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ABSTRACT

The accurate prediction of a reentering space object and
its impact zone is a complex problem by the diversity
of the physics involved. Numerical models simulating
reentry events have to make simplifying assumptions in
order to get an impact zone estimate. Along this line,
some physical parameters or scenarii such as the frag-
mentation sequence or the atmosphere state, are chosen
arbitrarily. In this work,the uncertainty due to simpli-
fying assumptions in the atmosphere modelling and the
lack of knowledge in the characteristics of the material
at use are investigated in order to assess the reliability
of the prediction. Uncertainty Quantification methods
have been applied to reentry problems but only includ-
ing a limited amount of uncertain parameters due to the
computational cost of classical uncertainty quantification
methods in high dimension. In this work a large number
of uncertain variables are included (50) in order to ac-
count for the atmosphere uncertainty and our lack of un-
derstanding of the material behaviours during a reentry.
Due to the extremely high dimensionality of the problem
a Monte Carlo estimation of the uncertainties is carried
out. Four simple cases involving a sphere reentering the
atmosphere are investigated using a solver developed by
Airbus Safran Launchers (ASL). Finally, a method for es-
timating reliable impact zone at very low level of proba-
bility of failure are presented and assessed in one of the
four cases

Key words: uncertainty quantification,space object reen-
try,multi physics problems .

1. INTRODUCTION

Large space object are regularly observed reentering the
Earth atmosphere. Most of them are man made object
usually referred as space debris as they are solely iner-
tial object, uncontrollable and of no use for human op-
erations. For those massive objects, accurate estimation
of the potential impact zone on the ground and subse-
quently the risk for populations remains an open research

problem. In this context, the French Space Operation
Act applicable by 2020 to the future Ariane 6 rockets
follows two major objectives: a reduction of the debris
released at launches and an estimation of the risks as-
sociated to every launch. Following this dual objective,
ASL is designing reentry plan for each rocket part that
is not the payload (boosters, EPC,upper stage, ...) in or-
der to free critical but saturated orbits from new inertial
and possibly hazardous rocket parts. Moreover, in order
to ensure an optimal protection of human life and activ-
ities a global risk estimation has to be estimated prior to
the launch. This estimation of the risk includes the risk
related to the launch itself (ascending part) but also the
reentry of the rocket parts. To this end ASL, is devel-
oping a software for predicting the risks associated to re
entering parts of Ariane rocket. Due to the complexity
of the physics involved during reentry, the scarcity of ex-
periments and the unpredictability of events such as frag-
mentation, any model trying to predict a reentry suffer
from necessary simplifying assumptions and absence of
data. In order to assess the reliability of the predictions,
uncertainties involved in space object reentries are quan-
tified in this work. In particular, a reliable impact zone
containing all the possible impacts for a given scenario
with a very high probability has to be estimated. Sev-
eral space object reentry software have already been de-
veloped. The CNES developed an object oriented reen-
try tool [OS12] and a risk estimation tool [LAA+10]. A
Higher fidelity spacecraft oriented break tool have also
been developed by ESA [KFLK05] whereas NASA de-
veloped its own spacecraft oriented tool [DOSB+05].
Several studies have already shown the potential of UQ
techniques to applied space object reentries in order to
strenghen the prediction reliability. In [TKV+15], the
authors compare four different uncertainty propagation
methods: the Polynomial Chaos Expansion (PCE) ap-
proach [LMK10], an ANOVA decomposition based ap-
proach referred as Uncertainty Quantification-High Di-
mensional Model Representation (UQ-HDMR), a Gener-
alized Kriging model and a polynomial metamodel based
on Tchebycheff polynomials on sparse grids in the case
of orbit propagation. They show the UQ-HDMR tends
to perform better than the other methods. The particular
case of reentry of reusable objects have been explored in
[BHW11], [HB12] . In particular, PCE is used to prop-

Proc. 7th European Conference on Space Debris, Darmstadt, Germany, 18–21 April 2017, published by the ESA Space Debris Office

Ed. T. Flohrer & F. Schmitz, (http://spacedebris2017.sdo.esoc.esa.int, June 2017)



agate aleatory uncertainties whereas epistemic uncertain-
ties are propagated via sampling methods. This method
however becomes less and less efficient as the number of
uncertainties increases. In [FL05], the authors carried out
a UQ analysis with the ESA reentry software SCARAB
in a few specific case taking into account the prevailing
uncertainties. Similar analysis have been carried out in
[RMJ04] using the NASA high fidelity software ORSAT.
In this work, the approach is different. As our objective is
to include a large number of uncertainties, most of surro-
gate model approaches presented earlier become highly
ineffective as a consequence of the curse of dimensional-
ity. Therefore, in this work no surrogate models are built
but the directly the solvers, coupled with a Monte Carlo
and Importance Sampling approaches are used to quan-
tify uncertainties. This is feasible base the use of simple
models developed by ASL.

