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ABSTRACT

Charged Couple Device (CCD) technology is widely
used in various scientific measurement contexts. CCD
equipped cameras have revolutionized astronomy and
space related optical telescope measurements in recent
years, they are also widely used in electroscopic measure-
ments. Even though CCD technology has dramatically
improved since their initial deployment, measurements
are necessarily never perfect and corrupted by noise. The
probability of detection and likelihood are crucial statisti-
cal measures to properly design experiments, observation
setup and in order to employ further mathematical meth-
ods for the data exploitation such as e.g. multi-target
tracking methods. In the application to the observation
of resident space objects in the near Earth space, noise
sources include the sky background, atmospheric effects,
besides the noise generated by the sensor itself. Previ-
ous attempts to correctly characterize the Signal to Noise
ratio for star observations (Newberry and Merline et al.
) have been revisited and adapted for the application of
near Earth object observations and high precision mea-
surements, leading to a modified CCD equation. In a sec-
ond step, the probability of detection and likelihood, the
object position uncertainty are rigorously derived. The
results can readily be applied to CCD measurements.

Key words: optical observation, space object tracking,
uncertainty quantification.

1. INTRODUCTION

Since its introduction in the early seventies, Charged
Couple Device (CCD) technology revolutionized optical
measurements in various scientific fields. For space
object observations and tracking, CCDs typically yield
non-resolved images that do not expose any details of
the object of interests. In addition, noise generated by
the detector itself and the image background, corrupts
the object image; it blurs the object trace and raises the
background level to varying values different from zero.
As the object of interest only occupies a few pixels on
non-resolved noisy images, even detection itself can be

extremely challenging, especially when object images
are faint relative to the background. In any cases, being
able to a priori estimate the probability of detection
and the uncertainty in the object position, the so-called
likelihood are a direct input parameter for the design
of observation scenarios, campaigns and the choice of
the correct instrument to begin with. The space object
detection and tracking algorithms have been developed
in [DFHC15, MDF15, DHF+15, CF08]; those methods
rely on statistical input parameters of the probability of
detection and likelihood.

Precise object position can be extracted from non
revolved images by fitting a multi-variate Gaussian
surface to the signal [HKD07]. As those observations are
inevitably noisy one can only get imprecise knowledge
of the space object position and motion. Estimation of
the noise for star observations with a CCD detector have
already been studied by [MH95, New91]. However for
space objects such as space debris, some assumptions
made in [MH95] and [HD08] may no longer be valid
and alternative noise quantification models have to be
developed.The methods have been revisited and been
adapted for the nowadays higher precision requirements.
Preliminary research has been published in [SF15]. A
more extensive treatement of the topic is currently under
review in [SF16a] and [SF16b]

2. ESTIMATION OF THE SIGNAL-TO-NOISE
RATIO (SNR)

Traditionally, the Signal to Noise Ration (SNR) is re-
ferred to as the CCD equation. Three different versions
of the CCD equation are compared here: the classical
as in [Tie93], Merline’s improved [New91, MH95] and
our improved derivation formulation. The classical CCD
equation , Merline improves upon taking the process of
the background determination into account. In our new
derivation, the mismodeling of the truncation noise is as-
sessed. Furthermore, the correlation of background and
object trace pixels is taken into account, and ambiguous
pixels as they often occur in faint sources are accounted
for. For a more detailed derivation of the CCD equation
please refer to [SF16a].
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The basis of all three derivations is that the electron emit-
tance after absorption excited by the incoming photons
is modelled by a Poisson random variable (hypothesis 1).
This is true for the signals from the object Sobj,i and SS,i.
Furthermore the dark noise, coming from spurious elec-
tron emission from the system, is also modelled as a Pois-
son variable ND,i. The following notation is used:

• npix is the number of pixels the signal is spread over

• Sobj,i the number of electrons emitted after absorp-
tion of photons emitted or reflected by the object for
the pixel i. It is a Poisson random variable of param-
eter λobj,i

• SS,i the number of electrons emitted after absorp-
tion of photons emitted by background sources (e.g.
stars) for the pixel i. It is a Poisson random variable
of parameter λS,i

• Di the number of spurious electrons emitted for the
pixel i (dark noise). It is a Poisson random variable
of parameter λD,i

• Ri the number of electrons introduced by the read
out process per pixel i. It is modelled as a Gaussian
distribution [MH95, Mas92].

