FORTE: ISON ROBOTIC TELESCOPE CONTROL SOFTWARE

V. Kouprianov" and I. Molotov®

D Central (Pulkovo) Observatory of Russian Academy of Sciences, 196140, 65/1 Pulkovskoye Ave., Saint Petersburg,
Russia, Email: v.kQbk.ru
D University of North Carolina at Chapel Hill, Department of Physics and Astronomy, Phillips Hall, CB #3255,
120 E. Cameron Ave., Chapel Hill, NC 27599-3255, USA, Email: vkoupr@email.unc.edu
D Keldysh Institute for Applied Mathematics, 125047, 4 Miusskaya Sq., Moscow, Russia, Email: im62@mail.ru

ABSTRACT

Space surveillance has a number of important features
that make it very different from most of the classical
fields of observational astronomy. Among those, we
can mention a demand for extremely accurate timing,
complex tracking modes, dynamic scheduling, high data
acquisition rate, and often unusual telescope setup that
may include multiple optical channels working simulta-
neously. One needs to take all this into account to ensure
an adequate telescope control system (TCS) software de-
sign.

Since 2011, the International Scientific Optical Network
(ISON) project started a transition to the new standard
TCS software called FORTE (Facility for Operating
Robotic TElescopes) that is now in the course of ac-
tive development and testing and that should gradually
replace the obsolete ISON software throughout the whole
network to overcome the numerous design flaws and lim-
itations of the latter.

This new software has Python-based distributed client-
server architecture that makes it extremely flexible an
scalable to a wide range of sensor apertures and con-
figurations. A tight integration with Apex package for
astronomical image analysis helps to automate the com-
plex calibration and maintenance tasks and provides ac-
cess to stellar catalogs and orbital data. A customizable
high-level object-oriented modular approach allows one
to easily configure the package for use in some very pecu-
liar sensor configurations, like a new 6-channel 3-mount
barrier sensor, in a completely transparent way.

We describe the basic design principles of FORTE and
show in detail how it meets these and other requirements
of ground-based optical space surveillance.

Keywords: optical measurements; sensors; telescope
control software.

1. INTRODUCTION

The International Scientific Optical Network (ISON)
project [4], established in 2000’s as a joint effort of pro-
fessional and amateur astronomers and engineers, is an
independent coordinated worldwide network of optical
sensors, mostly of small apertures but fast response and
large fields of view (FOV). Currently it is operated and
managed by Keldysh Institute for Applied Mathematics
(KIAM) in Moscow and provides most of Russia’s mea-
surements of space objects in high orbits. These data
form the basis of the KIAM catalog of Earth-orbiting ob-
jects. Successful every-day operation of ISON, among
other factors, strongly depends on the software used to
control the sensors and acquire these data.

As it was already noted in [3], the field of space surveil-
lance and tracking (SST) imposes certain very specific
requirements on the capabilities of the telescope control
system (TCS). They include:

e Accurate timing, down to the fractions of millisec-
ond for low Earth orbits.

e Tight scheduling, including the ability to acquire im-
ages within the specified time frame.

e Fast and variable-rate real-time target tracking.

e Accommodating complex sensor layouts, like mul-
tiple optical channels attached to the same mount or
multiple mounts acting synchronously.

e Integration with the image processing pipeline.

e Networked architecture for the real-time communi-
cation with the data analysis center and with other
nodes of the sensor network.

Most of these requirements come from the nature of
Earth-orbiting objects — in particular, their fast appar-
ent motion — and from cost effectiveness and sensor ef-
ficiency considerations. Among other quite general TCS
requirements that are not specific to SST but still must be

Proc. 7th European Conference on Space Debris, Darmstadt, Germany, 18-21 April 2017, published by the ESA Space Debris Office
Ed. T. Flohrer & F. Schmitz, (http://spacedebris2017.sdo.esoc.esa.int, June 2017)

met by any modern general-purpose TCS, we can men-
tion the following:

e Distributed client-server architecture.

e Modular design that separates the hardware- and
client-independent core from both the low-level
hardware access components (“backend”) and the
high-level observatory control code (“frontend”).

e Extensive scripting and automation capabilities.

e Detailed telemetry and logging.

Currently there are three major publicly avail-
able platforms aimed at providing hardware-

independent observatory control and automa-
tion: RTS2 (http://www.rts2.orqg), INDI
(http://indilib.orq), and ASCOM
(http://ascom-standards.org/). They

are open-source, support a vast majority of the advanced
amateur grade astronomical equipment, and are widely
used in the “classical” astronomical applications involv-
ing deep-sky and slow-moving Solar system objects.
Unfortunately, an attempt to make them compliant with
the SST TCS specifications listed above would require
a substantial modification of their code and even their
architecture.