The rest of this paper decomposes as follow: first an
overview of the numerical solutions brought by Airbus
Safran Launchers are presented. In the second section,
after identification of the main uncertainties a UQ anal-
ysis is applied to estimate the uncertainty in the ground
hit, the object survivability and a reliable impact zone.

2. PRESENTATION OF ASL SYSTEM OF
SOLVERS

A functional approach was adopted by ASL: the specific
aspects of the physics involved in the space object reen-
try modelling are modelled by a specific solver. Aerody-
namic forces are computed by a specific solver whereas
ablation phenomena are modelled by another one. The
solvers are coupled together into a global system to gen-
erate a simulation of the whole scenario. In the rest of
this section, the components of the system of solvers is
presented more into details. After the initial state for the
object of interest has been set (position, velocity, shape
and composition ....), the first step is the deorbitation that
is the calculation of the trajectory from the initial orbit
to the actual atmospheric reentry set to an arbitrary al-
titude of 120 km. This part is computed with a orbit
propagator. Once the object re enters the atmosphere,
the aerodynamic forces have to be modelled with an ad-
ditional solver. The fragmentation solvers (second step)
model the efforts applied by the atmosphere to the object.
They compute the aerodynamic effort and heat flux and
the tank explosion risk. The fragmentation step yields the
fragments of the initial object along with their shape, po-
sition and velocity. Then, the fragments are propagated
down to the surface of the Earth during the third step
called survivability and propagation. The code identifies
the fragments that will hit the ground ( not be completely
ablated ) and for those fragments hitting the surface, the
code computes their energy and impact regions. Finally,
for the fourth step the impact regions are compared with
human repartition maps to compute the human risk. Each
step requires specific set of solvers. As a result the num-
ber of inputs quantities and hence the number of uncertain
variables is extremely high (order of 100) and therefore

the straightforward application of classical UQ method
can be challenging. In this work the Monte Carlo ap-
proach is chosen in order to bypass the curse of dimen-
sionality. In this work however, only part of the ASL
system of solver is used. In particular a trajectory inte-
grator is coupled with an atmosphere model and an abla-
tion solver in order to estimate the impact zone or burn
up altitude of a reentering object.

3. METHODOLOGY

In this section the hypotheses used in the uncertainty
modelling are presented along with the uncertainty quan-
tification methods used. In particular, the Monte Carlo
approach used to quantify the uncertainty and compute
the sensitivity indices are quickly reviewed. Finally, the
concepts used to derive the low probability quantiles such
as importance sampling are presented.

3.1. Presentation of the uncertainties

In this work, two groups of uncertainties have been iden-
tified. The first main source of uncertainty chosen in this
work is the atmosphere model. The model routinely used
at ASL is US62. This simple model holds under restric-
tive hypotheses [SDW62]. In order to increase the ro-
bustness of our predictions, the temperature and the den-
sity are modelled as uniform random variables. Since the
atmosphere temperature and density depend on the alti-
tude, the temperature and density are perturbed at 21 alti-
tudes independently. The quantities then are interpolated
along the trajectory. The range of density variation is set
at 40 %. The range of temperature variation is set at 4 K.
Note that the atmosphere uncertainty are modelled with
44 variables.
The second source of uncertainties comes from the un-
certain material behaviour when the object flies at super-
sonic speed through layers of atmosphere. In particular,
the evaluation of the heat flux requires the material emis-
sivity, conductivity that depend on the degree of oxidation
of the material surface for instance. Besides, in order to
study the survivability of the object, the melting temper-
ature has to be estimated along with the enthalpy of fu-
sion and the heat capacity. Except for the material emis-
sivity, experimental campaigns have been carried out at
Airbus Safran Launchers in order to estimate those mate-
rial properties. As any experimental campaign, the uncer-
tainties unavoidably corrupt the results. In this work, the
experimental results are directly used along with their as-
sociated uncertainties. The emissivity has not been mea-
sured and actually depends on the history of the material
and more specifically the oxidation process that occurs
during a reentry. For this reason, the emissivity is mod-
elled as a uniform random variable while the other quan-
tities are modelled as Gaussian random variables. Since
the material heat capacity depends on the temperature,
the heat capacity is modelled as a vector of a dozen of in-
dependent random variable that are then interpolated by



