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ABSTRACT

It is known that detecting straight streaks from fast mov-
ing celestial objects in optical images is an easy problem
as long as the streaks are sufficiently long and/or their
signal-to-background (SBR) is sufficiently high.

At low SBR the situation is different. Since the SBR
can be arbitrarily small in practice, a good detection pro-
cedure has to provide a detection certificate which is a
yes/no answer to the question “does the image contain
a streak?” In this paper we pose detection with certifi-
cate as a Multi-Level Bayesian Inference (MLBI) prob-
lem which is based on Bayesian model selection. We de-
scribe the algorithm and show an experimental proof of
good behavior on synthetic streaks over real image data.

A systematic performance evaluation shows that MLBI
confirms and partially exceeds results of state-of-the art
methods. In particular, in the class of difficult problem
instances with SBR of 0 dB to −5 dB and streak length
10 to 500 pixels, we achieved AUC ≈ 0.97, which means
that the Bayesian detection certificate is wrong in just 3%
of cases.

Keywords: streak detection; detection certificate;
Bayesian inference.

1. INTRODUCTION

We consider the problem of detecting faint straight
streaks created by fast moving celestial objects in images
from an optical telescope. For the purpose of this paper
a streak is a line segment of unknown position, length,
orientation, and amplitude (magnitude). An example is
shown in Fig. 1. The task of streak detection is two-fold:
(1) decision on whether a given image contains a streak,
and (2) determining the four principal parameters of the
streak (orientation, starting position, length).

It is known that detecting such streaks is an easy problem
as long as the streaks are sufficiently long and/or their
signal-to-background ratio (SBR) is sufficiently high,
eg. [16, 19, 12].

Several detection methods have been proposed in the
past. In a segmentation based approach [6], authors use

Figure 1. A well-detectable streak (about 500 px long and
almost vertical in the middle of the right (darker) part of
the field of view). Best viewed on a good monitor.

a threshold to segment image to objects of interest and a
background. The objects are characterized by their shape
and located in other images. The method is therefore
capable of object tracking across several images. The
work [6] is the oldest method we are aware of. A recent
method called Line-Identifying Technique [9] bears some
similarities. These methods are suitable for fast detection
of short streaks with a high SBR. More advanced meth-
ods that allow tracking of streak across several images in-
clude the stacking method [17] and a particle based track-
ing [13]. While it is desirable from the detection point of
view to use multiple images to obtain as much informa-
tion about the streaking object as possible, such approach
is not applicable to cases of a fast moving object that is
observed just once. Such objects are in focus of the cur-
rent paper.

The method [12] uses image transformation (skewing,
compression) to increase SBR in a single image to ob-
tain an initial detection. The method then tracks streaks
in subsequent images by assuming linear motion of the
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streaks and correlating the streak candidates.

Lastly, there are methods that detect streak in a single im-
age. Radon/Hough transformation based method [19, 1]
are used. The advantage of these methods is that they
are easily parallelized [19]. Such methods allow to se-
lect quantization in Radon/Hough space. The quantiza-
tion chooses a trade-off between accuracy and speed. We
also saw use of matched filters [4, 11]. Such methods use
a large variety of filters, each filter representing a differ-
ent shape of a streak.

The Line Detection Method [16] removes stars from a
raw image, tries all rotations of the image and computes
columnwise medians in rotated images. A tentative streak
is then located in the column of the largest median, one
tentative streak per rotation angle. The algorithm then
outputs the tentative streak of the largest columnwise re-
sponse. Later, [12] proposed image shearing instead of
rotation because it is faster to compute.

The median computation can be perceived as the sim-
plest statistical method for streak detection. In the cur-
rent paper we borrow the idea of image shearing and ten-
tative streak detection per shear angle. Instead of image
shearing with fine angular increments we use an efficient
branch-and-bound approach.

The method [5] develops a full statistical model for the
streak (background, stars) and determines the most likely
hypotheses (streak, background, star). This method is
closest to our approach from the statistical modeling
point of view.

A complete pipeline developed in ESA-funded StreakDet
project is described in [14]. They achieved fast pro-
cessing time with an image preprocessing method that
is essentially a set of grayscale and binary morphologi-
cal operations followed by connected component label-
ing. They report detection sensitivity 90% for SNR > 1
and 50% for SNR = 0.5 at streak length of 100 px and
longer.