That’s why we have made a decision in 2011 to create
a new all-purpose TCS platform from scratch that would
be flexible enough to meet all current and future ISON
requirements and serve as the new standard software
suite replacing the previous set of TCS software compo-
nents. Since then, the new platform FORTE (Facility for
Operating Robotic TElescopes) has reached its maturity
and became the software of choice to drive all new ISON
Sensors.

2. DESIGN PRINCIPLES OF FORTE TCS

2.1. Programming Model

The first important step in designing the basic princi-
ples of a new TCS is to choose a proper programming
technology. Traditionally, hardware control applications
are developed in a low-level programming language like
C/C++ to ensure the maximum performance when talk-
ing to the hardware. This, however, leads to a num-
ber of restrictions coming from the amount of effort re-
quired to implement or re-implement many features of
a real TCS, including space-time transformations, inter-
process communication (IPC), backend and frontend ap-
plication programming interfaces (APIs), and many oth-
ers. Although separate C/C++ libraries exist for most of
these tasks, their interoperability is often poor, increas-
ing the effort needed to put it all together. The resulting

amount of code for a full-scale TCS then becomes enor-
mous, making it hard to maintain and reducing its flex-
ibility and scalability. Higher-level languages like Java
and C# can partially help, but their static nature still lim-
its the runtime flexibility of the system, leading to a need
to separately handle all possible cases and types of the
input data, which again inflates the size of the codebase.
We also do not consider proprietary solutions like Lab-
View that are sometimes used to build telescope automa-
tion systems. As a result, we end up in a selection of
several modern high-level dynamic (scripting) languages.
Among them, Python (http://www.python.org)
is the most popular choice due to its extreme flexibility
and a vast amount of existing libraries, especially for sci-
entific computing.

At first glance, a dynamic interpreted scripting language
like Python hardly looks appropriate for the real-time
tasks like telescope control due to its relatively low per-
formance. Its scalability is also limited by the global
interpreter lock (GIL) that does not allow to run multi-
ple tasks in parallel within a single process. However,
a closer look reveals that the low performance is mostly
connected with using loops (especially nested) of Python
code, which is critical for computational purposes but
rarely occurs in the high-level hardware control logic.
Lower-level code, in turn, that involves such loops and
requires low latency still can be implemented in C/C++
and easily connected to Python code via the Python/C
API and extension modules. Such code is mostly as-
sociated with certain hardware communications, and its
amount is in fact very limited. Most of the other loops
can be avoided at all by converting them to asynchronous
requests.

The GIL limitation mentioned above is also eliminated
by using multiple processes. Indeed, using a separate
process for each device is a direct consequence of the re-
quirement to make a distributed TCS. In this paradigm,
each hardware device is potentially attached to a separate
computer, so its software counterpart runs on a separate
machine and is connected to other devices via [PC. Hence
it is not only more efficient but merely required to keep
hardware device control modules in separate processes.
All in all, the impact of the low performance of Python
loops and GIL on the TCS efficiency is much lower than
usually anticipated. Writing most of the code in a higher-
level language not only saves coding time; this also helps
to implement such complex tasks like automatic align-
ment and calibration and to make the system very config-
urable. A Python-based TCS comes with scripting capa-
bility built into its core, unlike many other systems that
add some kind of scripting on top of the existing infras-
tructure. Finally, such TCS would also shares the com-
mon platform with the standard ISON image analysis in-
frastructure build around the Apex image analysis sys-
tem [, [2], which makes integration with the image pro-
cessing pipeline very straightforward and natural.

http://www.rts2.org
http://indilib.org
http://ascom-standards.org/
http://www.python.org

2.2. Data Model

One more important question is the data model that would
be flexible enough to accommodate all possible sensor
layouts required by the real ISON demands. To achieve
this, we suggest a hierarchy of abstract (logical) devices.
Some of them are the purely software modules that serve
as containers for other devices and coordinate their joint
work. Others correspond to just a single real hardware
component like a mount controller or a charge-coupled
device (CCD) camera and provide the necessary abstrac-
tion layer that separates high-level functions that the de-
vice is expected to perform during observations from
their implementation in the particular hardware device
model, which is one of the important requirements men-
tioned in Section[Il This hierarchy (Figure[I)) consists of
the components listed below.