the solver. Table 3.1 summarize the input uncertainties.
Note that, depending on the test case the uncertainty in-
put dimensionality ranges between 55 and 60 variables.
this high input dimensionality rules out many classical
UQ methods and justifies the use of a Monte Carlo based
approach.

Table 1. uncertainty distributions

Quantity Distribution
Free stream temperature Uniform vector
Free stream density Uniform vector
emissivity Uniform
fusion temperature Gaussian
fusion enthalpy Gaussian
material density Gaussian
heat capacity Gaussian vector

3.2. Monte Carlo approach for uncertainty quantifi-
cation and sensivity analysis

In this section, the objective is to estimate the out-
put distribution Y of a solver given its uncertain inputs
(X1, · · · , Xn). The solver is modelled as a function f
such as

f(X1, · · · , Xn) = Y (1)

In the Monte Carlo approach, the moments of Y can be
estimated as :

E[Y k] =
∑
j

f(x1,j , · · · , xn,j) (2)

Where x1,j , · · · , Xn,j are sampled from the input distri-
bution. Furthermore, the probabilities can be estimated
as :

P (Y ∈ A) =
∑
j

1f(x1,j ,··· ,xn,j)∈A (3)

In the next section, the survivability probabilities are
estimated in this fashion. Note that the precision of
the Monte Carlo estimates depends on the number of
samples and are relatively independent on the dimen-
sionality. This is a major advantage in our case since the
number of uncertainties is extremely high. The samples
generated by Monte Carlo can be used to estimate the
probability density function of Y using a kernel density
estimate.

Sensitivity analysis aims at identifying major sources of
uncertainty and to quantify their influence on the quantity
of interest (QOI). In particular the Sobol indices are clas-
sically used in global sensitivity analysis (see [SRA+08]
for complete reference). They are defined as :

Si =
E[V ar(Y |Xi)]

V ar(Y )
(4)

Where Xi a specific input and Y the output distribution.
The sobol indices quantify the expected diminution in un-
certainty if one variable were perfectly known. We use
the estimators as described in [Sal02].

3.3. Low probability quantile estimation

In this section, we show how the problem of estimating
the ground impact zone can be reduced to a quantile es-
timation problem. The simplifying assumptions are pre-
sented in the next paragraph. In the rest of the section
an original method for deriving quantiles at low proba-
bility levels is presented. The approach heavily relies on
the Importance Sampling (IS) technique which is quickly
reviewed before the presentation of the full algorithm.

Mathematical formulation of the problem .

Note that the impact zone at a given probability is
not unique. Further more, it depends on the initial
parametrization. Several choices of parametrization are
available, the most classic ones are the rectangle or el-
lipsis. Note however that since the later shapes are
parametrized by three scalars one needs to enforce an-
other condition in addition to the fixed probability. One
can for instance enforce the zone to be as small as possi-
ble in order to add an additional constraint. In our case,
since the impact point dispersion on the longitude axis
is negligible with respect to the latitude axis, the impact
zone is estimated only on the longitude axis. The impact
zone is therefore represented with a segment centered in c
and of amplitude d. The problem is further simplified by
arbitrarily taking c as the mean impact point longitude.
Mathematically the problem becomes:

inf
c,d
P (X ∈ [c− d

2
; c+

d

2
]) ≤ p (5)

Where X is the object impact point latitude and p a given
probability. If one has an efficient method to estimate
numerically P (X ∈ [c − d

2 ; c +
d
2 ]), then any optimiza-

tion technique can give a solution of 5 . In cases where
p is low ( in our case we choose 10−6) a Monte Carlo
procedure su as presented in the previous section, can be
extremely inefficient. For a classical Monte Carlo proba-
bility estimator p̂ we have:

V ar(p̂) =
(1− p)p
N

. (6)

Therefore the relative error scales as:

