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ABSTRACT

This paper investigates the covariance matrices used in
conjunction data messages (CDM) provided by the Joint
Space Operations Center (JSpOC) from a user perspec-
tive. The aim is to find the consistency of the covariance
by comparing the given CDM state and covariance to op-
erational mission orbits of ESA satellites. It was shown
that the consistency percentage, giving the share of states
within the CDM uncertainty, is nearly constant over the
time to the closest approach. This suggests that the er-
ror growth is modelled realistically and matches the real
error growth. Because the covariance was found to be
slightly too small, it was attempted to find a scaling fac-
tor to match the covariance size, which is expected for a
theoretical normal distribution. No common factor was
found, because the scaling probably depends on individ-
ual satellite and orbit properties, which would suggest
that at least a satellite-specific factor can be assumed. Fi-
nally, the planned upgrade of covariance tables for the
ESA tool ARES in DRAMA based on CDM covariances
is introduced.
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1. INTRODUCTION

Collision avoidance is not only reliant on a good es-
timate of the orbit, but also the uncertainty has to be
considered in order to calculate a realistic probability of
collision [2]. Since 2010, ESA uses conjunction sum-
mary messages (CSM), later replaced by conjunction data
messages (CDM)[4], provided by the Joint Space Oper-
ations Center (JSpOC) for their routine collision avoid-
ance, which is an improvement compared to the previ-
ously used low-precision Two-Line-Elements (TLE) [3].
The CDM contains, among other information, the Carte-
sian states (XYZ coordinates) and covariances (RTN co-
ordinates) of the two objects at the time of the closest
approach (TCA). The reliability and consistency of this
covariance matrix shall be investigated in this paper by
comparing the CDM states to operational mission orbits
of ESA satellites.

The analysis of the covariance matrix in orbital mechan-
ics is often discussed under the term covariance real-
ism. Those studies, for example by Vallado [10], focus
on the question whether the error of the orbit predic-
tion can be represented by a covariance matrix, which
assumes a normal (Gaussian) distribution of the errors.
Possible deviations are a non-zero mean of the position
errors or the effect of bending along the orbit for large
covariances, which cannot be modelled with a matrix in
Cartesian coordinates[8]. Instead of those rather theoreti-
cal approaches, this paper analyses the CDM covariances
from a user perspective in collision avoidance by com-
paring the prediction errors of the CDMs with the given
covariances.

2. METHODOLOGY

This analysis features satellites in different Low Earth Or-
bit (LEO) altitudes. Namely those are Cryosat-2 (h ≈
720 km), Rapid Eye 1 (h ≈ 630 km), Swarm B (h ≈
500 km) and Swarm A/C (h ≈ 450 km). All of those
satellites are in near-circular, near-polar orbits. CDM
data for conjunction events between October 2015 and
October 2016 is used. The number of CDMs per satellite
is given in Table 1. The operational mission orbits ob-
tained from ESA Flight Dynamics are assumed as ground
truth for the Swarm constellation and Cryosat-2. Ground
truth for Rapid Eye 1 is given by an orbit determination
from GPS measurements using the ESA Space Debris
Office software tool ODIN (Orbit determination by im-
proved normal equations) [1]. To avoid artificial errors,
time spans around manoeuvres are erased from the data
set.

The main collision avoidance approaches used by ESA
aim to increase the separation to the chaser in along-track
or radial direction [6]. Thus, these directions are stud-
ied for their representation in the covariance matrix. The
standard satellite-centred RTN coordinate system is used
because the CDM covariance is also given in this system.
It shall be investigated how often the mission orbit ~xm
is within the covariance, thus within the interval of CDM
state ~xc plus/minus uncertainty σc. To focus on the R-
and T-direction, only their values from the main diagonal
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Table 1. Number of CDMs per satellite for the analysis.

Satellite Number of CDMs
Cryosat-2 65029
Rapid Eye 1 3332
Swarm A 10257
Swarm B 25373
Swarm C 10131

are used thus ignoring the overall shape of the covariance
ellipsoid.