e Observatory is a top-level device that encapsulates
the sensor as a whole. It is responsible for the in-
teraction with FORTE clients (frontends) and dis-
patching their commands to the corresponding com-
ponents of the sensor. An observatory may include
a dome controller, a timing board, a weather station,
and one or more telescopes.

e Dome directly interacts with the underlying hard-
ware controller operating the dome or some other
type of telescope enclosure, like a sliding roof. A
rotating dome has the capability to synchronize with
telescope motionl.

o Timing board provides the accurate UTC time to
other TCS components. It is also responsible for
triggering CCD exposures. Similarly to the dome,
the timing board may be associated either with all
telescopes or with each telescope individually. Sec-
tion 3.1] gives more details on how this module is
used to ensure the accurate exposure timestamping
and scheduling.

e Telescope encapsulates a separate mount with all
hardware attached to it. It always includes a mount
and one or more imagers and may also have an as-
sociated dome and/or timing board. Telescope is a
pure software device which main purpose is to coor-
dinate the action of all its child components to per-
form high-level operations like observing the target
or automatic calibration.

e Mount controller is responsible for pointing and
tracking, according to the program of observations
and independently from the particular hardware
model details. Tracking rates can be updated con-
stantly in real time or between exposures, taking into
account the full sky <+ image plane transformation,
including telescope misalignment and refraction. In
addition to the simple (fixed or moving linearly) tar-
gets, FORTE supports any source of coordinates and

'If a single dome is associated with the observatory that includes
multiple telescopes, it follows the one which was most recently re-
quested to synchronize with.

Observatory Telescope

@ount controller] /CCD camera]

Timing board Filter | | Filter |

wheel) (wheel
Dome controller|

Alignment model

[
[Telescope] { Imager]

Image pipeline
e) e

Imager

—

[Timing board]

Dome controller|
Weather station

Telescope] [Imager]

Figure 1. General sensor layout model

velocities known to Apex, including orbital object
catalogs and ephemerides given in the tabular form.

e [mager is a container device that corresponds to a
separate optical channel of the telescope and in-
cludes all hardware responsible for taking images. It
consists of strictly one CCD camera and, optionally,
one or more color filter wheels (CFWs) and a fo-
cuser. Its main purpose is to coordinate their simul-
taneous action, e. g. make sure that no CFW or fo-
cuser motion occurs during exposure, and to provide
feedback from the imaging device during automatic
focusing. An imager has also the associated image
pipeline that defines the path followed by images
after their acquisition by the CCD camera, like in-
strumental and astrometric calibration, storage, and
display (see Section3.2). Finally, a pointing model
is associated with each imager that accounts for the
possible misalignment of optics with respect to the
mount and of the mount with respect to the local
horizon and meridian{.

e CCD camera module controls the given CCD or
other solid-state imaging technology device and is
responsible for acquiring images with the given pa-
rameters, including the hardware triggering support
(see Section[3.1).

o Filter wheel module provides the basic functionality
of setting the required filter or combination of filters
in the case of multiple CFWs.

e Focuser module controls the optional focusing de-
vice on request from a frontend or from the auto-
matic focusing procedure. FORTE will also adjust
the focus according to the thickness of the current
optical filter.

The model described above accommodates all possible
realistic sensor layouts used and planned by ISON and,
probably, by most of the other SST projects. Examples
of such complex layout are the dedicated ROSCOSMOS

2A separate pointing model is needed for each imager because of
their possible misalignment with respect to each other, like in the com-
pound field of view systems where individual optical channels are look-
ing in the slightly different directions then combined into a larger field
of view, which is aimed at increasing the resulting sensor performance.

sensor EOP-1 (Figure P) and the new 6-channel survey
sensor consisting of three separate mounts bearing two
wide-field optical systems, each one equipped with a fast
CCD camera and a focuser, all mounted in the common
enclosure with a sliding roof. In particular, FORTE al-
lows one to operate the latter system both independently,
as three separate two-channel telescopes, and simultane-
ously, as a single 6-channel telescope taking synchronous
exposures that can be combined into the common very
large field of view. The actual physical and logical layout
is described in a text-based configuration file, whereby
each device (both pure software and controlling the real
hardware) gets its own unique identifier (ID) used to dis-
tinguish it from other devices of the same type. A frag-
ment of this configuration file describing the 6-channel
sensor layout is shown in Figure 3]

In this layout, each physical device has a unique ID that
consists of its own unique ID within its “parent” device,
accompanied by the unique ID of the parent device it-
self; e. g. ebus_ccd:2@3 identifies the CCD camera
attached to the second optical channel (imager:2@3)
of the third telescope (telescope: 3). In the case of a
simple layout with just a single device of the given type,
unique IDs are not needed and can be omitted. FORTE
core analyzes this configuration upon initialization and
builds the hierarchical sensor model dynamically.