ρ =

√
1− p
N × p

'
√

1

N × p
� 1 if p� 1 (7)

The only way to have a good estimate of p is to have
N � 1

p = 106. This is in practice unreachable, es-
pecially in our case where P (X ∈ [c − d

2 ; c +
d
2 ]) is

estimated several times for different values of d. The



main idea to cut down the computational cost is to use
importance sampling. Importance sampling allows the
recycling of samples and accelerates the calculation of
low probabilities. In the following paragraph, impor-
tant results from importance sampling are presented. A
more thorough description of importance sampling can
be found in [MP10]. Note however that the level of prob-
ability sought in this work are much lower that the one
derived in [MP10].

Importance sampling As mentioned previously, in the
case of low probabilities, the Monte Carlo method is not
efficient. The main idea behind importance sampling is to
sample from on auxiliary distribution in order to improve
the estimation. Mathematically, we can write:

P (X ∈ [c− d

2
; c+

d

2
]) =

∫
1x∈[c− d

2 ;c+
d
2 ]
pX(x)dx

=

∫
1x∈[c− d

2 ;c+
d
2 ]

pX(x)

pY (x)
pY (x)dx

(8)

The last integral can be estimated numerically as :∫
1x∈[c− d

2 ;c+
d
2 ]

pX(x)

pY (x)
pY (x)dx

=
∑
i

1X′
i∈[c−

d
2 ;c+

d
2 ]

pX(X ′i)

pY (X ′i)
(9)

Where X ′i is sampled according to Y , the auxiliary dis-
tribution. The choice of auxiliary distribution is crucial
as the optimal one leads to an estimator variance that is
asymptotically 0. In this work, the auxiliary distribution
is chosen as a mixture of Gaussians with most of their
density weight by the outer edge of the impact zone.

Probability integral transform While studying low
probability probability it is classical to perform a proba-
bility integral transform, to reduce the inputs probability
distributions as independent Gaussian random variables.
The formulae are given here for the record:

Xphys = FXphys
(φ−1(U)) (10)

And conversely:

U = φ(F−1Xphys
(Xphys)) (11)

WhereU is a standard normal random variable andXphys

is the uncertain input variable and F (x) its Cumulative
Density Function (CDF). Note that F (x) = P (X < x)

Presentation of the algorithm The algorithm pre-
sented aims at solving Eq. (1). It is a three step algo-
rithm:

1. Initialization A first run of classical MC is neces-
sary get to a rough estimation of the impact zone. In
practice the c is given by the median of the sample
and a first estimation of d is given by the length of
the output distribution support

2. Determination of the auxiliary distribution: the size
of the impact zone is roughly estimated through
successive importance sampling. The initial auxil-
iary distribution is chosen as N(0, γI) in normal-
ized probability space with γ = 1.2. As d changes
in the optimization process, the auxiliary has to be
changed. An error criterion based on the variance
of the estimator is used to determine when a new
auxiliary distribution has to be computed. If the
current auxiliary does not allow to accurately esti-
mate P (X ∈ [c − d

2 ; c +
d
2 ]) for the current value

of d it has to be changed. The subroutine allow-
ing to compute a new auxiliary distribution is de-
tailed in the next paragraph . Once a good auxiliary
distribution has been reached ie. a distribution that
can precisely estimate P (X ∈ [c − d

2 ; c +
d
2 ]) with

P (X ∈ [c− d
2 ; c+

d
2 ]) ' p.

3. Finally a precise optimization algorithm such as
Newton can be used to get a precise estimate of the
impact zone using the same auxiliary distribution.
At this point the same auxiliary distribution can be
used.

Note that the expensive part of the algorithm is the evalu-
ation of the solver evaluation when a new auxiliary distri-
bution is computed an a sample is generated. Therefore,
the computational cost is directly driven by the number of
auxiliary distributions and the number of sample that are
necessary to obtain convergence. Therefore the choice
of the next one is crucial. In practice, we found that three
auxiliary distributions were necessary before reaching the
desired level of precision for a given probability with a
sample size of 100000 samples at each time.

Generation of a new auxiliary distribution The dis-
tributions here are estimated in the standard probability
space. For a given outdated auxiliary distribution sample
(Xi), and a target impact zone parametrized by d.

