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ABSTRACT

Atmospheric density modeling represents one of the
largest sources of error when determining and propa-
gating the orbit of spacecraft and space debris in low-
Earth orbit. In the present work, a framework is devel-
oped to characterize the uncertainty due to intrinsic dif-
ferences between the three emprical atmospheric mod-
els most widely used: DTM-2013, NRLMSISE-00, and
JB2008. The uncertainty in atmospheric density is mod-
eled using an Ornstein-Uhlenbeck process, a stochastic
process adapted for our application in order to understand
how the variability of the aforementioned models affect
the orbit predictions of satellites. Relevant information
for the space debris community is obtained by applying
the methodology to the defunct European environmental
satellite Envisat, the current target of the European Space
Agency’s Active Debris Removal mission.

Keywords: atmospheric density, uncertainty characteri-
zation, orbit propagation, space debris.

1. INTRODUCTION

For large pieces of space debris, orbiting without the
possibility of maneuvering and forever decaying towards
Earth, precise knowledge of the evolution of their orbits
and related uncertainties is needed to concretely under-
stand the progression and consequences of the space de-
bris problem. As well, predicting the evolution of op-
erational spacecraft trajectories in the long-term requires
accurate modeling of the forces affecting their motion.
One of the largest sources of uncertainty in spacecraft or-
bit propagation, especially at low-Earth orbit (LEO) alti-
tudes, arises from the atmospheric drag computation [20].
Some difficulty in attaining truthful forecasts can arise
from the calculation of the drag coefficient [15]. How-
ever, a large contributor to the total uncertainty is also the
errors in atmospheric density modeling [12]. In addition
to the difficulties in obtaining accurate solar and geomag-
netic indices used in atmospheric models, intrinsic differ-
ences in the various modeling techniques provide their
own uncertainty in the output of these models.

In the last few decades, empirical atmospheric density
modeling has evolved significantly due to the increased
availability of satellite data. To date, three comprehensive
models have been most widely used: first, the 2013 ver-
sion of the Drag-Temperature Model (DTM-2013) [3];
second, the Jacchia-Bowman 2008 (JB2008) model [2];
and third the NRLMSISE-00 model developed by the
Naval Research Laboratory (NRL) as an extension to
Mass Spectrometer and Incoherent Scatter (MSIS) class
of atmospheric models [14]. The three models use inde-
pendent techniques based on various datasets to predict
atmospheric densities as a function of location (latitude,
longitude, altitude) and time (time of day and of year).
Furthermore, different indices for solar and geomagnetic
activity are used in the three models. These factors can
therefore lead to large discrepencies in the models’ den-
sity outputs for a specified input time and place.

The aim of the work presented here is to advance our un-
derstanding of spacecraft orbit propagation uncertainties
and, more specifically, those due to intrinsic differences
in atmospheric density modeling. By applying the three
models in conjunction during the orbit propagation pro-
cess, a stochastic framework is developed to characterize
the error associated with using any single atmospheric
density model output. Modifications to the stochastic
process known as the Ornstein-Uhlenbeck process are
made and then applied to atmospheric density. Section 2
first dives into the problem of orbit propagation. The vari-
ous empirical atmospheric models are then discussed and
compared in Section 3. The stochastic process used and
how it is modified and applied to atmospheric density is
described in Section 4. The framework for orbit propa-
gation under aerodynamic drag uncertainties is then out-
lined in Section 5. Finally, outputs of the framework are
displayed in Section 6 for the defunct European environ-
mental satellite Envisat.

2. ORBIT PROPAGATION

Spacecraft orbiting Earth will encounter many perturbing
forces, altering their trajectory from a perfectly Keplerian
orbit. The dynamics of such a satellite are governed by
a differential equation describing the evolution of its po-
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sition and velocity. In an Earth-centered inertial (ECI)
coordinate frame, it is defined as [19]:

r̈(t) = − µ

r(t)3
r(t) +

∑
i

ai(t, r(t)) (1)

where r is the position as a function of time t, r = ‖r‖,
µ is the Earth’s gravitational parameter, and ai represents
the non-gravitational accelerations. The previous equa-
tion also assumes a perfectly uniform spherical Earth, and
ignores Earth’s oblateness and third-body interactions.