FORTE observatory layout model is implemented by fol-
lowing the plugin paradigm and is based on the object-
oriented data model. This means that each device type
(e. g. dome, imager, or CCD camera) corresponds to a
single abstract Python class that provides the interface for
other devices to access its parameters and invoke a set of
predefined operations (“methods”). To be able to control
a certain hardware device model, one needs to subclass
the corresponding base Python class and implement its
abstract methods in the way specific to the given hard-
ware device. Each class also has attributes that refer to
its parent and child devices. This allows each device to
access any other device in the hierarchy by traversing the
device tree.

FORTE contains also a set of hardware APIs. Usually,
they are wrappers around the original software develop-
ment kit (SDK) supplied by the hardware manufacturer,
or around its direct Python binding. These APIs provide a
higher-level and more pythonic way of accessing the par-
ticular hardware than the original SDKs that are usually
written in C/C++.

2.3. Distributed Framework

As it was noted above, one of the key requirements for
a TCS is the ability to run it in a distributed computing
environment. FORTE distributed core is based on a spe-
cially designed remote procedure call (RPC) mechanism
that provides transparent access to all features of a de-
vice object by other devices running in the different pro-
cesses and possibly on the different machines within the

TCS network, as if these features were accessed locally.
This allows one to spread hardware components across
the network in a fully arbitrary and configurable manner.
Each device is flagged as either local or remote in the ob-
servatory layout configuration (Figure3)); each telescope
control workstation runs a copy of FORTE with its own
local configuration. Each device is marked local on one
and only one workstation which it is physically attached
to.

A special DSR (driver server registry) service is used to
locate devices on the network by their unique symbolic
IDs. Upon initialization, each local device registers itself
in DSR, so its actual network location — host address and
TCP/IP (transmission control protocol/Internet protocol)
port, assigned dynamically — is made known to other de-
vices. The latter use a proxy object that acts exactly like
a Python object that represents the device in their local
address space, but in fact redirects all requests to the ac-
tual hardware device on the network. For remote devices
(i. e. hosted on a workstation different from the current),
no real driver process is created, and proxy objects are
used in the same way to access the driver remotely.

Devices on the network communicate with each other us-
ing the specially designed transport protocol over TCP/IP.
In addition to the ability to access the remote driver’s data
attributes and synchronously call its methods, FORTE
RPC provides a mechanism for asynchronous method
calls. This is called a task. When other device initiates
an asynchronous call on the target device, a new thread
of execution is created within the target device’s process
that runs the given method, and the first device receives
a unique ID of the task just created. The caller may
then monitor the status of execution, wait for completion
and get the result of running the method, or request the
task to terminate. In the latter case, if the method being
called initiates other tasks itself, they are terminated too.
This mechanism ensures the fastest response possible in
case of emergency or when a high-priority observation re-
quest comes from the client. It also guarantees the correct
cleanup of all child tasks after a premature termination.

2.4. Frontend (Client) API

FORTE is designed according to the client-server model.
The server side on each TCS workstation hosts the dis-
tributed core and a set of driver processes for devices
that are locally attached to this workstation (as well as
the pure software devices that are declared local on this
workstation). The top-level device in the sensor layout hi-
erarchy, the Observatory, serves as a gateway for control-
ling and monitoring the sensor from the client side. This
control is achieved using the same RPC mechanism that
is used for internal communications between the different
devices. That is, a FORTE client (frontend) has the same
level of control over devices and uses the same mecha-
nism for accessing their data attributes and calling (syn-
chronously or asynchronously) their methods. In other
words, there is no separate API for controlling FORTE

Figure 2. ROSCOSMOS sensor EOP-1

[observatory]

dome = plc_dome
timer = stm32_timer
telescopes =1, 2, 3

[telescope:1]
mount = sitech_mount
imagers =1, 2

[telescope:2]
mount = sitech_mount
imagers =1, 2

[telescope:3]
mount = sitech_mount
imagers = 1, 2

[imager:1@1]
ccd = ebus_ccd
focuser = fli_focuser

[imager:2@1]
ccd = ebus_ccd
focuser = fli_focuser

[hardware.ccd.ebus_ccd:1@1]
local = 0

[hardware.ccd.ebus_ccd:2@1]
local =1
device = ethl

Figure 3. Example of configuration for a complex sensor
layout

from the outside other than that is used internally and that
reflects the sensor model. From this point of view, a fron-
tend is just one of the many devices on the TCS network,
and the only difference is that it controls other devices,
but none of them can control it.