Disregarding the normal error also reduces the impact of
a frame offset, which arises because the CDM states are
given in an Earth-fixed coordinate system. To transform
the ESA mission orbits, which are in an inertial frame, to
an Earth-fixed system, the Earth orientation parameters
(EOP) are necessary. If an Earth-fixed frame is used for
a future state, like it is done for CDMs, either predicted
EOP or the EOP from the day of the prediction could be
used. It is not documented or known, what approach is
used for CDMs, thus a small frame offset appears when
comparing CDM orbits to mission orbits, which are trans-
formed to Earth-fixed coordinates with the actual EOP,
known in retrospective, from the day of the conjunction.
The frame error is mainly due to the Earth rotation and
thus artificially increases the normal error for near-polar
orbits. Due to this offset, the results for the normal error
cannot be analysed correctly.

The position error ∆P at TCA is calculated by subtract-
ing the reference state from the CDM state of the object
and transforming this difference to the RTN system, in
which the covariance is given, with the matrix B[9]:

∆P = B · (~xc − ~xm) . (1)

The main measure of this study is called covariance con-
sistency, which gives the percentage of the number of
states that are within 1-,2- or 3-σ of the CDM covariance.
Thus the condition for n-σ in each direction is:

∆PR,T < n · σR,T , (2)

with the position difference ∆P from Equation 1 and the
corresponding standard deviations obtained from the co-
variance matrix by using the square root of the variances
on its main diagonal. A theoretical normal distribution
would have 68.3% within 1-σ, 95.5% within 2-σ and
99.7% within 3-σ.

Before the actual analysis, it is checked how the posi-
tion error behaves in R- and T-direction. If the mean er-
ror is close to zero, it can be assumed that the predicted
positions spread evenly around the truth values and thus
the approach to only use the uncertainties from the co-
variance matrix can be considered valid. Figure 1 and
Figure 2 show the mean position error, calculated from

Figure 1. Mean error of operational vs. CDM position in
the radial direction.

Figure 2. Mean error of operational vs. CDM position in
the along-track direction.

Equation 1, of the satellites along the two directions over
time to TCA, which is binned to one day steps. Only
Swarm B is used because the deviations for Swarm A/C
are similar. It can be seen that except for some outliers
along the T-direction with more than 5 days to TCA, the
mean is close to zero (compared to the size of the uncer-
tainty). It is further assumed that the covariance is small
enough to not bend along with the orbit and thus the as-
sumption of a Cartesian covariance is considered valid.

3. COVARIANCE CONSISTENCY

Figure 3 shows the covariance consistency for Cryosat-
2 in R- and T-direction for the levels of 1-, 2- and 3-σ.
It can be seen that the graphs are relatively constant ex-
cept for a drop for CDMs less than two day before TCA.
The levels of the 1-,2- and 3-σ graphs are not equal for
the two directions but in a similar order at approximately
60%-85%-95%, thus lower than it would be expected for
a theoretical normal distribution, which implies a slight
underestimation of the covariance.

The covariance consistency for Swarm B is shown in Fig-
ure 4. The general behaviour is similar to the previous
one, but the percentages are lower. The levels for 1-,2-
and 3-σ are at approximately 50%-80%-90%, thus also
having an underestimation of the uncertainty. The lev-



Figure 3. Covariance consistency for Cryosat-2.

Figure 4. Covariance consistency for Swarm B.

els for Swarm A in Figure 5 are similar but show larger
differences between the R- and T-directions. The consis-
tency of Swarm C is nearly equal to that of Swarm A.

For Rapid Eye 1 (Figure 6), the distribution is clearly dif-
ferent. The percentages of the consistency are less sta-
ble than previously, but it is still visible that there is a
constant trend. A possible explanation for this more un-
steady data set is that there are significantly less CDMs
for Rapid Eye than for the other satellites.

If the covariance consistency is nearly constant over the
time to TCA, it can be inferred that the covariance prop-
agation is modelling the error growth realistically. A de-
creasing (or increasing) consistency percentage with a

Figure 5. Covariance consistency for Swarm A.

Figure 6. Covariance consistency for Rapid Eye 1.

Figure 7. Covariance scaling for the radial direction and
testing 1-σ consistency.

decreasing time to TCA would imply a too fast (or too
slow) reduction of the covariance. Although it appears
to be slightly underestimated, the consistency shows that
the covariance for a single satellite has a predictable and
stable behaviour, which is necessary for a reliable use in
collision avoidance.

4. SCALING THE COVARIANCE

As shown in the previous section, the covariance is
slightly underestimated compared to a theoretical normal
distribution. Thus it shall be investigated whether it is
possible to scale the uncertainty with a common factor
to obtain a consistency that matches the normal distribu-
tion. This is attempted for Cryosat-2 and the Swarm con-
stellation. Rapid Eye 1 is left out, because its behaviour
showed a non-constant consistency.

