes the 
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problem formulation. Section 3 describes the simulation 

setup. Section 4 describes the functional approach where 

light curves are modelled as a series expansion that can 

be analysed for information content. Section 5 is 

conclusions. 

2 PROBLEM STATEMENT AND 

ASSUMPTIONS 

The photometric sensor is designed to collect reflected 

photons from an object orbiting the Earth.  In some cases, 

a multi-spectral sensor is tasked to collect the reflected 

radiation in various wavelength bands.  The signature is 

a result of several factors: 

• In-coming light from the sun (solar flux F) 

• Size of the object surfaces reflecting the light 

(facet area Ai) 

• Direction of the object surfaces reflecting light 

in the body frame (facet normal ni) 

• Orientation of the object surfaces that reflect 

light relative to the Earth Centered Inertial (ECI) 

frame (attitude quaternion q) 

• Phase angle geometry of the reflecting surface, 

i.e., the angle between the incident light from the 

sun and the reflected light ray going to the 

observer (ϕ, angle between observer vector oi 

and sun vector si) 

• Range between the object surface and the 

observer (range ρ) 

• Atmosphere of the Earth (turbulence and 

refraction) 

• Material makeup and reflective properties of the 

surfaces reflecting the light (spectral 

components as a function of the wavelength λi) 

• Thermal properties of the surfaces (surface 

temperature component Ti as a function of input 

energy and material properties) 

Most, if not all, of the physical attributes of debris objects 

are time dependent. Therefore, the photometric signature 

which is explicitly a function of object “features” is also 

an implicit function of time.  For example, it is well 

known that aging effects of the space environment on 

paint can dramatically alter the reflective properties of 

satellites. Although the solution set contains an infinite 

set of parameter combinations, it is reasonable to assume 

that, for any single given object, the physical features are 

sufficiently slowly varying such that, over a reasonable 

observation time, the parameter solution space can be 

bounded.  In this analysis, we will assume that space 

ageing affects and seasonal variations can be ignored. 

Furthermore, the feature parameters are physically 

constrained by known material properties, sizes, shapes, 

the physics associated with the dynamics. In this work, 

one observation pass, which may result in only a partial 

light curve of an object, is considered to be one 

observation sample. As the result of differing observation 

geometries exposing different surfaces at different 

orientations over different observing passes, a particular 

photometric signature observation sample can look quite 

different from pass to pass.  Examples of this are 

provided in the simulated light curve cases presented in 

the next section.  We assume that the problem as stated 

is observable given a sufficiently large number of 

samples. We have several unresolved questions: 1) How 

many samples are needed to uniquely characterize a 

single object, and with what reliability/uncertainty?  2) 

How reliably might we be able to distinguish 

unambiguously two objects, and with how many 

measurements?  3) Is it even possible to disambiguate 

between two objects? 4) How might multiple sensors 

viewing from different geometries (versus a single 

sensor) expedite characterization? 

Given:  

• Multiple parameter photometric signature 

model  

• The physical/numerical constraints on these 

parameters 

• Assumed statistical noise of the measurements 

is Gaussian 

• Sufficiently large sample set to capture the 

dynamics and physical attributes 

Determine: 

• Parameterization models that capture the 

essential physical and dynamic attributes 

embedded in the observed light curves 

• Probabilistic metrics that relate the information 

captured in the empirical parameterization and 

provide a measure for how likely a light curve 

signature is to be associated with an ensemble 

population of light curves. 

Techniques are derived and applied in Section 4 for 

determining when a collection of observations are 

associated with a unique object, and which sets of 

observations might not be associated with the same 

object.  But first, a set of test cases generated to test these 

techniques are described. 

3 SIMULATED CASES 

Light curve data were simulated for several cases to 

demonstrate the application of information theory 

techniques towards addressing the association questions 

posed in the previous section.  A bi-directional reflection 

function (BRDF) model was used that allowed the size, 

shape, surface reflection properties and attitude dynamics 

to be specified.  The visual magnitude as a function of 



 

 

time was simulated for an Earth-based observer under the 

conditions where the object was illuminated and the 

sensor location was in the dark.  A 5%-10% Gaussian 

noise was added to the simulated observations. 