This approach gives one the maximum flexibility possi-
ble when designing client-side applications. On the other
hand, it poses a potential security risk due to the abil-
ity of the client to directly access any device within the
sensor hierarchy. However, this drawback can be easily
overcome by adding restrictions on the operations being
performed on top of the current client protocol.

The only real difference between accessing FORTE de-
vices internally and from the client side is that the clients
are suggested to use a different transport protocoll. Cur-
rently the client protocol is based on the Extensible
Markup Language (XML) and is readable enough by a
human to be able to issue commands manually, as well
as build and parse such packets by frontends written in
any programming language. Figure] shows an example
of asynchronous call (task) that initiates a series of 8 10-
second exposures in R filter of a field with the given sky
coordinates and the given fixed tracking ratef.

In response to this request, the client receives a task ID,
which can be used to monitor the progress of the task or
terminate it prematurely using the similar XML requests.
In Figure[] <t arget> contains the unique ID of the de-
vice in the sensor device hierarchy, <name> is the name
of method being called (asynchronously), and <args>
contain the arguments of the call that describe the target
object and its observation mode.

Any compliant XML client protocol packet has a one-
to-one correspondence to an RPC Python call that can

3Using the internal transport protocol is still possible.

4This command is powerful enough to also automatically synchro-
nize the dome with the telescope, to run all mutually independent sub-
operations — like dome, mount, and CFW, and focuser motion — simul-
taneously, make sure that all such operations are completed before start-
ing integration, and guarantee it to start at the exact moment or within
the specified time limits if needed.

<task>
<target>scope</target>
<name>observe</name>
<args>
<arg name="target">0010+0230_1_1</arg>
<arg name="ephem_provider">fixed</arg>
<arg name="ha">00:10:00</arg>
<arg name="dec">+02:30:00</arg>
<arg name="tracking">fixed</arg>
<arg name="tracking_rate"><list>
<item><float>-1.57</float></item>
<item><float>3.17</float></item>
</list></arg>
<arg name="exposures"><dict>
<item name="texp">
<float>10.0</float>
</item>
<item name="nexp"><int>8</int></item>
<item name="filter">R</item>
</dict></arg>
</args>
</task>

Figure 4. Example of the XML-based client protocol

be issued internally by other devices when talking to the
same device (a Telescope). Simple rules exist also to con-
vert XML tags to scalar and compound Python types and
back. Moreover, the client-side FORTE SDK contains a
wrapper that translates XML packets back to Python and
vice versa, so FORTE clients written in Python may ac-
cess the devices transparently, as if they were running on
the server side. For example, the packet shown in Fig-
ure d corresponds to the following Python call:

o.scope.start_task(
"observe", target="0010+0230_1_1",
ephemn_provider="fixed",
ha="00:10:00", dec="+02:30:00",
tracking="fixed",
tracking+rate=[-1.57, 3.17],
exposures={
"texp": 10.0, "nexp": 8,
"filter": "R"})

where the first o refers to the top-level Observatory ob-
ject used by Python clients as a gateway to the whole de-
vice hierarchy. This feature essentially means that a full-
scale scripting facility is built into FORTE. By importing
the FORTE SDK, any Python script gets access to all sen-
sor features, from high-level observation commands like
the one described above down to low-level operations on
the individual devices, including telemetry. This way, the
user is able to build very sophisticated custom applica-
tions for automating observations.

Indeed, this feature is also used internally by several
FORTE modules in the same manner. Several high-level
methods exist that automate a number of complex tasks,

like the automatic alignment and focusing, as well as op-
timally acquiring twilight flats. These methods are essen-
tially scripts that operate on several devices to make them
work in accordance, following the predefined script logic
and command flow. The only difference is that such in-
ternal “scripts” communicate with other devices via the
internal RPC protocol instead of XML packets. But this
is only a minor difference since the RPC works in the
same way regardless of the actual protocol, so external
Python scripts have the full access to exactly the same
features and using the same syntax.

An example of a client application is shown in Figure[3
This is the prototype FORTE operator’s graphical user in-
terface (GUI), and it utilizes the XML protocol for both
high- and low-level control of the different FORTE de-
vices to be able to send the manual observation requests
and monitor their progress and the overall TCS state.

Since the XML client protocol runs on top of a TCP/IP
connection, there is no difference whether the client is
located on the same computer as the server, on the same
local area network (LAN), or on a remote computer over
the Internet. The same approach can be used to control
the sensor by the central network coordination facility or
by other sensors. This gives one the maximum amount of
flexibility to build the complex sensor networks.