A simple model of Earth’s gravity is often sufficient, as is
the case here, but depending on the application, spherical
harmonic models exist to replicate to very high resolution
the modifications that need to be made to the gravitational
force due to Earth’s oblique shape, topographic anoma-
lies, and density variations. Another significant source
of orbit perturbations, especially for satellites at geosta-
tionary altitudes, is solar radiation pressure (SRP), which
has been of interest lately due to the development of solar
sails. Other external forces related to SRP include radi-
ation due to Earth’s albedo and emissivity and thermal
forces from sun-satellite interactions [19]. Similarly to
atmospheric density, inaccurate predictions of solar ac-
tivity is one of the largest sources of error in calculating
this effect [19]. The most important perturbing force for
Earth-orbiting spacecraft in LEO is, however, the aerody-
namic drag.

Aerodynamic drag is caused by particles interacting with
the satellite body creating an acceleration in the oppo-
site direction of its motion. As the Earth’s atmosphere
can extend up to an altitude of 1000 km, it needs to
be considered for most satellites in LEO, especially for
satellites with large surface areas. Understanding aero-
dynamic drag requires an accurate knowledge of the at-
mosphere, the spacecraft surfaces, and how the spacecraft
interacts with the atmosphere. The standard equation de-
scribing the acceleration due to aerodynamic drag, adrag,
is as follows [19]:

adrag = −1

2

cDA

m
ρṙ2rel

ṙrel

‖ṙrel‖
(2)

where cD is the drag coefficient, A is the satellite cross-
sectional area normal to the incident flow, m is the space-
craft mass, ρ is the atmospheric density, and ṙrel is the
relative velocity of the satellite with respect to the atmo-
sphere. In the present work, the atmosphere is assumed
to be co-rotating with Earth.

Accurately computing the aerodynamic drag on a satel-
lite is important to predict that satellite’s lifetime. A few
decades ago, it was found that none of the atmospheric
models available at the time could correctly be used to de-
duce the influence of satellite drag on orbital motion [8].
The same is true today, although to a lesser degree: uncer-
tainties in modelling aerodynamic drag can have danger-
ous consequences on the expected lifetime of LEO space-
craft and these uncertainties emerge from a large variety
of places. As described in [20], errors in computing the
effect of satellite drag can come from the wrong use of

atmospheric models, uncertainties related to them, or in-
herent unknowns in satellite parameters, among others.

One of the largest sources of errors in the calculation of
aerodynamic drag is the drag coefficient, cD. Histori-
cally, an accepted value of 2.2 was used and no further
effort was deemed necessary as atmospheric models were
still very uncertain [4]. Now that atmospheric density
models are more precise, more effort has been made to
reduce errors in cD. Multiple methods, either analyti-
cal or numerical, exist for measuring the interaction be-
tween atmospheric flow and specific geometric surfaces,
and a rough bound for the drag coefficient is between 2
and 4, depending on shape, altitude, and molecular con-
tent [15, 20, 9]. In addition to errors in cD, uncertainties
in atmospheric densities will also strongly influence the
calculation of aerodynamic drag.

Many attempts at describing random fluctuations and un-
certainties associated with atmospheric density and there-
fore aerodynamic drag have been made since the early
1960s. A first study looked at errors in orbit predictions
by separating drag fluctuations into a sinusoidal compo-
nent and random fluctuations [13]. In a later study, the
effect of drag on the orbital elements was modeled by
considering random fluctuations in drag as a stochastic
process known as the Ornstein-Uhlenbeck process and
the improvement of the stochastic model was highlighted
when applied to a specific satellite, 1960 Omicron [16].
In addition, the author suggested modifying the stochastic
process to improve its accuracy [16]. In a study of torques
experienced by satellites, variations of atmospheric den-
sity were modeled as white noise in the stochastic differ-
ential equation for attitude motion of a spacecraft experi-
encing gravity gradient and aerodynamic torques [17]. A
stochastic model for atmospheric density was also devel-
oped incorporating variations in local atmospheric den-
sities as a second-order stochastic Taylor expansion in
powers of zero-mean Gaussian random variables [5].

The most complete study into the stochasticity of aerody-
namic drag, its source, and its effect on orbital parame-
ters, though, has been carried out recently by the authors
of [6]. They developed expressions for the relation be-
tween errors in atmospheric density and errors in mean
anomaly, related to the in-track position, and mean mo-
tion, related to the semi-major axis (SMA). By compar-
ing density forecasts driven by solar extreme ultraviolet
(UEV) irradiance to stochastic models for atmospheric
density using white noise and Brownian motion, they
showed that Brownian motion closely approximates the
error in EUV forecasts, and therefore forecast errors in
mean anomaly and mean motion grow as t5 and t3, re-
spectively, due to uncertainty in solar irradiance.