Four cases were simulated: 1) A simple geometric 1 m x 

1 m x 1 m cube, 2) a simple 1 m x 1 m thin plate, 3 and 4) 

“box-wing” satellite models consisting of a rectangular 

bus, two solar arrays and two dish antennae that were 

tumbling or inertially fixed.  For the first two cases 500 

light curve realizations were generated over a 300 second 

span and at a 1 second sampling interval where the noise 

was varied.  A realization of Case 1 is shown in Figure 1 

where a realization of Case 2 is shown in Figure 2. 

 

 

Figure 1. Spinning cube realization (upper) and 

composite of all realizations (lower) – Case 1 

 

 

 

Figure 2.  Spinning plate realization (upper) and 

composite of all realizations (lower) – Case 2 

For the third and fourth box-wing satellite model cases, 

200 realizations were simulated over a span of 3 hours 

and at a sample interval of 30 seconds.  The third case 

was modelled as a steady-state tumble where the initial 

attitude was varied for each case to model different 

viewing geometries for the same tumbling objects.  An 

example realization is shown in Figure 3.  The fourth case 

modelled the box-wing as inertially fixed, but again with 

the initial attitude varied for each realization.  An 

example of the case is shown in Figure 4.  In essence, 

Cases 3 and 4 have a more complex object shape 

consisting of a bus modelled as a rectangular box, two 

solar arrays modelled as two rectangular panels, and two 

dish antennae modelled as two circular plates, with each 

surface component having different reflective 

characteristics, and the light curves are “observed” from 

a single location but at different geometries. 

Each realization within each of the cases depicts a unique 

object, but with noise and geometry changing from case 

to case, which is meant to be representative of 

observations of the same object taken at different times 

and geometries, and over different phases of the motion.  



 

 

 

 

Figure 3. Spinning box-wing satellite model realization 

(upper) and composite of all realizations (lower) – Case 

3 

 

 

Figure 4. Inertially fixed box-wing satellite model 

realization (upper) and composite of all realizations 

(lower) – Case 4 

As the four cases illustrate, light curves can be 

represented by a time history of observations consisting 

of a characteristic signature combined with both 

systematic and random errors resulting from 

imperfections intrinsic to the observing system and 

environment. The signature itself is of interest as its 

variations over time and geometry reveal the physical 

and dynamic attributes of the unresolved debris object.  

In the next section of this paper we propose an alternative 

representation of the light curve that is more conducive 

to exploring the information content and, hence, provides 

another analytical tool for associating independent set of 

observations with no a priori association knowledge. 

4 APPLICATION AND ANALYSIS OF 

INFORMATION THEORY TECHNIQUES 

4.1 Motivation 

Towards a rigorous probabilistic analysis of light curves 

that would lend itself to the tools of information theory, 

we mathematically represent a light curve as a function. 

This approach differs from the conventional approach 

that treats light curves as a point-wise time series 

sequence of points. We begin by letting a light curve at 

time 𝑡 over a time interval of length 𝑇 be denoted by 𝑍𝑡
𝑇 , 

object characteristic parameters by 𝑥𝑡, and geometric 

parameters by 𝑔𝑡. We note that only 𝑍 is treated as a 

curve (or model) over the interval 𝑇, and that the state 

and geometric parameters are assumed to be represented 

in a holistic way over the window of time 𝑇. For example, 

the state 𝑥 may represent the spin state of the satellite 

over the interval 𝑇, including the possibility that it is 

executing a complex attitude motion. A joint distribution 

on these parameters will be denoted by 𝑝(𝑍𝑡 , 𝑥𝑡 , 𝑔𝑡) (for 

ease of notation, we will drop the superscript 𝑇). Along 

with the joint distribution, we can use light curve models 

– e.g. a BRDF model – to compute the likelihood 

𝑝(𝑍𝑡|𝑥𝑡 , 𝑔𝑡), which was used in a pointwise (i.e., not as 



 

 

a function) in the context of Multiple Adaptive Model 

Estimation (MMAE) [1]. The probabilistic framework 

developed in this paper will then enable a rigorous 

Bayesian analysis, where we can now compute the 

posterior in the object state given the light curve 

observation and geometry parameters 𝑝(𝑥𝑡|𝑍𝑡 , 𝑔𝑡) or the 

joint posterior in both object state and geometric 

parameters given a light curve observation 𝑝(𝑥𝑡 , 𝑔𝑡|𝑍𝑡).  

To probabilistically analyse light curves, we propose to 

use tools from Functional Data Analysis (FDA) [2, 3]. 