At low signal-to-background ratio (SBR) it becomes dif-
ficult to decide on a streak presence in the image for two
principal reasons: (1) as the SBR limits to zero the statis-
tical characteristics of a streak become indistinguishable
from those of the background, partly due to the finite res-
olution of the sensor (its limiting magnitude), (2) as the
streak gets shorter then it is progressively more difficult
to distinguish it from a random configuration of image
background that falsely resembles a streak. A good de-
tection procedure thus has to provide a “detection certifi-
cate” which is a yes/no answer to the question “does the
image contain a streak?” The difficulty of this task stems
partly from the fact that any kind of a “decision thresh-
old” depends on streak length, image content, SBR, and
sensor characteristics, so it cannot be chosen apriori.

A statistical detection procedure that works step-wise
would first detect a candidate streak and then use a sta-
tistical test on the rest of the image to see how likely it
is that a similar configuration does not appear by chance.
In this paper we formulate the detection as Multi-Level
Bayesian Inference Problem (MLBI) [8] that works in an
opposite fashion: It confirms/disproves a streak presence

Algorithm 1 (Distribution Parameter Learning).
For a given image shear angle φ:
1. Represent image by steerable filter similarity map
X = {xi,j}.

2. Learn pixelwise background distribution param-
eters θ in pb(xi,j | φl; θ).

3. Compute pixelwise streak model in ps(xi,j |
φl; θ) by distribution composition.

Figure 2. A sketch of the image preprocessing procedure.

in the image and locates it afterwards. We develop two
probabilistic models describing a given image: (1) the
image contains no streak, and (2) the image contains a
single streak. Decision on streak presence is then a deci-
sion on which model is explaining the image better. The
quality of a model is evaluated by its Bayesian evidence.
We show that computing the Bayesian evidence in our
model is possible with a fast polynomial algorithm. The
method will be described in Sec. 2.5.

2. METHOD

As a guidance to the reader, we sketch our preprocessing
in Fig. 2 and the actual multi-level Bayesian inference in
Fig. 5. These are not self-explanatory without reading
this section.

2.1. Image Representation

We use an image model of a streak segment in the form
of an image filter. The filter works like a convolution
kernel in the same sense as a matched filter. The impor-
tant difference is that we do not model the entire streak,
just its short segment (eg. 51 pixels). Normalized corre-
lation of the image and the filter limits the influence of
the image brightness and contrast variations on detection.
Such contrast-enhancing technique is a well-known prac-
tice. Since the template is oriented, we need to evaluate
the filter responses for all possible image shearing angles.
Instead of filtering the image per shearing angle we rep-
resent the image by a bank of steerable filters whose re-
sponse at a given angle can be computed locally and very
fast without repeating the image correlations.

We use spherical quadrature filters (SQF) [3] and the fea-
ture vector for the local signal representation [10]. In-
stead of measuring feature vector distance as in [10],
we use similarity based on the dot product. Let t =
(t1, t2, . . . , tn) ∈ Cn be the template complex vector for
line segment signal type, this is tL from [10], where n
is the largest order of the generalized Hilbert transform
kernel (see also [15]). We exclude the input signal itself
because we need invariance to additive constant function.
Let f = (f1, f2, . . . , fn) ∈ Cn be the image feature vec-
tor computed in a pixel as a set of responses to the SQF.



Then the normalized similarity of local image neighbor-
hood to template t at orientation angle φ is

xφ(f , t) =

〈
f

‖f‖
, r(φ)� t

‖t‖

〉
, (1)

where 〈a, b〉 is the complex dot-product,

r(φ) = (r1(φ), . . . , rn(φ)), rk(φ) = eikφ, k ∈ Nn

is a rotation vector, and� is the elementwise (Hadamard)
product. We used n = 8 but took only the four even
filters. Computing (1) for a given angle φ is much faster
than computing the full template correlation per φ from
scratch.

For the sake of columnwise streak detection described
later in this section it is still necessary to perform image
shearing. Instead of shearing the raw image, we shear the
similarity image. We thus do not save time on shearing
but do avoid the time needed for computing very many
repeated template correlations per angle.