All of these studies have tried to capture the uncertainty
associated with random fluctuations in atmospheric den-
sity. However, quantifying concretely the intrinsic dif-
ferences between the state-of-the-art atmospheric models
and how they contribute to uncertainties in orbit propaga-
tion has not been done to date. This study provides a first
glance into how to deal with this issue.



3. ATMOSPHERIC DENSITY MODELING

The atmosphere, and in particular atmospheric densities
at satellite altitudes, are constantly evolving. Density de-
creases exponentially with altitude, and changes in geo-
magnetic and solar activity can cause large density varia-
tions on top of seasonal and diurnal effects. There exists
a large variety of atmospheric models but the most com-
monly used empirical models of the upper atmospheric
are DTM-2013, JB2008, and NRLMSISE-00 [3, 2, 14].
A recent and comprehensive review of atmospheric den-
sity modeling can be found in [7].

3.1. Empirical Atmsopheric Density Models

Originally developed in 1978, DTM is a three-
dimensional thermospheric model based on the diffusive
equilibrium and spherical harmonics of individual atmo-
spheric constituents combined with satellite drag data and
in-situ measurements. New data and improvements of the
algorithms, leading to better agreements for extreme so-
lar and geomagnetic conditions, were added in later ver-
sions and further improvements were made by including
incoherent scatter radar and satellite interferometer data
as well as different proxies for solar activity. The latest
version, released as DTM-2013, includes a large dataset
from GRACE, CHAMP and the GOCE satellite and uses
F30 as a solar activity proxy, covering the 200-900 km
altitude range and using Kp as its geomagnetic index [3].

The Jacchia atmospheric models solve the diffusion equa-
tion to obtain temperature, density and composition data
from 90 km to 2500 km [10]. Systematic variations with
the solar cycle, with solar activity over one solar rotation,
semiannual variations, seasonal-latitudinal variations, di-
urnal variations, variation with geomagnetic activity and
rapid fluctuations from gravity waves are deduced from
satellite drag data and are also taken into account in the
model equations. Improvements were made over the
years by improving the boundary conditions of the dif-
fusion equations and with new satellite data.

The Jacchia-Bowman 2008 (JB2008) model improves on
the Jacchia models by incorporating new solar indices ob-
tained from on-orbit sensor data and using a new semian-
nual density model and geomagnetic index model with
temperature correction equations for high altitudes up to
4000 km [2]. Furthermore, JB2008 includes more data
sources such as daily density values from drag analysis
of numerous satellites, accelerometer data from CHAMP
and GRACE as well as density values from the High Ac-
curacy Satellite Drag Model (HASDM) [18].This model
uses as input a combination of solar parameters (F10.7,
S10, M10, Y10 and their 81-day centered averages with 1,
1, 2, and 5-day lags, respectively) and the Dst geomag-
netic index [2].

The third category, the MSIS-class models differ from
the Jacchia models in that they are thermospheric mod-
els based directly on measurements of atmospheric densi-

ties from satellites and temperatures obtained from inco-
herent scatter measurements at ground stations. A major
upgrade to the MSIS-class of models is the more recent
NRLMSISE-00 model. In addition to a more extensive
data set in spatial range and time period, the model also
includes the satellite drag data which are the basis of the
Jacchia models, bringing forward the advantages of both
types of models. Furthermore, NRLMSISE-00 includes
the effect of anomalous oxygen (O+ and hot atomic oxy-
gen) in the mass density above 500 km, an important
component to satellite drag at these altitudes [14]. Space
weather inputs include the previous day observed F10.7,
the 81-day centered average F10.7 and the 3-hour mag-
netic index ap. The outputs are two temperature values—
the local neutral temperature and the asymptotic value at
the exosphere, i.e., exospheric temperature—as well as
number densities for various neutral species, anomalous
oxygen and the total mass density.

3.2. Comparison of Model Outputs

Although all these models have their benefits and limita-
tions, large uncertainties are present and should be kept
in mind when using them [20]. While authors might pro-
duce standard deviation errors or mean residuals for their
models, the accuracy is often biased towards the altitude
range and time period of the satellite data from which the
model was developed [20]. Early models were shown to
give mean values typically within 10% of observational
data with standard deviations of approximately 15% [12].
Nevertheless, the JB2008 model claims to have standard
deviations of approximately 10% at 400 km, while au-
thors of DTM2013 claim that their model is more accu-
rate than JB2008 at all altitudes [2, 3]. In general, a 10-
15% accuracy should be assumed, although that can be
much higher for short-term and local variations [20].