• Ui is the number of electrons for the pixel i that are
introduced by the limited CCD resolution. It is mod-
elled by uniform distribution in [MH95, New91],
while in this work its exact distribution is derived.

As noise generation is unpredictable in a CCD, the previ-
ous terms are seen as random variables.

The SNR is defined as the expectation value of the signal
of interest divided by the standard deviation of the noise.
The signal of interest is in our case, the object signal,
that is the trace that the object leaves on the detector. It is
spread over a number of pixels n. It is assumed to be well
represented as a Poisson random variable. The signal S
and its expectation value can hence be written as:

S =

npix∑
i

Sobj,i S∗ := E[S] =

npix∑
i

λobj,i, (1)

In the classical and in the derivation of Merline of the
CCD equation is assumed that the number npix of object
pixels is exactly known (hypothesis 8).

The noise is defined as the variance of the sum of
the object signal S together with the noise sources. For
the ith pixel, the noise sources consist of the celestial
and sky background sources SS,i, such as stars, and other
light sources, such as the zodiac light and other sources,
that contribute to a non-zero photo background. Further-
more, the dark noise, Di, of the detector, and the read
out noise Ri, of the detector contribute to the noise of
the CCD output. The realizations of both are influenced
by the temperature of the detector. Furthermore, because
CCDs have limited resolution not every single electron

can be reported. Inevitably there is a truncation noise
introduced Ui. Then the total noisy CCD output is:

SCCD =

npix∑
i

Sobj,i+

npix∑
i

SS,i+

npix∑
i

Di+

npix∑
i

Ri+

npix∑
i

Ui

(2)
The classical derivation concludes at these noise
terms.The classical formulation of the CCD equation
hence results in the following expression:

SNRclassical = S∗√
S∗+npix·(S∗

S+N
2
D+N2

R+N2
U,i)

(3)

=
∑npix

i λobj,i√∑npix
i λobj,i+npix·(λS+λD+N2

R+ g2

24 )

Remarks:

• g2

24 is the truncation noise modelled as a uniform ran-
dom variable support [− g2 ,

g
2 ]

• N2
R is the readout noise

• λS and λD are the background noise and the dark
noise

Note that the noise introduced by the subtraction of the
background to the is not accounted for. Merline intro-
duces an additional noise term, that stems from the gen-
eration of the background level:

B =
1

nB

nB∑
i

(SS,i +Di +Ri + Ui) (4)

Where B is the background subtraction term and nB is
the number of background pixels used to estimate the
background. Denoting the standard deviation of the back-
ground estimation noise as Nb,d = V ar(B) the noise
variance becomes :

N2
Merline = N2

classical +
npix
nB

N2
b,d (5)

Leading to the modified CCD equation of Merline:

SNRMerline =

S∗√
S∗ + npix

(
1 + 1

nb

)
(S∗S +N2

D,i +N2
R,i +N2

U,i)

(6)

The modification introduced in [MH95] leads to the ad-
dition of npix

nb
(S∗S + N2

D,i + N2
R,i + N2

U,i) in the noise
estimation with respect to the classical one.

Discussion of the Hypotheses of the Classical and Mer-
line CCD Equation

In our updated formulation the following hypotheses are
dropped.:



The truncation noise is an independent additive uni-
form noise: During the truncation process the signal
is converted from electrons into ADU. This conversion
leads to lost in resolution: the CCD can only count a num-
ber of electrons at the time. This assumption is concep-
tually wrong and leads to inaccurate estimations of the
truncation noise for faint signals (cf section III for more
details), besides it entails that the signal remains a Pois-
son distribution after the round off error.