2.2. A Streakless Image Model

Our probabilistic model assumes the existence of a joint
probability distribution for a streakless image. Let Xφ be
the domain of an image sheared by φ. Let xφ,i,j be the
oriented filter response from (1) at pixel (i, j) ∈ Xφ, and
Xφ = {xφ,1,1, xφ,1,2, . . . .} be the entire response field
over Xφ which we call the streak similarity image (per
shearing angle). We assume there is a probability density

pb(Xφ | φ; θ(φ)) =
∏

i,j∈Xφ

pb(xφ,i,j | φ; θ(φ))

per angle φ, with parameters θ(φ) learned from the sim-
ilarity image. To unclutter the mathematical expressions,
we simplify the notation to

pb(X | φ; θ) =
∏
i,j∈X

pb(xi,j | φ; θ), (2)

being aware of the fact that X , X and θ are in fact depen-
dent on φ.

We need to learn θ from the similarity image. This is done
by assuming that pb(xi,j | φ; θ) is well-approximated
with a two-component mixture of beta distributions and
using the EM algorithm for learning the five parameters
of this mixture. A typical fit shown over the histogram of
X is shown in Fig. 3. In case the input image does con-
tain a streak, we ignore it when learning θ. Its influence
on the distribution is very low and can be neglected, as
long as the image is large enough. Hence, we call (2) the
background model. Its pixelwise independence assump-
tion is realistic as long as the diameter of the stars in the
image is comparable to pixel size.

2.3. A Single Streak Image Model

We also need to develop a probabilistic model for an im-
age with a streak. We assume the domain of the streak is
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Figure 3. A typical background model fit (green) over the
histogram of oriented filter responses for a given image
and angle φ = 30◦.

a subset of pixels Y ⊂ X . The shape of the set Y is mod-
eled implicitly by assuming there is an image shearing
angle φ that makes the streak located in column j, start-
ing at position i1 and ending at i2 in the sheared image.

We do not know the magnitude of the streak and we do
not want to model it. We therefore derive a composed
model. Consider a single component of a beta distribu-
tion mixture over the interval x ∈ [−1, 1]:

p(x; a, b) =
1

2B(a, b)

(
1 + x

2

)a−1(
1− x

2

)b−1

. (3)

We introduce an auxiliary parameter z ∈ [0, 1] such that

a = α+ zβ, b = (1− β)z + β.

This defines a family of densities p(x | z; α, β). The
z ‘steers’ the density so that z = 0 corresponds to the
background mixture component with parameters α, β and
z = 1 corresponds to a beta p.d.f. with a single param-
eter and mode at x = 1. Indirectly, the z parameter
corresponds to streak amplitude. Since we do not know
the amplitude we assume the existence of a density p(z)
and create a compound density for a streak pixel filter re-
sponse

ps(xi,j | φ; θ) =

∫ 1

0

p(xi,j | φ, z;α, β) p(z) dz, (4)

where θ = (α, β). We use uniform p(z) and perform the
integration numerically. This is done only once per angle
φ and per component in the beta mixture. The final den-
sity is defined by mixing the compound components (4)
with the original mixing parameters. The shape of a com-
pound distribution for a single beta p.d.f. is shown in
Fig. 4.

If Y are the filter responses over the set of streak pixels
Y then the p.d.f. of an image with a streak is

ps(X | φ,Y; θ) =
∏

(i,j)∈Y

ps(xi,j | φ; θ)
∏

(i,j)∈X\Y

pb(xi,j | φ; θ),

(5)
where we lumped the parameters of the background
model, including the mixing parameters, in θ = θ(φ).
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Figure 4. Distribution (3) (blue) and (4) (dark red) and
the logarithm of their ratio (dark green).

2.4. The Full Bayesian Model

The data term of the probabilistic model that will be used
for the streak detection consists of (2) and (5) whose pa-
rameters θ are shared. For the Bayesian inference (streak
detection) we need full models that involve parameters
defining streak position Y in the image.

For the streakless model we simply use

p0(X,φ; θ) = pb(X | φ; θ) p(φ). (6)

As for the single streak model, we parameterize Y by col-
umn j in the sheared image, and by starting and ending
rows in the sheared image, i1, i2, respectively. We then
define

p1(X,φ, j, i1,2; θ) =

ps(X | φ, j, i1,2; θ) p(i1,2 | φ, j) p(j | φ) p(φ), (7)

where p(φ) is the same as in (6). Notationally, Y
is now represented by (j, i1, i2), so, formally, ps(X |
φ, j, i1,2; θ) is equivalent to ps(X | φ,Y; θ) from (5).

The choice for p(i1,2 | φ, j), p(j | φ), and p(φ) is dis-
cussed in Sec. 2.8.