Such an approach has been used in genetic analysis [4] 

and star and planetary classification based on an FDA 

analysis of light curves [5]. In FDA, a curve is converted 

into a finite-dimensional vector using an appropriate 

basis system that guarantees capturing of the main 

features of a light curve signal. From there on, any result 

that is established for finite dimensional spaces can now 

be applied to functional light curve data. For example, in 

Ref. [6], the authors use Mahalanobis distance to process 

functional data for classification.   

In addition to a rigorous Bayesian approach to light curve 

analysis, one can also venture in the direction of 

information theory to address many SSA problems.  For 

example, one can compute information divergence 

between two classes of light curve data to assess how 

much common information exists between the two sets of 

data. Such an analysis can reveal, for example, that two 

objects share one or more common facets. Another 

example is to use mutual information to solve the object-

to-object correlation problem by assessing how much 

information overlaps between two observed objects with 

two light curves collected at different time instances. In 

other words, the proposed FDA-based probabilistic 

viewpoint may enable the replication of many of the 

information theoretic results developed for angles and/or 

range observations (see Ref. [7, 8]) in light curve 

processing. 

In this section, we first describe how tools from machine 

learning, such as data clustering, can be used to cluster 

populations of light curves. We then use FDA and its 

associated functional Principal Component Analysis 

(fPCA) to obtain first and second moment statistics (the 

equivalent of obtaining a Gaussian model for a point 

cloud in particle filtering) [3]. We use this to compute the 

likelihood that an object that generated a test light curve 

belongs to a candidate class of objects.  

4.2 Using Functional Data Analysis for Light 

Curve Data Clustering  

In machine learning, clustering aims at grouping a 

collection of objects, where in each group the objects are 

similar to each other. How one defines similarity depends 

on the objects and a notion of a metric that measures the 

degree of closeness between two objects. In the present 

case, the objects are light curves. Representing light 

curves as square integrable functions on the interval 𝑇 in  
𝐿2 space, one natural way to measure the distance 

between two curves is to first expand a light curve 𝑍𝑡
𝑇  in 

terms of an infinite sum of basis functions such as  splines 

or Fourier functions. The series is approximated by 

retaining the first 𝑁 components of the sum. The 𝑁  series 

coefficients then act as the coordinates representing the 

light curve in an 𝑁-dimensional vector space. The 

classical Euclidean 𝑁-norm can now be used to measure 

the distance between two light curves. 

With a notion of distance defined, clustering then aims at 

grouping of a set of 𝑀 light curves based on how close to 

each other the curves are. A classical algorithm is the 𝑘-

means algorithm [9]. The algorithm works by first 

selecting a collection of 𝑘 objects from the set. These 𝑘 

objects act as the centroids of 𝑘 clusters. Each object in 

the set is then assigned to a cluster centroid that is closest 

to it in distance (cluster assignment step). The centroid of 

each cluster is then updated so that the new centroid is 

the mean of all the objects in the cluster (centroid update 

step). These two steps, cluster assignment and centroid 

update, are then repeated until no change in cluster 

centroids is observed. The 𝑘-means algorithm for finding 

the optimal clustering is NP-hard in general, but several 

approximations exist, such as the Lloyd algorithm, that 

make the solution linear in all problem parameters (the 

size 𝑀 of the data, the dimension 𝑁 of the underlying 

space, and the number of desired clusters  𝑘) [9]. We used 

a variation of the 𝑘-means algorithm, called 𝑘-means++, 

where the initial set of cluster centroids are 

probabilistically chosen in order to improve the 

convergence of the 𝑘-means algorithm [10], making it 

only 𝑂(log 𝑘). 

We used the 𝑘-means++ algorithm to cluster 2400 light 

curves from all 4 cases. The light curves were of four 

main types: (1) A spinning plate, (2) a spinning cube, (3) 

a tumbling box-wing satellite and (4) an inertial box-

wing satellite. Performance of the 𝑘-means++ algorithm 

is shown in Table 1. The four object types were clustered 

into 4 groups. We note that the cluster corresponding to 

the plate has all, and only, plate light curves in it. The 

cube cluster had 100% percent of the cube light curves, 

but a few inertial and tumbling light curves were also 

included in the cube cluster. Finally, we note that the 

clusters for the tumbling and inertial box-wing satellite 

have near 50-50 proportions of the two light curve types. 

This is most likely due to the identical box-wing satellite 

model being used for those two cases, the only difference 

being the attitude dynamics (one tumbling and one 

inertially fixed). 