The number of signal pixels is perfectly known: As
with the background estimation, the number of pixels that
belong to the object is determined as the number of pix-
els above the background level. Especially for very faint
signals this assumption is problematic (see Fig 1). In
fig ??, the problem of ambiguous pixels is exemplified.
Schematic (a) presents a case where there are no ambigu-
ous pixels. Schematic (b) presents a case where some
pixels may belong either to the signal or the background.
In this case, it may be impossible to tell signal pixels
from background pixels. This issue will be assessed in
the derivation of the improved CCD equation in the fol-
lowing section.

2.1. Derivation under more general conditions

In the improved derivation of the CCD equation is based
upon the derivation from [MH95]. The modelling of the
truncation error is improved upon and the uncertainty in
the number of object pixels is taken into account. Im-
provements are most significant for faint object signals.
In this section we denote Sact,i = Sobj,i + SS,i + Di

the number of electrons collected at pixel i that will be
converted into ADU (Analog to Digital Unit).

First, we compute the exact distribution of the signal after
electron to ADU conversion. Let’s assume g is the num-
ber electrons corresponding to one ADU. For the sake of
simplicity we assume that g is even and noting Sract,i the
new distribution in ADU, we get for the probability of the
signal in ADU of an original signal in the interval subject
to truncation, for any signal strength q:

P (Sract,i = q) = P

(
Sact,i ∈

[
g

(
q − 1

2

)
; g

(
q +

1

2

)])
(7)

for any q > 0.

This is equivalent to:

P (Sract,i = q) =

g(q+1)−1∑
k=gq

exp(−λtot,i)λ
k− 1

2 g
tot,i

(k − g
2 )!

=
Γ(g(q + 1

2 ), λtot,i)

Γ(g(q + 1
2 ))

−
Γ(g(q − 1

2 ), λtot,i)

Γ(g(q − 1
2 ))

,

(8)

for any k > 0, with Γ(q) = (q − 1)! is the Gamma

function and Γ(q, x) =
∫∞
x
e−ttq−1dt is the incomplete

Gamma function.

Fig 1 gives an example of very faint signal where the
pixel at the edge are extremely ambiguous. Ambiguous
pixels are those that could be part of the signal or part of
the background. In [MH95, New91] or the classical equa-
tion, the ambiguous pixels are neglected. Our CCD equa-
tion accounts for the ambiguous pixels that can be part
of the signal and of the background determination. We
denote Iamb the set of ambiguous pixels. The ambiguous
pixels are included in the background determination and
are considered as being part of the signal. In other words,
we have Iamb ∈ Isig and Iamb ∈ IB , where Isig is the
set of signal pixels from the object trace and IB is the set
of background pixels used in the background determina-
tion. We denote the overall actual signal as Sact (signal,
dark noise and background). Following the derivation de-
scribed in [SF16a], the CCD equation becomes:

SNRimpro (9)

=
S∗√

(npix − 2nambnpix

nB
+

nambn2
pix

n2
B

)(Nr
act)

2

+(
npix

nB
)2(nB − namb)(Nr

d,b)
2 + nN2

R

(10)

Where Nr2
b,d is the variance of the (truncated) background

signal. Nr2
act is the variance of the (truncated) signal in

pixels the object trace. Further simplifications can be
made in the case the number of signal pixels is much
smaller than the amount of pixels used for the background
determination. In that case, the ratio namb

nB
is going to

be very small as the background will be very well deter-
mined. In this case we can take namb

nB
→ 0 in Eq. 10.

Besides, if the truncation noise is modelled , the tradi-
tional way, then Eq. 10 gives Merline’s CCD equation.
Note that the presence of ambiguous pixels affects the ef-
fective number of pixels to consider in the noise estima-
tion while the accurate truncation modelling transforms
the shape of the distribution. Contrary to the previous
CCD equations, the signal distribution is not Poisson dis-
tributed anymore. Note that the modelling of ambiguous
pixels tends to reduce to noise. This come from the fact
that some pixels are at the same time in the background
estimation and the signal.