3. OTHER IMPORTANT FEATURES OF FORTE

Software architecture described in Section 2 already
solves most problems declared in Section [[l However,
a number of requirements listed there are still not met by
the architecture itself and need a special consideration.
To help one understand how we tackle these problems,
Figure[@lillustrates the structure of FORTE as a software
package. Below we describe certain FORTE features that
are directly related to the rest of the problems stated in
Section[I]

3.1. Timing

As it was noted in Section [I} accurate timing is one of
the most critical features in SST. Timestamping errors
is what often limits the resulting accuracy of measure-
ments more than optical distortions, low signal-to-noise
ratio, and other sources of positional error. FORTE was
designed with the maximum possible timing accuracy in
mind.

Unless one is using a real-time operating system (which
severely complicates the implementation and restricts the
computing environment), software timing does not pro-
vide the level of accuracy necessary for SST applica-
tions. Hardware timing, in its most simple implemen-
tation, involves a camera with exposures triggered by a
source that is synchronized with the Universal Coordi-
nated Time (UTC) scale to within microseconds or better,

@ Python File View 0 O wss. 82°56°33°27062706 (jeics i bicswe oo - Charged @ O = o)) BE 9% B2 Tue9Feb 02:17:33 & VK Q =
LK] FORTE GUI

Schedule - [fUsers/vk/obs/10072_20160204_7181_object list) 7
onine | |Operator B i None B
Name o 8 1 ["min] §["min] A[®] R[] m
x =i
x2
13 000323730012_1 05* & 04 3 03 00 3392 633 000
4 000032880013_1 05! H05° 11" & #3 00 3254 587 000
5 dummy_ 0002 06" 147 059960 +03° 38" 13795 00" 12" 30:605 +03 0.0 3526 651 0.00
6 000322530011_2 06" 14=0S:iR10 +03° 38' 14701 00" 12 319085 +03 0.0 3526 65.1 000
7 000323730012_2 05" 51= 25730 +04° 02'47"90 00" 35~ 111005 +#03 00 3401 634 000
8 000032880013_2 05* 19= 251120 +05° 11 52794 O1* 07 10727 3 0.0 326.1 589 0.00
9 dummy_0003 06" 15= 441150 +03° 38" 15°01 00 10~ 531122 .3 00 3535 651 000
Telescope 7 Schedule Plot 7
o 05" 12" 36M04 +15.04"/s
5«04 05' 22047 +0.02"%s ®
01816244997 0.00%s =
A: [3121°08'31%| 0.00% * ~ P
B +58° 321277 -0.00"s =D ~ a:
30 - .
‘ N
0 4 % W N
ol 0 & w0 135 180 5 0 3 360
— A
7
FORTE GUI Console €3 v FORTE Console 0} A
UDSeIVINg ODJECT: LUUSZZ83UU 1 1_ 1 ackages/forte/alignment /main.py”, line 887, in apply_direct
o ; - Observing object: 000323730012_1 raise NoAlignmentDatgError()
5 Observing object: 000322530011_1 NoAlignmentDataError: [@23500] Mo alignment data
24 -y Observing cbject: 000323730012_1 FORTE> 0.scope.sync_to_park_position()
o2z e Observing cbject: 0003225300111 FORTE> t1-0.scope.imagers['1'].ccd.start_task(
. 20 Observing object: 000323730012_1 setpoint=)
T Observing ebject: 0003225300111 FORTE> t2=0.scope.imagers['2'].ccd.start_task(
5 16 Observing object: 0003237300121 setpoint=' B
i Schedule stopped FORTE>
1.2
- 1
-] — 2
E 0
s was B 245 2:50 n5s 00 2305 300 B B2 o B30
ure
Figure 5. Prototype FORTE operator’s GUI
like a Global Positioning System (GPS) receiver. In its
simplest implementation used by ISON for years, this is
just a pulse-per-second (PPS) output from a GPS receiver
that triggers exposure at the moment of change of a UTC
second, with the actual exposure start time measured in
software by constantly polling the current exposure state
~ and then rounding the measured time to the nearest whole
Schedul GUI Python second; the only limitation is that the framerate cannot
RCCU scripting exceed 1 Hz. All hardware triggering approaches, how-

ever, are still limited by the mechanical shutter and its
numerous imperfections, and the only remedy is to use a
Network fast and predictable electronic shutter like e. g. in the
interline CCDs or a global shutter in CMOS (comple-

nteracs mentary metal oxide semiconductor) sensors [5]. For
a traditional full-frame CCD with a mechanical shutter,
Distributed Datalogging the only way to achieve acceptable accuracy for medium
core facility and high Earth orbits is to rely on a sensor that monitors
the process of opening and closing the shutter; for low
. orbits, even this seems to be insufficient. FORTE pro-
Ephel'nerls vides a flexible framework for supporting all these types
engine of hardware timing (of course, in addition to the pure soft-
ware timing, which may still be enough in certain appli-

cations).