Instead of a function of time as it was in the previous
section, the covariance consistency is calculated for all
CDMs within 0-7 days to TCA and thus is given as an
overall value over the scaling factor. The consistency is
calculated via Equation 2, but in this case n represents the
scaling factor, which is used as the independent parame-
ter.

Figure 7 shows the covariance consistency percentage for
n-σ in the radial direction over the applied scaling factor



Figure 8. Covariance scaling for the along-track direc-
tion and testing 1-σ consistency.

n. The factor is approximately 1.25 for Cryosat-2, 1.5 for
Swarm B and 1.9 for Swarm A/C, which would suggest a
dependency of the scaling factor on the altitude. In con-
trast to that, Swarm A/C and Cryosat-2 share the same
factor of approx. 1.45 in the along-track direction com-
pared to 1.7 for Swarm B, as shown in Figure 8. Even
the R- and T-direction do not have the same factor for
the same satellite, which shows that a pure scaling is not
enough to match the covariance of a theoretical normal
distribution.

From these plots, it can also be noted that the consistency
percentage is linear over the scaling factor. Because the
second derivative of the normal distribution is zero at 1-
σ, this indicates that the given covariance is close to the
1-σ region.

5. USE OF CDMS FOR COVARIANCE TABLES
IN ARES

The ESA software DRAMA (Debris Risk Assessment
and Mitigation Analysis) contains the tool ARES (As-
sessment of Risk Event Statistics), which is capable of
e.g. estimating the number of manoeuvres a satellite has
to perform based on the accepted risk level and orbital
regime [7]. Therefore an artificial covariance has to be
assigned to each object solely based on its size and orbit.
The current version of ARES includes covariance tables
for the RTN-directions based on old CSM data and TLE
estimation [5]. After showing that the CDM covariances
are a reliable source, those tables shall be upgraded by
analysing a large group of CDMs for different objects.
Of course, the covariance is highly dependent on e.g. ob-
servation techniques, which cannot be represented by a
fixed model, but it shall be attempted to find at least a
good approximation of the covariance matrix.

The original implementation featured an exponential
function of the type 10ax for all directions. Analysis of
the CDM data showed that an exponential polynomial of
the type ea log(x) = xa is more appropriate for the along-
track direction, because this led to smaller residuals in
70% of the cases. In contrast to that, the other two direc-

Figure 9. Example of modelled covariance functions for
ARES.

tions only showed lower residuals in approx. 40% of the
cases, thus they keep the original model. This leads to the
following fit functions for the standard deviations:

σR,N = CR,N · 10αR,N ·t , (3)
σT = CT · (t+ 1)αT , (4)

with the time to TCA t in days and the parameters C and
α, which are fitted to the CDM covariance data with a
robust regression method.

To reflect the different uncertainties for different types of
objects and orbits, the CDM data is binned according to
size (small, medium, large), perigee altitude, eccentric-
ity and inclination. The bins are chosen to have a good
resolution, but still enough data to have statistical signif-
icant results for as many bins as possible. Bins with no
or insufficient data are filled by either copying from sim-
ilar bins or scaling from other bins. For example. the
uncertainty is relatively stable over different inclinations,
whereas it is increasing with a decreasing perigee altitude
due to the increase of drag forces, which are more diffi-
cult to predict. Figure 9 shows an example for such a
modelled covariance function. Typically, the largest un-
certainties are in along-track direction and the smallest in
cross-track direction.

6. CONCLUSION

The results of the consistency analysis showed that the
CDM covariance is a good indication for the uncertainty
of the orbit, although it seems to be slightly underesti-
mated, which would confirm earlier suggestions by Al-
friend [2] from 1999. The percentage of states within the
given uncertainty was shown to be nearly constant, which
suggests that the covariance propagation is well fitted to
the real error growth. A common scaling factor could not
be found, which could mean that this factor is dependent
on the orbit and the observations. Swarm A and C are
very close to each other on similar orbits and also had
nearly equal scaling factors, which would support this
idea. In this case, the scaling factor could be assumed as
a constant for each satellite and thus used operationally
including regular checks for consistency.



After it was shown that the CDM covariance is a realis-
tic estimate, it will be used as a reference value for the
upgrade of the covariance tables in ARES to model the
changes in the covariance over time for different orbits.
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