3. PERFORMANCE OF THE IMPROVED CCD
EQUATION

In order to evaluate the effects of different CCD equa-
tions, CCD frames are numerically simulated in order to
compare the CCD equations. To do so a Gaussian noise-
less signal is generated and constant background noise is
added to it. Then an artificial CCD reads the signal and
adds noise to it. The Gaussian signal is then read mul-
tiple times yielding different observations of the same



(a) Schematic of non ambigu-
ous signal: the signal pixels
clearly stand above the back-
ground level

(b) Example of ambiguous sig-
nal: it is unclear for some pixels
whether they belong to the sig-
nal or not

Figure 1: example of a very faint signal with low signal
to noise ratio

object so the noise can be estimated using Monte Carlo
method. The numerical results are then compared to the
three CCD equations derived in the previous section Eq.4,
Eq.6 and Eq.10.

3.1. Comparison of the Signal to noise ratio for sig-
nals without ambiguous pixels

The different formulations of the CCD equation are com-
pared to Monte Carlo simulations. The following results
are obtained including all sources of noise described in
the introduction. In the first case, it is assumed that the
signal pixels are perfectly identified. To illustrate Fig 6b
shows an example of signal in which the object pixels can
be easily identified, as the signal to noise ratio in all ob-
ject pixels is high. Fig 2 shows three different estimations
of the signal to noise ratio: the classical CCD equation,
Merline’s CCD equation as presented in [MH95] and the
improved CCD equation. All three are compared to a
Monte Carlo estimation of the Signal to noise ratio. Mer-
line is extremely accurate even with a high gain and it
almost equivalent to the CCD equation presented in the
last section. The classical equation (Eq. 4) overestimates
the signal to noise as it does not take into account the
background subtraction.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Background level normalized with the brighest pixel

22

23

24

25

26

27

28

29

S
ig

n
a
l 
to

 N
o
is
e
 r
a
ti
o
 

Monte Carlo
Improved 
Merline 
Classical

Figure 2: Evolution to signal to noise ratio with read out
noise. In this case g = 0.06λobj
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Figure 3: Evolution to signal to noise ratio with the back-
ground level.

3.2. Comparison of the Signal to noise ratio for sig-
nals with ambiguous pixels

In this case, we take into account the presence of ambigu-
ous pixels. As the signal can be extremely faint, it may
become extremely difficult to tell whether a pixel belongs
to the background or the signal. Furthermore, in some
cases, where very few pixels are available to compute the
background, one has to include those ambiguous pixels
in their estimation of the background level. In practice,
the ambiguous pixels are pixels for which the intensity
from the observed object is of the same order of magni-
tude as the background noise. Fig 3 shows that [MH95]
underestimate the signal to noise ratio as they neglect the
correlation between the background estimation and the
signal due to the presence of ambiguous pixels.

The difficulty behind differentiating the signal pixels
from the background pixels makes the classical defini-
tion of the signal to noise ratio extremely ambiguous and
subject to the observer subjectivity. In the next section,
we present an alternative definition of the signal to noise
ratio that does not present this ambiguity.



3.3. Alternative definition of the signal to noise ratio
based on the brightest pixel

The presence of ambiguous pixels that could be part of
the signal as well as the background creates difficulties
when computing the signal to noise ratio. We propose
an alternative definition of the signal to noise ratio which
is easier to assess in the case of a faint signal with am-
biguous pixels. This definition circumvent the problem
of ambiguous pixels as the signal of the brightest pixel is
readily extracted and unambiguous. As the influence of
the truncation error is small, this new definition recreates
the situation of Fig 2 and allows to use Merline’s CCD
equation with a high level of accuracy.