Note again that we learn a pair of distributions p0(·) and
p1(·) for each image and for each shearing angle φ. This
gives the method a certain degree of adaptivity to the
properties of the current image.

2.5. Multi-Level Bayesian Inference

In this section we drop the parameters θ from the formu-
las. These parameters are considered fixed (learned, as
described in Sec. 2.3).

The Bayesian model selection works by choosing the
single-streak model over the streakless model when

p1(X) > p0(X), (8)

Algorithm 2 (MLBI).
1. For a controlled set of angles φl do:

(a) shear image by φl,
(b) learn parameters by Alg. 1,
(c) compute p0(X | φl) from (17),
(d) for all columns j compute and remember,

i. Rj,φl from (28),

ii. il1,2 ← argmax
i1,2

p1(X, i1,2 | φl, j),

(e) p0(X | φl)←
nl∏
k=1

p0(X | φl, j),

(f) p1(X, j | φl)← p0(X | φl)Rj,φl ,

(g) p1(X | φl)←
nl∑
j=1

p1(X, j | φl),

2. compute p1(X) by integrating p1(X | φl) p(φl),
3. compute p0(X) by integrating p0(X | φl) p(φl),
4. if p1(X)/p0(X) < T then output certificate
c← 0 and exit

5. else output certificate c← 1 and streak detection

φ∗ ← argmax
l

p1(X,φl),

j∗ ← argmax
j

p1(X, j | φ∗),

i∗1,2 ← argmax
i1,2

p1(X, i1,2 | φ∗, j∗).

Figure 5. A sketch of the proposed certification snd de-
tection procedure.

in which p0,1(X) are the marginals of the distribu-
tions (6) and (7), respectively. They are

p1(X) =

∫ π

0

nφ∑
j=1

mφ∑
i1=1

mφ∑
i2=i1+1

p1(X,φ, j, i1,2) dφ,

p0(X) =

∫ π

0

p0(X,φ) dφ.

(9)

On the other hand, the parameters of the detected streak
are typically obtained by solving a maximization problem

argmax
φ,j,i1,2

p1(X,φ, j, i1,2). (10)

The computation for p1(X) must follow a hierarchical
scheme: (1) compute columnwise partial sums, (3) sum
the columnwise sums over all columns and (3) integrate
the result over all angles φ. The hierarchy calls for the
following inference scheme, which we call Multi-Level
Bayesian Inference:

1. If
p1(X)

p0(X)
> T, (11)



then the streak presence certificate is c∗ = 1, other-
wise it is c∗ = 0.

2. If c∗ = 0 then stop. There is no streak in the image.

3. Decide the orientation of the streak by solving

φ∗ = argmax
φ

p1(X,φ), (12)

in which p1(X,φ) is the marginal of
p1(X,φ, j, i1,2).

4. Assuming the streak angle is φ∗, decide the column
in which the streak is located by solving

j∗ = argmax
j

p1(X, j | φ∗), (13)

in which we work with the marginal of
p1(X, j, i1,2 | φ∗).

5. Assuming φ∗ and j∗, determine the streak starting
and ending pixel by solving

i∗1,2 = argmax
i1,2

p1(X, i1,2 | φ∗, j∗). (14)

The evidence threshold T for a positive certificate in (11)
can be thought of as the ratio of streak occurrence priors

T =
1− P1

P1
, (15)

where P1 is the apriori probability that a random image
contains a streak. Typically T � 1. In practice, the T
allows us control the false positive/false negative trade-
off. Details and discussion are given in Secs. 3 and 4.

The actual computation uses the fact that the we can con-
veniently write

ps(X | φ, j, i1,2)

p0(X | φ)
=

i2∏
i=i1

ps(xi,j | φ)

pb(xi,j | φ)
(16)

and

p0(X | φ) =

mφ∏
k=1

nφ∏
l=1

pb(xk,l | φ), (17)

where mφ × nφ is the sheared similarity image size.

Since the evidence of the streakless model does not re-
quire summing over streak positions, we can directly use
(17). After integrating over all shear angles, we get:

p0(X) =

∫
Φ

p0(X | φ) p(φ) dφ, (18)

where the domain Φ is discussed in detail in Sec. 2.8.

Going bottom up, the (14) is the standard detection by
maximization. We have to solve one such task per angle
φ and column j. It is only necessary to remember the best
solution.