We note that the 𝑘-means++ algorithm requires that the 

user specify the number of clusters. We specified four 

clusters; however, future research will focus on using 

existing variations of the 𝑘-means++ algorithm that 

provide a best estimate for the number of clusters as well. 



 

 

 

  

Table 1. Performance of the 𝑘-means++ clustering 

algorithm 

 

4.3 Computing Statistics Given Clustered 

Light Curve Data  

Once the curves are clustered, one can think of each 

cluster as a sample of curves drawn from the underlying 

object class population. Still working within the 

framework of the finite 𝑁-dimensional approximation of 

infinite dimensional functional data, one can then use the 

notions of sample mean and sample covariance to 

estimate the first two moments of each cluster. This is 

known in the literature as fPCA within the FDA 

framework These two moments can then be used to 

compute the likelihood that a light curve obtained at a 

later time belongs to one of a given set of light curve 

classes (i.e., clusters). 

4.4 Computing Likelihood of a Light Curve 

The next question we address in this paper is: How can 

one determine the likelihood that a light curve was 

generated by an object of a specific shape type? Given a 

candidate object’s shape type, one can obtain the type’s 

first and second moment statistics from the 

corresponding cluster as described in the last subsection. 

Results from the previous section also allow us to use 

Mahalanobis distance to assess whether the light curve 

belongs to one of the available light curve classes [6]. 

Such an analysis helps in answering questions such as: 

(1) Is the new light curve generated from an object of a 

give class? And short of a decisive answer, (2) how much 

in common does this light curve have with a given class 

of objects? These results also enable us to use the 

Kullback-Leibler (K-L) divergence, for example, to 

determine the degree of commonality between two 

classes of light curve populations. The K-L divergence 

between two light curve clusters 𝐶1 and 𝐶2 is given by: 

𝐷𝐾𝐿(𝐶1||𝐶2) =
1

2
(𝑡𝑟(Σ2

−1Σ1) + (𝜇2 − 𝜇1)
𝑇Σ2

−1(𝜇2 −

𝜇1) − 𝑁 + ln (
det(Σ2)

det(Σ1)
))    (1) 

where  𝜇
𝑖
 and Σ𝑖 are the mean and covariance of cluster 

𝐶𝑖. 

The light curve data for each case were analysed in the 

following way.  Each data set was split into two parts 

where the first half of each realization was fit to a high 

order polynomial, as an example of a parameterized light 

curve model, and the mean and covariance of the 

polynomials was computed.  A likelihood function was 

then generated by evaluating the second half of each 

realization to the sample functional mean and covariance, 

assuming a Gaussian distribution.  This approach insured 

independent data sets were used for computation of the 

mean and covariance versus the “samples” used for 

evaluation of the likelihood.  In this exercise, a 

polynomial of order 23 was used.  Given that this 

selection was somewhat arbitrary, a more in-depth 

analysis should be done to evaluate appropriate orders, 

and even different parameterization models.  One desires 

a model that retains the “signal” of interest (information) 

while minimizing noise and error related artefacts. 

First, a comparison with the spinning cube samples (Case 

1) from the second half of each of its realizations was 

compared to the mean and covariance derived from the 

first half of each realization.  As can be seen in Figure 5, 

which plots the log of the likelihood, the large values 

indicate the high likelihood that the samples are related 

to the spinning cube statistics. 

 

Figure 5.  Log-likelihood of the spinning cube samples 

compared back to independent statistics sampled from 

the same object 

Similarly, the large likelihood values presented in Figure 

6 show that the independent spinning panel samples 

(Case 2) taken from the second half of each realization 

are highly likely to belong to that object.  When the 

spinning panel samples were compared to the spinning 

cube mean and covariances, the resulting likelihood was 

very near zero, indicating the information was different.  

Likewise for when the likelihood was computed for 

spinning cube samples with respect to the spinning panel 

mean and covariance.  These results, of course, make 

sense but are used as a validation and also to demonstrate 

how computations of likelihoods between light curves 

can identify similarities or differences in information 

content. 

Cluster #

% Plate 

Spinning

% Cube 

Spinning 

% Boxwing 

Spinner

% Boxwing 

Inertial

1 100.00 0.00 0.00 0.00

2 0.00 95.00 2.27 3.03

3 0.00 0.00 51.69 48.31

4 0.00 0.00 51.00 49.00



 

 

 

Figure 6.  Log- likelihood of the spinning panel samples 

compared back to independent statistics sampled from 

the same object 

The same analysis previously described was conducted 

for the tumbling box-wing satellite model (Case 3) and 

inertially fixed box-wing satellite model (Case 4).  The 

varying geometry for each realization was an additional 

element that, essentially, resulted in potentially different 

information being represented on the same object due to 

differing lighting conditions, illuminated surfaces, and 

the dynamics observed from the given geometry. 