4. PROBABILITY OF DETECTION

The probability of detection denotes the a priori probabil-
ity that a given object is detected. In our framework, the
probability of detection is defined relative to the bright-
est pixel. The reasoning is, that if the brightest pixel of
an object is below detection limit, the object will not be
detected. This does not include to evaluate the probabil-
ity of detection after e.g. a spatial filter has been applied.
Introducing the threshold t, the signal can be detected if
at least one signal pixels has intensity greater than the
threshold t. Therefore we have:

P (detection) = P (Srbrightestpixel > t)

+P (Srbrightestpixel < t at least one other j hasSj > t),
(11)

where Srbrightestpixel is the intensity of the expected
brightest pixel. It is the intensity measured and there-
fore is comprised of the signal itself and the background
noise both truncated plus the readout noise. In practice, if
the brightest pixel is clearly brighter than the other signal
pixels, the second term is very small as it is very unlikely
that one does not detect the expected brightest pixel but
detect a lower expected intensity pixel. In the following
derivation, we focus only on the brightest pixel. There-
fore we have

P (detection) = 1− P (Srbrightestpixel < t). (12)

For the rest of the derivation it implicit that only the
brightest pixel is considered. From the previous section
we have

Srbrightestpixel = Sract −B + SR (13)

Where Sract is defined in the previous section, B is the
background estimation and SR represent the read out
noise. If we use the signal distribution derived in the pre-
vious section, we have:

P (detection) = 1− P (Sr −B + SR < t). (14)

Computing P (Sr −B +R < t) can be complex and nu-
merically expensive. Reasonable simplifications are pro-
posed in order to explicate P (Sr − B + R < t). As-
suming that the background estimation is Gaussian dis-
tributed and using the definition of the truncated signal
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Figure 4: Detection probability function of the signal to
noise ratio

distribution, the probability of detection can be written as
: [SF16a]

P (detection) = 1− 1

2

∞∑
n=−∞

Γ(n− g
2 , λobj + λS + λD)

n!

·

(
erf

(
n+ 1− t− µB√

2g(σ2
B + σ2

R)

)
− erf

(
n− t− µB√
2g(σ2

B + σ2
R)

))
.

(15)

Where erf is the error function.

Eq. 15 can be evaluated numerically for different signal
to noise ratios. As the choice of t is not unique, the re-
sults are plotted on Fig 4 for different values of t. t is
chosen as k ×N , where N is the noise. The value of the
threshold should be chosen such as it minimizes the risk
of false detection and maximize the number of space ob-
jects detected. Therefore its value is specific to the sensor
signal to noise ratio and enhancement methods that have
been applied in the image processing step.

5. ESTIMATING THE OBJECT POSITION AND
QUANTIFYING THE UNCERTAINTY IN THE
ESTIMATION

In this section a position estimation method is presented,
based on the Gaussian fitting of the CCD signal. The re-
sults of this section are further explained in [SF16b] The
Airy disk refraction pattern at the sensor is fitted with a
Gaussian shape. For details see [FJ14]. The actual po-
sition of the source can be retrieved under the assump-
tion that it corresponds to the center of the fitted Gaus-
sian curve on the pixel grid. More precisely, assuming
the ground signal has the following form

s = Ae(−
1
2 (c1(xi−x0)

2+2c3(xi−x0)(yi−y0)+c2(yi−y0)2)),
(16)

And noting θ = (A, x0, y0, c1, c2, c3) where A is the am-
plitude, x0 and y0 the center of the Gaussian and c1, c2



(a) Raw signal (b) Signal with a fitted Gaussian

Figure 5: Gaussian curve fitted to an actual space object
signal.

and c3 the coefficients of the inverse covariance matrix.
Then the position of the object is x0, y0.

The angles can be given in arcsec. c1, c2, c3 are expressed
in arcsec−2 and A is a number of electron per arcsec2.
The pixel scale (arcseconds per pixel) is assumed to be
known; it is also needed to determine the amount of irra-
diation that is collected in each of the pixels containing
signal from either the object or the background. The aim
is to find x0 and y0 using the noisy signal issued by the
CCD in subpixel accuracy. In this section, the signal mea-
sured by the CCD at pixel i is noted gi. An example of
Gaussian fitting applied to an actual signal is given in Fig.
5.