1. the samples in (Xi) that land outside the impact
zone

2. use those sample to fit a Gaussian mixture and use it
as the new auxiliary distribution

Note that the number of components in the Gaussian
mixture is crucial and should be taken greater than the
expected number of important regions in the standard
probability space in order not to eliminate regions of the
space. The intuition behind this algorithm is that we want
to increase the number of impact points that go beyond
the impact zone since the probability of being outside the
impact zone sought.



4. PRELIMINARY RESULTS

In this section a simple test case is chosen with one spe-
cific code developed by Airbus Safran Launchers. To
simulate the impact point, a three degree of freedom tra-
jectory solver coupled with a survivability solver is used
to predict the reentry of a 0.8 meter diameter sphere
whose shell represents 10 % of the total volume, the rest
being empty. The sphere is launched at the speed of 6800
m/s at 120 km altitude. Four specific scenarii are con-
sidered: two initial slopes (-1 and -5 degrees) and ma-
terial (Al2219 and TI6AL4V) are used. Additionally, a
fifth scenario for a titanium sphere reentering at the slope
of -10 degrees is considered for the computation of low
probability quantiles. Those test case are seen as con-
trolled reentry events where the initial conditions are de-
sign variables and not uncertainties. Depending on the
case under study the quantities of interest are the burn up
altitude or the ground impact point.

Table 2. uncertainty distributions

Test case id Material initial slope [degree]
1 AL2219 -1
2 AL2219 -5
3 TI6AL4V -1
4 TI6AL4V -5

4.1. Aluminium case (1 and 2)

In this case, the sphere is made of aluminium and
weights 27 kg. The results presented here are obtained
with 200000 Monte Carlo samples. In both cases, the
object never reaches the ground but completely burns
during the flight. In this context the quantity of interest
is the altitude at which the object is completely burnt
(burn through altitude). The statistics of this quantity are
presented in table 4.1 for cases 1 and 2. Unsurprisingly,
the burn up altitude obtained with the steepest slope is
the lowest. Note however that in this case, the predictions
are extremely precise with a variation coefficient of only
0.06 %. This can be explained by the fact that the
trajectories are relatively quick (103 seconds for case
1 and 76 seconds for case 2) with a very simple object
geometry. The pdf can also be derived from the MC
samples using a kernel density estimation. The pdf of the
burn up altitude is represented in Fig. 1 for case 1. Very
similar results are obtained for case 2 and hence are not
shown for brevity. The distribution is rather symmetrical
but with heavier tails than a Gaussian random variable.

Table 3. burn up altitudes for cases 1 and 2

Altitude in meters Case 1 Case 2
Mean 71446.0 68012.83
Standard deviation 42.75 42.58
Variation coefficient 0.06 % 0.06 %
95 % confidence interval [71326.7;71562.1] [67894.5;68132.2]

Figure 1. Break-through altitude for case 1

4.2. Identification of the main source of uncertain-
ties

To complete the analysis, a sensitivity analysis is carried
out using the Sobol indices (see [SRA+08] for complete
reference). In this work, to ease the analysis the atmo-
sphere uncertainty are represented by a single global in-
dex. Similarly the heat capacity vector is represented by
only one sensitivity index. The sensitivity analysis results
are presented in table 4.2. Note that the uncertainty in
the burn up altitude comes at 70 % from the material un-
certainty whereas the uncertainty in the atmosphere state
accounts for 30 % of the uncertainties. Two uncertainty
generation mechanisms can be identified. The first one,
due to the atmosphere changing state, gradually perturbs
the trajectory. Hence, the longer the flight, the more in-
fluence the atmosphere variations gain on the QOI un-
certainty. On the other hand, the material characteristics
directly influence the burn-though time and the aerody-
namic of the object as the object changes in shape as it
gets ablated. Those changes occur at the end of the tra-
jectory, on a much shorter time scale.