By summing over all possible streak begin points and
endpoints for each column j given angle φ, we have

p1(X, j | φ) =∑
i1,2

ps(X | j, φ, i1,2) p(i1,2 | φ, j) p(j | φ). (19)

Sec. 2.6 discusses an algorithm for computing (19) effi-
ciently.

By summing over all possible columns, we obtain

p1(X,φ) =
∑
j

p1(X, j | φ) p(φ). (20)

At the top level we integrate over all admissible angles Φ
and obtain

p1(X) =

∫
Φ

p1(X,φ) dφ. (21)

2.6. Efficient Computation of Column Evidence

We can efficiently (in O(mj,φ)) compute the column ev-
idence p1(X, j | φ). The algorithm is an application of
the dynamic programming principle.

Instead of computing p1(X, j | φ), we compute evidence
ratio

Rj,φ =
p1(X, j | φ)

p0(X | φ)
. (22)

We assume uniformity p(i1,2 | φ, j) = h(mj,φ), where
mj,φ depends on the varying number of valid pixels in a
sheared image column j and substitute (16) and (17) into
(22)

Rj,φ = h(mj,φ) p(j | φ)
∑
i1,2

i2∏
i=i1

ps(xi,j |φ)

pb(xi,j |φ)
. (23)

We introduce a new variable

Vk = log
ps(xk,j | φ)

pb(xk,j | φ)
. (24)

The logarithm provides numerical stability. Then

Rj,φ = h(mj,φ) p(j | φ)
∑
i1,2

exp
[ i2∑
i=i1

Vi

]
. (25)

When we use

g(i1, i2) = exp
[ i2∑
i=i1

Vi

]
, (26)

f(i) =
∑
i1,i2≤i

g(i1, i2), (27)

then (25) becomes

Rj,φ = h(mj,φ) p(j | φ) f(mj,φ). (28)



There is a recurrent formula for (27) and k = 1, . . . ,mj,φ

f(k) = f(k−1) +

k∑
l=1

g(l, k) = f(k−1) +d(k), (29)

with f(0) = 0. Lastly, there is a recurrent formula

d(k) =

k∑
l=1

g(l, k) = (d(k − 1) + 1) exp(Vk), (30)

with d(0) = 0.

2.7. Computing Certificate Evidence

Another difficult part is computing the integrals

pi(X) =

∫
Φ

pi(X,φ) dφ, i = 0, 1.

We need to perform the integration numerically with the
resolution of the admissible shearing angle set Φ fine
enough so that we can capture streaks that manifest them-
selves as a very sharp peaks of the function p1(X,φ).
Part of the problem is that the peaks are easily too large
for the double float numerical type. We therefore use
trapezoidal integration rule with variable precision arith-
metic. The integration is done only once per image, hence
the computation is not a speed bottleneck.

The set of angles φk needed in the trapezoidal integration
is obtained by a branch-and-bound kind of a procedure:

1. The set Φ is first sampled at a coarse angular res-
olution (with five-degree angular increments). This
gives the initial pool P = {φk}.

2. All local maxima φk ∈ P with |φk+1 − φk−1| > δφ
and such that they are larger than a threshold

p(X,φk) > ε max
φ∈P

p(X,φ)

expand the pool by adding φ+ to P such that

φ+ =

{
1
2 (φk−1 + φk), |φk − φk−1| > |φk+1 − φk|,
1
2 (φk + φk+1), otherwise

(31)

3. Step 2 is repeated until there is no expandable φk.

We use δφ = 1/m (in radians) where m is the number
of image rows and ε = 0.3. The pool P is also used for
the streak detection problem (13) and (14). A discussion
on the assumptions that make this procedure correct can
be found in [7]. The algorithm relies on a property of
p(X,φ): It must make a significant increase in a coarse
vicinity of its local maxima caused by streaks. This is
true, since if the angle φ gets close to the streak orien-
tation angle, the SQF streak segment filter response be-
comes already large due to its non-zero width and short
length. See Fig. 6. The coarse angular resolution in
Step 1 of the above procedure is therefore given by the
shape of the SQF filter.
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2.8. Priors

We chose a uniform distribution

p(i1,2 | φ, j) =

(
mj,φ

2

)−1

which takes into account the varying number of valid pix-
els in a sheared image column j. We also use uniform

p(j | φ) = nφ
−1,

where nφ is the number of columns in image sheared by
angle φ.