Figure 6. Structure of FORTE as a software package

Except for exposure timestamping, most other TCS op-
erations (like pointing and dome control) do not require
such extremely accurate timing. The normal accuracy
achievable e. g. by the Network Time Protocol (NTP)
is enough here. FORTE timing board module provides
the unified interface both for querying the current UTC

time with the accuracy limited by software and for hard-
ware timing tightly linked with the operation of a CCD
camera. The interface supports multiple input and output
channels, so a single timing board (like the recently de-
signed STM32 board to be used on the modern 6-channel
ISON sensors) is able to control the whole sensor or mul-
tiple cameras attached to the same mount, depending on
the hardware and software configuration. The basic oper-
ations provided by the interface include the following:

e return the current software-synchronized UTC time;

e issue a trigger pulse (or a series of pulses with the
given time step) to the specified output channel at
the given UTC time (mode I);

e issue a trigger pulse (or a series of pulses with the
given time step) to the specified output channel as
soon as possible; return the actual UTC time of is-
suing the first pulse (mode 2);

e wait for a pulse to arrive from the specified input
channel; return the UTC time of the last pulse re-
ceived (mode 3);

e cnable or disable PPS for the specified output chan-
nel (mode 4).

This set of operations is enough to support any combina-
tion of features of the particular hardware device model
and any type of exposure scheduling. For any type of
scheduling requested by the user, the main camera con-
trol routine takes most out of the actual timing board ca-
pabilities or at least does its best to simulate the required
behavior in software as accurately as possible.

For example, if an exposure is scheduled to start at the
given UTC moment, the programmed timing board out-
put mode (mode 1 above) is used if the board supports
it; otherwise, the camera control module waits until just
about the scheduled time and enables hardware trigger-
ing with modes 2 or 4 or uses software triggering and re-
lies on mode 3 to measure the actual exposure start time,
depending on which mode is supported by the timing
board. If no specific time is scheduled, the camera con-
trol module prefers modes 2, 3 and 4 (depending on the
input/output triggering capabilities of the camera and the
timing board) or, if only mode 1 is available, requests an
output trigger pulse at the nearest reasonable time. Simi-
larly, if a series of equally-spaced exposures is requested,
the camera control module uses the pulse sequence mode
if supported and simulates it with one of the above meth-
ods otherwise. This works both for mechanical and elec-
tronic shutters. Finally, if a mechanical shutter sensor
(see above) is available, its readings are sent back to the
camera control module like in mode 3 and are later used
by the image processing pipeline to get a more accurate
estimate of mid-exposure time.

This structure is tightly integrated with the high-level
support for scheduling observations. If an exposure is
scheduled to begin at the given time, the pointing, dome

control, imaging, and ephemeris subsystems work to-
gether to point in advance if possible and get ready to
start tracking and exposing immediately before the sched-
uled moment. An error is generated if the calculated or
the actual time to prepare for imaging (incl. pointing,
dome synchronization, setting filters, refocusing, and get-
ting the camera ready to start integration) does not allow
to start the exposure in time. If a time frame is given for
some exposure, the same logic makes sure that the expo-
sure does not start before the beginning or after the end of
the given interval, with maximum accuracy possible. All
this logic involves a complex interaction between several
FORTE devices, which would hardly be possible without
the RPC framework described in Section 2.3

3.2. Image Processing Integration

An important FORTE feature is the image pipeline (see
Section [2.2)) that is essentially a user-defined set of op-
erations on the image data and metadata. Pipelines con-
sist of elementary operations like image calibration, dis-
play, or storage. They run sequentially, in parallel, or in
any combination. They are initiated asynchronously im-
mediately after the image readout; metadata hold a set
of TCS state parameters before, during, and after inte-
gration, as well as some accompanying information like
weather conditions. A certain default pipeline is asso-
ciated with each optical channel of the observatory, but
it can be also overridden by client applications individ-
ually for each exposure. The most basic image pipeline
consists of just storing the image on disk as a flexible im-
age transport system (FITS) file; this is what most of the
simple TCS packages do. A more complex example may
involve on-the-fly Apex-based image analysis of a set of
images to detect tracklets and, in case of an uncorrelated
detection, initiate follow-up observations on another sen-
sor using the XML protocol described in Section 2.4