As with the Case 1 and 2 comparisons, when each of the 

independent samples from the tumbling box-wing 

satellite model (Case 3) and inertial box-wing satellite 

model (Case 4) was used to evaluate a likelihood based 

on their respective means and covariance, the non-zero 

values indicate a high likelihood of the samples 

containing the same information.  These results are 

shown in Figure 7 and 8, respectively. 

 

Figure 7.  Log-likelihood of the spinning box-wing 

satellite model samples compared back to independent 

statistics sampled from the same object 

 

Figure 8.  Log-likelihood of the inertial box-wing 

satellite model samples compared back to independent 

statistics sampled from the same object 

In contrast, when the independent samples from the 

tumbling box-wing satellite model are used to compute 

the likelihood based on inertial box-wing satellite model 

mean and covariance, the values are again very close to 

zero as seen in Figure 9.  The computation of the 

likelihood from inertial box-wing satellite model sample 

realizations with respect to the tumbling box-wing 

satellite model mean and covariance shows that, though 

not zero, the values are smaller than the comparisons in 

Figures 7 and 8.  These results, shown in Figure 10, 

perhaps indicate some potential commonalities in the 

information in the samples versus independent samples 

used for the computation of the mean and covariance.  

Indeed, that same box-wing satellite model was used for 

both the tumbling and inertial cases, the only difference 

being in the dynamic characteristics. 

 

Figure 9.  Log-likelihood of the spinning box-wing 

satellite model samples compared back to independent 

statistics sampled from the inertial box-wing satellite 

model 



 

 

 

Figure 10.  Log-likelihood of the inertial box-wing 

satellite model samples compared back to independent 

statistics sampled from the tumbling box-wing satellite 

model 

Lastly, the K-L divergence (Eq. (1)) was computed for 

each of the combinations of cases for which the Gaussian 

likelihood was evaluated.  Those results are given in 

Table 2 below.  The low numerical values indicate little 

or no divergence, or that information between the sample 

cases and distribution statistics are consistent.  In 

contrast, the large numerical values are an indication that 

the information is “divergent,” in other words, the sample 

information is not consistent with the information 

captured in the distribution statistics. 

Table 2. Kullback-Leibler divergence for the different 

combinations of case comparisons 

 

5 CONCLUSIONS 

The analysis results for the four cases presented clearly 

demonstrate the viability of applying probabilistic 

functional data analysis to representing the information 

content of light curves and how it might allow a 

quantifiable metric for associating and correlating light 

curve signatures.  Using Functional Data Analysis 

(FDA), we were able to derive a metric for the clustering 

of light curve data with a high degree of success. 

Independent realizations of light curve data for each 

cluster (i.e., class of object shapes) were shown to have a 

high likelihood of being associated with a distribution 

derived from an independent set of light curve data from 

the same object.  Similarly, these preliminary results also 

showed a low likelihood of a set of realizations from one 

object being associated with a distribution derived from 

a different object.  The “population” of light curves for a 

given object retains a unique information content that 

allows these approaches to be successfully applied.  

Kullback-Leibler divergence was used to quantify the 

degree of similarity between different classes of light 

curves. The information theoretic metrics provide a 

measure of “how well” one can quantify association and, 

hence, a measure that can be used to prioritise tasking of 

subsequent observations to reduce ambiguity and 

increase the probability that a set of signatures belong to 

the same object. 

Several assumptions were made in this analysis, and 

relaxing these assumptions serve as the motivation for 

future work.  Of particular concern is the suitability of 

the polynomial expansion model as a representation of a 

light curve along with its assumed polynomial order.  

Though this is the parameterization chosen for modelling 

the light curve “attributes,” no evidence currently exists 

that this is the best and most appropriate model.  Also, 

the simulation setup was constructed in such a way that 

we insured adequate sampling of the signal.  What if 

sampling is not adequate?  Lastly, only a single sensor 

location was used in the simulation of the light curves.  

Prior analysis indicates additional sensors observing 

common objects should enhance the information content 

and, hence, require less data.  Real light curve data will 

be analysed on known and well tracked objects to refine 

and validate the performance results. 
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