5.1. The maximum of likelihood estimation

The maximum of likelihood (ML) estimator has been
widely used in Gaussian fitting of signals [Sal74, Win86,
HD08] for its good properties: it is an unbiased, con-
sistent and asymptotically efficient estimator [SO09].
Defining the likelihood of the set of parameters θ for a
signal as:

L = P (S = s|θ). (17)

Then the maximum of likelihood is defined as:

θ̂MLE = maxθ (P (S = s|θ)) . (18)

In the first section of this study S has been defined as:
S =

∑
i S

r
i,act + Si,R − B The likelihood function for

pixel i can be rewritten as

Li = P (Si = si|θ) = P (Sri,act+Si,R−B = si|θ) (19)

Under the assumption that the number of pixel for the
background is large (hypothesis 1), the CCD resolution is
high (small gain) (hypothesis 2) and the signal is bright,
the signal is Gaussian distributed [SF15] :

Si = λact,i−λb,d+N

(
0, 1s ×

√
λact,i +

λb
nb

+ σ2
R

)
.

(20)

Assuming that the signal is a Gaussian curve (hypothesis
4):

λact,i − λb,d = λS

= δxδyAe
(− 1

2 (c1(xi−x0)
2+2c3(xi−x0)(yi−y0)+c2(yi−y0)2)).

(21)

with xi, yi, being the center coordinates of pixel i, δx, δy
is the size of the pixel in arcsec−1 in the x- and y di-
rection of the pixel grid, respectively. In the remainder
σ2
i = λtot,i + λb

nb
+ σ2

R denotes a number of electrons in
the energy equivalent.

Consequently, if the noise is independent for two differ-
ent pixels, the likelihood becomes:

L =

npix∏
i

exp

(
−1

2

(
(gi − si)2

σ2
i

))
. (22)

si has been defined in Eq. 16, and gi intensity measured
at pixel i. Then the log likelihood also called the score is:

l = −
npix∑
i

(gi − si(θ))2

2σ2
i

. (23)

Then l has to minimize to get θMLE .

5.2. Quantification of the uncertainty in the estima-
tion

In this section, an estimation is given for the variance in
the pixel position estimation of the space object. Two
different approaches to quantify the uncertainty in the
estimation of the parameters are: a maximum of likeli-
hood estimation as it is carried in [HD08, BDL07] or a
Bayesian approach as in [SO07]. Both methods tackle a
problem from a different angle so the uncertainty in the
estimation are in general different. The maximum of like-
lihood estimation focuses on estimating the deterministic
parameters θtrue and then estimates the uncertainty in the
estimator θ̂. On the contrary, with the Bayesian approach
one considers the distribution of Θ for a given set of mea-
surements. Therefore, even if non informative priors are
used for the Bayesian estimation both cases are not ex-
actly equivalent. The Bayesian estimation gives all the
possible values of θ corresponding to the observed object
image.

Rao-Cramer lower bound Under regularity assump-
tions on the likelihood function, for any unbiased estima-
tor, there exists a variance lower bound [SO09]. In our
case, the Maximum of Likelihood (ML) estimator asymp-
totically reaches this lower bound [SO09, BM13]. We
introduce the Fisher information as:

F (θ) = E

[
∂2l

∂2θiθj

]
, (24)



where θ = (A, x0, y0, c1, c2, c3), l is defined in Eq. 23
andE is the expected value with respect to the likelihood.
As explained in [SO09], the Fisher information corre-
sponds to the average amount of information available in
the sample. The Rao Cramer variance lower bound fol-
lows the following inequality:

V arg1..gn(θ̂) ≥ F (θ)−1. (25)

And if the sample size is large enough, the ML estimator
asymptotically can be represented with a Gaussian distri-
bution ( [BDL07, BM13]):

θ̂ ∼ N (θtrue, F (θ)−1). (26)

In practice, if the number of sample is large, the lower
bound will be reached and the inequality becomes
an equality. For well sampled cases, it provides an
analytical expression of the variance.