Sharing the common programming platform with Apex
allows us to use certain Apex library features by directly
importing the corresponding library modules and thus
making Apex an integrated part of FORTE. In particular,
this refers to coordinate and time transformations used
throughout FORTE and to the support for doing certain
calibration tasks. For example, the automatic FORTE
alignment procedure uses the Apex capabilities to de-
tect objects, obtain astrometric solution, and calculate the
celestial coordinates of the image center. Similar tech-
niques are used by automatic focusing. Finally, the au-
tomatic twilight flat sequence obtains a number of image
characteristics to maintain the necessary quality of flats
and to choose the appropriate exposure time.

3.3. Datalogging

FORTE datalogger is based on the built-in Python log-
ging facility; thus it also automatically handles log mes-
sages from all external modules that use the same facil-
ity. Various backends are supported, including disk files

with optional automatic rotation, Unix syslog daemon,
Windows event log, and sockets. The actual logging con-
figuration, including specifying destinations for different
types of events and message formats, is fully defined by
the user.

The same facility is used to collect the various telemetry
data and hardware usage statistics, including motor revo-
lutions, shutter cycles, voltages, and so forth. This helps
to monitor sensor health and schedule maintenance.

FORTE has many other features that are out of the scope
of the current paper. Our goal was to show just the basics
that are most relevant to space debris observations.

4. CONCLUSIONS

Here we outlined the main requirements for a telescope
control system (TCS) specific to the field of space surveil-
lance and tracking (SST), as well as a number of general
requirements for any modern TCS. The former are com-
ing, either directly or indirectly, from the nature and spe-
cific features of objects being observed — mainly from
their high apparent velocities and quickly changing or-
bits.

We described the new standard ISON optical sensor con-
trol system named FORTE, its basic structure, design
principles, and some implementation details relevant to
building a network of wide-field optical sensors in gen-
eral and to the area of SST in particular. It was shown
how we met all these requirements in FORTE by creating
a distributed object-oriented Python core and a set of mu-
tually interacting modules with the capability of detailed
remote control and scripting and with a major focus on
accurate hardware timing. FORTE is tightly integrated
with the Apex-based image processing pipeline, which
strongly enhances its capabilities and results in a signif-
icant improvement of space debris discovery rate and of
the overall ISON performance in general.

REFERENCES

1. Devyatkin A., Gorshanov D., Kouprianov V., Ver-
estchagina 1., (2010). Apex I and Apex II software
packages for the reduction of astronomical CCD obser-
vations. Sol. Sys. Res., 44(1), 68-80.

2. Kouprianov V., (2008). Distinguishing features of
CCD astrometry of faint GEO objects. Adv. Space Res.,
41(7), 1029-1038.

3. Kouprianov V., (2013). ISON Data Acquisition and
Analysis Software. In Proc. 6" European Conf. Space
Debris, 22-25 April 2013, Darmstadt, Germany (Ed.
L. Ouwehand), ESA SP-723, ISBN 978-92-9221-287-
2,id. 21.

4. Molotov 1., Agapov V., Titenko V., Khutorovsky Z.,
Burtsev Yu., Guseva 1., Rumyantsev V., Ibrahimov M.,
Kornienko G., Erofeeva A., Biryukov V., Vlasjuk V.,

Kiladze R., Zalles R., Sukhov P., Inasaridze R., Ab-
dullaeva G., Rychalsky V., Kouprianov V., Rusakov O.,
Litvinenko E., Filippov E., (2008). International sci-
entific optical network for space debris research. Adv.
Space Res., 41(7), 1022-1028.

5. Schildknecht T., Peltonen J., Sannti T., Silha J.,
Flohrer T., (2014). Improved Space Object Orbit Deter-
mination Using CMOS Detectors. In Proc. Advanced
Maui Optical and Space Surveillance Technologies
Conference, September 9-12, 2014, Wailea, Maui,
Hawaii (Ed. S. Ryan), The Maui Economic Develop-
ment Board, id. E6.

	INTRODUCTION
	DESIGN PRINCIPLES OF FORTE TCS
	Programming Model
	Data Model
	Distributed Framework
	Frontend (Client) API

	OTHER IMPORTANT FEATURES OF FORTE
	Timing
	Image Processing Integration
	Datalogging

	CONCLUSIONS