We observed that the streakless model evidence p0(X |
φ) is heavily dependent on φ, a typical situation is shown
in Fig. 7. The largest deviations occur around angles
φ = 0◦ φ = ±45◦, and φ = ±90◦. We observed that this
artefact is partially caused by non-zero contrast between
the CCD chip segments (visible in Fig. 1). Sometimes,
the boundary is even falsely detected as a streak. Another
factor influencing this artefact is the discreteness of the



SQF filter kernels that are not completely rotationally co-
variant as they should be.

In this paper we mitigated the artefacts by using p(φ) as
a counter-weight. We fit p(φ) to each image such that

p0(X | φ) p(φ) = κ(X), (32)

where κ(X) is a constant per image X . We essentially
learn the prior distribution for shearing angles

p(φ) ∝

{
0, φ /∈ Φ,

1
p0(X|φ) , φ ∈ Φ,

(33)

where the p(φ) is obtained after renormalization. We use
interval Φ = [−73.5,−5.5] ∪ [5.5, 73.5] as a way to re-
duce the effect of CCD chip structure.

This procedure could be viewed as a way of learning a
background evidence independent on the shear angle, i.e.
p0(X | φ) = p0(X). This is quite a strong assumption: A
complete removal of angular anisotropy is a good model
only if the images are obtained by a telescope with side-
real tracking so that stars do not appear as short streaks.
Otherwise, it must be taken into account that finding a
streak parallel to the stars streaks is a more difficult prob-
lem than finding a streak at a different orientation. From
a theoretical point of view, this should pose no problem
to the MLBI. Practically, we had problems. We plan to
avoid our artefact mitigation solution in the future work
by a better image representation and by an explicit model
for the CCD structure.

3. EXPERIMENTS

The principal goal of the experiments is to assess the
quality of the detection certificate. We consider both
kinds of errors: False detections (false positives) and
missed streak images (false negatives). To capture the
failure rate consistently, we use ROC analysis. A good
overall performance characterization is the area under the
ROC curve (AUC). It corresponds to the probability that a
randomly chosen positive image instance will rank higher
than a randomly chosen negative one [2]. Higher value is
better, an ideal certificate would achieve AUC = 1.

AUC depends on the difficulty of the detection problem
instance. We therefore run a randomized experiment with
simulated streaks of varying length, orientation, position,
and amplitude. We expected that streak length and streak
amplitude are factors that influence the detection problem
difficulty. In order to make the experiment more realistic
we used real streakless images as background.

3.1. Background Images

Images were obtained from 50cm TAOS sensor from
Lulin observatory, Taiwan. This is the same data set
used in [18]. The field of view of the telescope was
1.3◦ × 1.3◦, the effective image size 2049(V)×2047(H),
16 bit monochromatic, 5.9 s exposure time. The telescope

is passive (no sidereal tracking but regular repositioning
to the initial inertial point). In total, there are 1986 im-
ages in the dataset obtained from seven-hour observa-
tions from three consecutive nights. Images contain arti-
facts of varying degree of severity, mostly reflections off
clouds and stray light getting in the optical system. From
this dataset we manually selected 1528 streak-free im-
ages that had no strong artefacts. These represent ground
truth streakless images in our experiments.

It should be noted that since it is virtually impossible
to eliminate every image containing a streak, the ground
truth set of images is to some degree inaccurate.

3.2. Simulated Streak Images

The simulations are based on the aforementioned back-
ground set. A randomly generated additive streak with
random amplitude is superimposed upon a randomly se-
lected background image. The amplitude a of the gener-
ated streak is characterized by the signal-to-background
ratio (SBR)

SBR = 20 log10

a

σ
, [dB] (34)

where σ is the standard deviation of the background im-
age values after excluding the upper half-percentile. In
our data we typically had σ = 51.4 (median = 27.6, max
= 201.6, min = 13.6).

The step-by-step simulation procedure is as follows:

• Select a random image from the set of background
images (with replacement).

• Select a random SBR ∈ [−30, 20] dB and deter-
mine streak amplitude a from (34).

• Generate random coordinates of a simulated streak.

• Render the streak in the image additively.

As a result, there were 1528 images in the streakless set
and 5923 images in the streak set. This allows ROC anal-
ysis.

Fig. 1 shows an example of a simulated streak.

4. RESULTS AND DISCUSSION

Results are shown in Figs. 8 and 9.