In many cases, simple analytical expression of the
Fisher information are not available, but in this case
previous work [HKD07, HD08] have managed to derive
such expression under the following assumptions:

1. Flat noise: σ is constant over all pixels of the signal.

2. The profile is well sampled: the pixel size is con-
stant and small compared to the object image size.
In other words we have δx, δy � 1

c0.51
, 1
c0.52

where δx
and δy are the CCD pixel dimensions.

3. The entire profile of the object image is sampled

In our work however we were able to drop the third as-
sumption. Detailed calculation of the RCLB are dis-
played in [SF16b]. It can finally be shown that for a
cropped image between [x0−a;x0 +a]× [y0−b; y0 +b],
the object position covariance matrix becomes :

Kx0,x0
= 2σ2

c1 c2
√
π + 2 c1 c2

√
D
c2
ada + 2

√
D
c1
bc3

2db

π3/2
√
DA2c1

.

Kx0,y0 =− 2σ2
c3

(√
π + 2

√
D
c2
ada + 2

√
D
c1
bdb

)
π3/2
√
DA2

.

Ky0,y0 = 2σ2
c1 c2

√
π + 2 c1 c2

√
D
c1
bdb + 2

√
D
c2
ac3

2da

π3/2
√
DA2c2

.

(27)

c1 and c2 are parameters of the fitted Gaussian curve that
quantify the size of the signal in x and y direction. c3
accounts for the orientation of the signal with respect to
the axes. A is the intensity of the brightest pixel. D is
defined as D = c1c2 − c23. da = exp

(
−Da

2

c2
D
)

and

db = exp
(
−Db

2

c1
D
)

accounts for the truncation of the
signal. If the complete object image would be able to be
sampled db and da go to zero and the variance simplifies

(a) Signal in the general
case where c1 6= c2 and
c3 6= 0 (source ZIM-
LAT,AIUB)

(b) Example of rotation in-
variant signal where c1 =
c2 and c3 = 0 (source ZIM-
LAT,AIUB)

Figure 6: Signals received from an object

into the results developed in [HD08]. In realistic settings,
finite cropping has to be applied.

Eq. 27 can be further simplified, by noticing that

Sb
N

=
A exp(− 1

2 (c1u
2
x + 2c3uxuy + c2u

2
y))δxδy

σ
,

(28)
ux and uy were previously defined as the minimum dis-
tance between the center of the Gaussian surface and the
center of a pixel for a given signal. Eq. 29 does not take
into account the pixel integration . It is possible to av-
erage ux and uy as in the derivation of the Rao Cramer
Lower Bound, however, to simplify ux and uy are set to
zero so Eq. 28 becomes:

Sb
N

=
Aδxδy
σ

, (29)

and Eq. 27 becomes:

Kx0,x0 =
2c2

(√
π + 2

√
D
c2
ada+ 2

√
D
c1
ρ2bdb

)
δxδy

(Sb/N)
2√
Dπ3/2

Kx0,y0 =
−2c3

(√
π + 2

√
D
c2
ada + 2

√
D
c1
bdb

)
δxδy

(Sb/N)
2√
Dπ3/2

Ky0,y0 =
2c1

(√
π + 2

√
D
c1
bdb + 2

√
D
c2
ρ2ada

)
δxδy

(Sb/N)
2√
Dπ3/2

(30)

where ρ = c3√
c1c2

is a correlation factor between the x
and y axis. It defines the orientation of the (elongated)
Gaussian with respect to the pixel grid.

If the signal is rotation invariant as in Fig 6b then c1 =
c2 = c and c3 = 0 Eq. 30 becomes: Introducing the
signal to noise ratio as defined in Eq. 29 and assume
square pixels, we get:

Kx0,y0 =
δ2

π3/2(Sb/N)
2×[

2 (
√
π + 2

√
cada) 0

0 2 (
√
π + 2

√
cbdb)

]
.