4.3. Titanium case

In these cases, the sphere is made of titanium and weights
about 48 kg. Titanium has a greater heat capacity, fu-
sion temperature and fusion enthalpy that make the object
more likely to hit the ground. As for cases 1 and 2, the



Table 4. Sobol indices for the burn up altitude

Quantity Variance contribution
Free stream conditions 32 %
emissivity 7 %
fusion temperature 29 %
fusion enthalpy 2 %
material density 17 %
heat capacity 11 %

results presented in this section are obtained with 200000
samples. Contrary to the previous cases, the object has
a significant probability of hitting the ground. For each
case one can identify two very distinct scenarii. Either the
object burns out completely or it hits the ground, intact or
only partially burnt. In Fig. 2, the pdf of the final altitude
altitude is plotted. If the altitude is equal to zero, then the
object hit the ground, otherwise it is the burn up altitude.
Note that in both cases the region where the object burns
completely lies above 40 km and that no object burns be-
tween 0 and 40km. Moreover the two groups of object
also present very different final speeds. The burnt objects
disappear at supersonic speeds around 3577 m/s whereas
the surviving ones land at much lower speed around 50
m/s. Those virtual objects correspond to the highest heat
capacities and enthalpy of fusion. They are able to store
and eventually dissipate more heat. Unsurprisingly, the
number of objects hitting the ground in the steepest slope
case is higher than in the other one. More quantitatively,
in case 4, the probability of the object hitting the ground
is 0.207 (within 0.3 % error) and in case 3, the probabil-
ity falls to 0.0625 (within 0.6 % error). In the case where
the object hit the ground Fig 3 shows the distribution of
the impacts. The distribution of the impact is extremely
non symmetric and strongly correlated to the final mass
as show in Fig 4. Most of the impacts at a latitude of
7 degrees and correspond to intact objects that have not
lost any mass. A much lower amount of objects hit the
ground at lower latitude and they correspond to partially
ablated, lighter objects. In the next section, a method for
estimating reliable impact zone is presented.

4.4. Impact zone estimation

Estimating a reliable impact zone is a complex task.
In the previous section we were able to plot the trace
of 200000 possible impacts. This trace however does
not provide a reliable impact zone. We call a reliable
impact zone for a given probability p a zone where the
probability of an impact occurring outside that zone has
probability p. In practice p can be extremely small, on
the order of 10−6. Estimating low probabilities can be
extremely challenging with a straight forward Monte
Carlo method, even with a metamodel [MP10] as the
number of samples that fall out of the impact zone
may be extremely low. In this work we propose an
iterative approach using importance sampling in order to

Figure 2. Break-through altitude for case 3 and 4

Figure 3. Impact zone

estimate a reliable impact zone. In order to demonstrate
the potential of the method, a reliable impact zone is
computed in the case of a titanium sphere reentering at an
angle of -10 degrees. The problem is simplified respect
to the modelling of the uncertainties. In particular,
the dimensionality of the problem is reduced to seven
variables. The atmosphere uncertainties are in this
section parametrized by two random variables. Similarly,
the heat capacity uncertainties are modelled with only
one variable. This is equivalent to considering that the
atmosphere uncertainties are independent of the altitude
and that the heat capacity uncertainties are independent
of the temperature.

In this paragraph we use the algorithm developed in
the first section. The target probability is p = 10−6.
In Fig. 5 the distribution of the impact point longitude



Figure 4. Joint plot final latitude and final mass in kg

is represented with the confidence intervals at 10−6.
Note that none of the 200000 samples used to generate
the pdf fell outside the zone underlying the limitation
of a standard Monte Carlo approach when computing
extreme quantiles and reliable impact zones.

Error estimates of the reliable impact zone can be ob-
tained from the Monte Carlo estimation of the probability.
Noting vp, the variance of the estimator p̂ of the probabil-
ity p, then we have that the variance in the radius of the
impact zone is:

vr '
vp

(dpdr )
2

(12)

Thus, in our case with an error of a few percents in the
probability estimation, one get a precision of 0.05 % in
the radius of the impact interval

4.5. Conclusion

In this work, four space reentry scenarii were presented
using simplified ablation solvers coupled with trajectory
solvers. For each case, an uncertainty analysis was car-
ried out. In particular, the effect of the atmosphere vari-
ations and our lack of understanding of the material be-
haviour have been investigated. In each case, the burn up
altitude along with the impact point distribution is esti-
mated. As expected the aluminium cases never reach the
ground but are burnt completely. Conversely, the scenarii
using titanium showed more complex behaviours. Two
cases could be considered. First the object could be com-
pletely ablated and burnt at an altitude above 40km or it

Figure 5. Distribution of the latitude with the reliable
impact zone estimation with the impact interval boundary

would reach the ground with a non negligible probability.
Note that no object would burn at an altitude below 40km.
For the case 1, a sensitivity analysis showed that most of
the uncertainty in the burn up altitude stemmed from the
uncertain material characteristic. Finally, in a Titanium
case, where the ground impact probability is found to be
significant, a reliable impact zone is computed with an
original algorithm based on importance sampling.