Fig. 8 shows ROC curves for several classes of prob-
lem instance difficulty based on streak length ∆ ∈
[10, 2680] px and SBR ∈ [−20, 0] dB. The ROC value is
obtained from all certification results in each of the listed
sub-intervals. The ROC curve itself is obtained by vary-
ing the threshold T in (11).

Fig. 9 shows the AUC plots as a function of SBR. Each
plotted point represents a subset of experiments for which
the AUC is computed: The x-axis position is the average
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∆ ∈  (10.00,500.00]; SBR ∈  (−20.00,−10.00]; AUC = 0.683
∆ ∈  (500.00,2680.00]; SBR ∈  (−20.00,−10.00]; AUC = 0.842
∆ ∈  (10.00,500.00]; SBR ∈  (−10.00,−5.00]; AUC = 0.881
∆ ∈  (500.00,2680.00]; SBR ∈  (−10.00,−5.00]; AUC = 0.996
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Figure 8. ROC curves for six classes of certification prob-
lem difficulty based on streak length ∆ in pixels and SBR
in dB.
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∆ ∈  (10.00,600.00]
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∆ ∈  (920.00,1220.00]
∆ ∈  (1220.00,1570.00]
∆ ∈  (1570.00,2680.00]

Figure 9. AUC curves as a function of certification prob-
lem difficulty. A high AUC value means a good overall
assessment of the certification quality. Streak lengths ∆
are in pixels.

value of the SBR per subset. This is done for several
subsets of streak length, as specified in the legend.

We clearly see that the ability to certify a streak is de-
creasing with decreasing SBR and/or length of the streak.
For instance, in the class of long streaks with good SBR
(referenced last in the legend of Fig. 8, ∆ > 500 px
and SBR > −5 dB, i.e. 0.56σ) the certification is al-
most error-free. On the other hand, in the most difficult
class of short streaks of low amplitude (∆ ∈ [10, 500] and
SBR ∈ [−20,−10] dB) the certification is not very reli-
able with AUC = 0.683, i.e. with almost 32% error rate.
Since the streak images are modified background images,
cf. Sec. 3.2), we consider the values of AUC close to 0.5
as indicating we are no longer able to distinguish between
a streak image and a streakless image.

The AUC curves in Fig. 9 confirm the conclusions drawn
from Fig. 8. It is interesting to note that except for the
difficult class of short curves (blue, first in the legend),

the performance is similar for the longer streaks, where
the dominant success factor is streak SBR, not its length.

Our results seem to confirm and exceed results reported
by other authors. For instance, [19] conclude: “[. . . ]
the streak significance per pixel about 0.6σ, [. . . ] is
pretty challenging for typical objection detection tech-
niques and invisible to the eye.” For comparison, 0.6σ
is about SBR = −4.4 dB. An example of our simulation
and detection at this level of SBR is shown in Fig. 10.
As can be seen from the cyan ROC curve in Fig. 8, we
can certify streaks with even lower SBR very reliably. If
the streaks are shorter (red curve), we can still detect over
70 % of streaks, with false positive rate under 10 %.

We can see in Fig. 9 that streak lengths ∆ ∈ (10, 600]
are detectable with a greater error rate than the longer
ones. Indeed, very short streaks or streak tracks detec-
tion require much higher SBR. For example, [5] claims
“[to be capable] of extracting tracks of streak with signal-
to-noise ratio near 1.5 (i.e. 3.5 dB).” They are forming
longer streaks from such tracks, but the method is lim-
ited by the segment-then-track approach where the final
performance is mostly determined by the segmentation;
their result thus demonstrates the difficulty of detection
of short streaks. Similarly, [12] works with very short
streaks (10-pixel streaks) and signal intensities per pixel
1.0σ (0 dB). This we consider a very good result.

The work [11] reports detection probability for different
length of streaks with the ratio between maximum pixel
value and noise (MtN) of 0.6. This metric is not directly
comparable to ours.

5. CONCLUSIONS

In summary, the proposed procedure shears the image
over a well-chosen set of angles and performs vertical
streak evidence integration per rotation. The shearing
makes it somewhat similar to existing methods [12, 19].
Our method differs by avoiding exhaustive search over all
angles, by unsupervised learning of parametric probabil-
ity distributions per rotation angle for each input image,
and by formulating the problem as MLBI which opens
space to generalizations.