(31)



Even in the symmetrical case we see that x0 and y0 are
not uncorrelated due to the nuisance parameters.

5.3. Method Comparison and Evaluation

The different methods for evaluating the variance in the
object image centroid on the pixel frame are compared:
The simplified method according to [HD08] using the
Rao Cramer Lower Bound (RCLB), the improved method
to computing the RCLB introduced in this paper, and the
Bayesian estimation. As ground truth a Monto Carlo sim-
ulation is used with 1000000 samples. For the Bayesian
estimation, a Markov Chain Monte Carlo (MCMC) based
on Metropolis algorithm [MRR+53] method is used to
compute the posterior distribution using 100000 samples.
Presentation of the method are presented in [KS05]. The
results for t noise levels SNR=30 (relative to the bright-
est pixel) are shown in Fig.7, in dependence of the full
width at half maximum (FWHM) of the object image.
The variance is given in pixels2. The object image has
been cropped at 2 standard deviations in x direction and
2.5 standard deviation in y direction , the noise is as-
sumed to be constant over this cropped subframe. For
instance, if the standard deviation of the fitted Gaussian is
5 pixels in x and y direction, in our test case the cropped
image will be centered around the signal, 40 pixels large
in x direction and 50 pixels wide in y direction. It can
be seen that the approximation of the RCLB according
to [HD08] constantly underestimates the variance, and is
hence overconfident. Although a priori, the RCLB under-
estimates the variance of the ML estimator, Fig. 7 shows
that in practice it is reached even for object images with
very small FWHM with the improved method, even in
cases with a low signal to noise ratio. Consequently, even
for those (FWHM e.g 10 pixels) the approximate RCLB
defined in Eq. 27 is a good estimation of the variance. Us-
ing the exact expressions for the RCLB (obtained by tak-
ing the inverse of the matrix in Eq.?? only shows signifi-
cant improvements for object images with FWHM lower
than two pixels. Non surprisingly, for those cases the
variance sharply increases, as more and more informa-
tion is integrated into practically one pixel.

The computationally more expensive method of the
Bayesian approach agrees with the results given by the
Monte Carlo computations. Beside for signals larger than
ten pixels the analytical expression for the parameter vari-
ance (Eq. ??) fairly well agrees with the Bayesian results.
This result confirms that Eq. ?? is a valid estimation of
the uncertainty in astrometric estimation.

6. CONCLUSIONS

In this study probability of detection and position uncer-
tainty uncertainty were analytically derived. Different
versions of the CCD equation were compared with Monte
Carlo simulations, showing that Merline’s CCD equation
provides a good estimation of the signal-to-noise ratio
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Figure 7: Convergence of the ML position estimation
variance for generated signal with SNR=30

(SNR) in the case of well-defined signals. However, in
the presence of ambiguous pixels, the improved CCD
equation performs significantly better. Using the full dis-
tribution of CCD output signal (sum of a truncated Pois-
son and the Gaussian), the probability of detection was
derived in a general context and it was shown that it di-
rectly depends on the SNR of the brightest pixel and the
detection threshold. Those results can directly be imple-
mented in multi-target tracking algorithms to accurately
evaluate the probability of detection knowing only the
signal-to-noise ratio and the detection threshold. An an-
alytical expression for the astrometric position variance
of non-resolved CCD sources were derived in this paper.
It shows that the observation likelihood can be computed
fully analytically solely based on the physical quantities
of the Gaussian shape of the non-resolved source, the
SNR and the pixel size. This saves the computationally
expensive generation of an artificial observation frame
and its Gaussian fitting, or other numerical methods. Us-
ing a Bayesian approach, it was also shown that the dis-
tribution of the position estimation is well described by
it first two moments. For the case of real observations,
where the signal geometry is not precisely known a priori,
a simple lookup table allows to determine variances and
probability of detection based on pixel values, without
numerical procedures. Alternatively, Gaussian fitting on
the real image can be performed in order to have a precise
knowledge of the geometry of the signal and compute the
position uncertainty via the derived analytical expression.
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