ACKNOWLEDGEMENTS

The authors acknowledge the financial support from Air-
bus Safran Launchers and the Region Aquitaine for this
work. The authors would like to thank Segolene Bat-
tandier, Charles Bertorello and Francois Lemaire for the
fruitful conversations on space object flight. The authors
are also thankful to Celia Finzi, Leila Rhidane and Gre-
gory Pinaud for their input on the material uncertainty
characterization.

REFERENCES

BHW11. Benjamin Bettis, Serhat Hosder, and Tyler
Winter. Efficient uncertainty quantification
in multidisciplinary analysis of a reusable
launch vehicle. In 17th AIAA International
Space Planes and Hypersonic Systems and
Technologies Conference, page 2393, 2011.

DOSB+05. J Dobarco-Otero, RN Smith, KJ Bledsoe,
RM Delaune, WC Rochelle, and NL John-
son. The object reentry survival analysis
tool (orsat)-version 6.0 and its application to
spacecraft entry. In Proceedings of the 56th
Congress of the International Astronautical
Federation, the International Academy of
Astronautics, and International Institute of



Space Law, IAC-05-B6, volume 3, pages 17–
21, 2005.

FL05. B Fritsche and S Lemmens. Case studies for
uncertainty quantification of a high-fideliety
spacecraft oriented break-up tool. In 8th Eu-
ropean Symposium on Aerothermodynamics
for Space Vehicles Proceedings, 2005.

HB12. Serhat Hosder and Benjamin Bettis. Un-
certainty and sensitivity analysis for reentry
flows with inherent and model-form uncer-
tainties. Journal of Spacecraft and Rockets,
49(2):193–206, 2012.

KFLK05. G. Koppenwallner, B. Fritsche, T. Lips, and
H. Klinkrad. Scarab -a Multi-Disciplinary
Code for Destruction Analysis of Space-
Craft during Re-Entry. In D. Danesy, editor,
Fifth European Symposium on Aerothermo-
dynamics for Space Vehicles, volume 563 of
ESA Special Publication, page 281, Febru-
ary 2005.

LAA+10. B. Lazare, M. H. Arnal, C. Aussilhou,
A. Blazquez, and F. Chemama. Electra
launch and re-entry safety analysis tool. In
Making Safety Matter, volume 680 of ESA
Special Publication, page 46, September
2010.

LMK10. O. P. Le Maı̂tre and O. M. Knio. Spec-
tral methods for uncertainty quantification.
With Applications to Computational Fluid
Dynamics. Springer, 2010.

MP10. Jrme Morio and Rudy Pastel. Sampling
technique for launcher impact safety zone
estimation. Acta Astronautica, 66(56):736
– 741, 2010.

OS12. P. Omaly and M. Spel. DEBRISK, a Tool for
Re-Entry Risk Analysis. In A Safer Space
for Safer World, volume 699 of ESA Special
Publication, page 70, January 2012.

RMJ04. WC Rochelle, JJ Marichalar, and NL John-
son. Analysis of reentry survivability of uars
spacecraft. Advances in Space Research,
34(5):1049–1054, 2004.

Sal02. Andrea Saltelli. Making best use of
model evaluations to compute sensitivity in-
dices. Computer Physics Communications,
145(2):280 – 297, 2002.

SDW62. Norman Sissenwine, Maurice Dubin, and
Harry Wexler. The us standard atmosphere,
1962. Journal of Geophysical Research,
67(9):3627–3630, 1962.

SRA+08. Andrea Saltelli, Marco Ratto, Terry Andres,
Francesca Campolongo, Jessica Cariboni,
Debora Gatelli, Michaela Saisana, and Ste-
fano Tarantola. Global sensitivity analysis:
the primer. John Wiley & Sons, 2008.

TKV+15. C Tardioli, M Kubicek, M Vasile, E Minisci,
and A Ricciardi. Noise Quantification in

Optical Observations of Resident Space Ob-
jects for Probability of Detection and Likeli-
hood. In Proc. AIAA/AAS Astrodynamic Spe-
cialist Conference, Vail, Colorado, 2015.