Although data and evaluation methodologies in our pa-
per and the work of other authors are not identical, we
can say our results confirm and partially exceed perfor-
mance of the state-of-the art methods. In particular, in the
class of difficult problem instances with SBR of −5 dB
to 0 dB and streak length 10 to 500 pixels, we achieved
AUC ≈ 0.97, which means that the Bayesian detection
certificate is wrong in just 3% of cases. Note that once
the certificate confirms a streak presence, the MLBI pro-
cedure also detects it (it gives its position parameters).

In the current paper we considered only two statistical
models: Streak is present/streak is absent in image. More
models are possible: The k-th model would assume k
streaks (k ≥ 0). Almost arbitrary family of models is
possible: Straight streaks vs curved streaks etc. Multiple
level inference (MLBI) is quite a general principle. It can
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Figure 10. Example of a simulated streak with SBR =
−5.26 dB and length ∆ = 306 px. This shows that our
simulation at a given SBR is consistent with the SNR of
streak simulations used in [19]. From top to bottom: Sim-
ulated streak, streak with a frame indicating its pose, de-
tection result.

be thought of as an optimal procedure from information-
theoretic point of view, a procedure that decides on the
presence/detectability of an object in data.

For both p0 and p1, we assumed that the distributions
are pixel-wise independent. This could be improved
by considering dependencies among pixels, even in the
streakless image model. One must not be too ambitious,
though, because the polynomial computability of the ev-
idences is easily lost.

ACKNOWLEDGMENTS

This work was supported by the CTU Internal grant
SGS16/161/OHK3/2T/13. Special thanks go to Toshi-
fumi Yanagisawa of JAXA who made their image data
available to us.

REFERENCES

1. A. Ciurte and R. Danescu. Automatic detection of
meo satellite streaks from single long exposure as-
tronomic images. In 2014 International Conference
on Computer Vision Theory and Applications (VIS-
APP), volume 1, pages 538–544, Jan. 2014.

2. T. Fawcett. An introduction to ROC analysis. Pattern
Recognition Letters, 27(8):861 – 874, 2006.

3. M. Felsberg and G. Sommer. The monogenic sig-
nal. IEEE Transactions on Signal Processing, 49
(12):3136–3144, Dec. 2001.

4. P. S. Gural, J. A. Larsen, and A. E. Gleason. Matched
filter processing for asteroid detection. The Astro-
nomical Journal, 130(4):1951, 2005.

5. A. E. Kolessa. Detection of Faint Space Debris Ele-
ments with Unknown Orbits. In 6th European Con-
ference on Space Debris, volume 723 of ESA Special
Publication, page 143, Aug. 2013.

6. J.-G. Leu. A computer vision process to detect and
track space debris using ground-based optical tele-
photo images. In Proceedings 11th IAPR Inter-
national Conference on Pattern Recognition, pages
522–525, Aug. 1992.

7. R. Litman, S. Korman, A. Bronstein, and S. Avi-
dan. Inverting RANSAC: Global model detection via
inlier rate estimation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recog-
nition, pages 5243–5251, 2015.

8. D. J. C. MacKay. Information Theory, Inference, and
Learning Algorithms. Cambridge University Press,
2003.

9. S. Maksim. A Comparison Between a Non-
linear, Poisson-based Statistical Detector and a Lin-
ear, Gaussian Statistical Detector for Detecting Dim
Satellites. In Advanced Maui Optical and Space
Surveillance Technologies Conference, page 44,
Sept. 2012.



10. R. Marchant and P. Jackway. Feature detection from
the maximal response to a spherical quadrature fil-
ter set. In Proceedings International Conference on
Digital Image Computing Techniques and Applica-
tions (DICTA), pages 1–8, Dec. 2012.

11. T. Schildknecht, K. Schild, and A. Vannanti. Streak
Detection Algorithm for Space Debris Detection
on Optical Images. In Advanced Maui Optical
and Space Surveillance Technologies Conference,
page 36, 2015.

12. M. Tagawa, T. Yanagisawa, H. Kurosaki, H. Oda,
and T. Hanada. Orbital objects detection algorithm
using faint streaks. Advances in Space Research, 57
(4):929 – 937, 2016.

13. M. Uetsuhara and N. Ikoma. Faint Debris Detec-
tion by Particle Based Track-Before-Detect Method.
In Advanced Maui Optical and Space Surveillance
Technologies Conference, Sept. 2014.

14. J. Virtanen, J. Poikonen, T. Säntti, T. Komulainen,
J. Torppa, M. Granvik, K. Muinonen, H. Pentikäinen,
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