A better comprehension of the discrepancies between
models can be obtained by considering a globally-
averaged density profile for a specific altitude and time
frame, as for example, is shown in Fig. 1 for 400 km us-
ing inputs for the year 2014. The globally-averaged den-
sity was obtained by discretizing Earth into 5◦ latitude
by 5◦ longitude bins and averaging the density values at
each bin, weighing them according to their surface area.
One can see that the density profiles share a similar shape;
however, differences of up to a factor of 2 are present for
short time periods.

Propagating orbits by using the atmospheric densities
from each model will also lead to diverging orbit param-
eters as the instantaneous differences accumulate over
time. Fig. 2 shows the change in SMA for a spacecraft
in Envisat’s orbit with a cross-sectional area of 10 m2

when propagating its polar orbit using each atmospheric
density model for 2014 (solid lines), following the propa-
gation method explained in Section 5. Envisat is assumed
to be in a polar orbit at an altitude of 765 km, an inclina-
tion of 98.3◦, and an eccentricity of 10−4. After one year,
a difference of over 30% is present between the change
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Figure 1. Globally-averaged atmospheric density at
400 km for 2014
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Figure 2. Change in SMA for Envisat’s orbit

in SMA that used DTM-2013 and the one from the other
two models. This is due to DTM-2013 atmospheric den-
sities being higher than the other two models for Envisat’s
orbit. The same analysis for the year 2000 (dashed lines)
demonstrates up to a 25% difference in SMA change af-
ter one year between the smallest and largest predictions.
The differences witnessed in these examples suggest a
need for quantifying the uncertainty in atmospheric den-
sity predicted by the three models.

4. DENSITY VARIATIONS AS A STOCHASTIC
PROCESS

4.1. Stochastic Processes

A stochastic process is a collection of random variables
that evolve with time. Unlike a deterministic process,
which has a unique solution, a stochastic process can ex-
pand into infinitely many paths. The most well known
stochastic process is the Wiener process, also known as
standard Brownian motion, and is most commonly used
to describe uncertainties in dynamical systems as it is
the integral of ideal white noise. A Wiener process,
W = {Wt, t ≥ 0}, is a continuous stochastic process

that has independent increments which follow the same
Gaussian distribution [11].

Another stochastic process, also commonly used to de-
scribe the physics of Brownian motion, is the Ornstein-
Uhlenbeck process [11]. It has been applied to describe
the velocity of Brownian particles undergoing friction
and is dependent on the Wiener process. The key prop-
erty of the Ornstein-Uhlenbeck process is that it is mean-
reverting: there is a long-term tendency to drift towards
a mean value. It is often used in economics to stochas-
tically model interest rates, currency exchange rates and
commodity prices. The stochastic differential equation
(SDE) defining the Ornstein-Uhlenbeck process Xt is as
follows [11]:

dXt = θ(µ−Xt)dt+ σdWt (3)

where θ is defined as the speed of reversion, µ is the
mean, and σ is the instantaneous volatility. A larger θ
increases the speed at which Xt reverts back to its mean
µ. A larger σ increases the intensity of the fluctuations.
The long-term variance of the process is defined by its
two parameters [11]:

V ar(Xt) = σ2/2θ (4)

4.2. Ornstein-Uhlenbeck Process for Atmospheric
Density Modeling

An Ornstein-Uhlenbeck process with time-dependent pa-
rameters can also be defined, where µ, σ, and even θ can
be considered to vary as a function of time. This pro-
cess is often used in statistics in the context of degrada-
tion processes and survival analysis. A more general SDE
with time-dependent parameters can therefore be defined
as follows:

dXt = θt(µt −Xt)dt+ σtdWt (5)

In such a process, the long-term variance, defined by
Eq. (4) for a standard Ornstein-Uhlenbeck process, will
also become time-dependent, as follows:

s2t = σ2
t /2θt (6)

with st being the long-term time-dependent standard de-
viation.

Atmospheric density at a certain geographic position fol-
lows daily cycles due to the sun’s influence on the expan-
sion and compression of the atmosphere as it heats and
cools. Similarly, as a spacecraft orbits Earth, it will wit-
ness orbital cycles in the atmospheric densities it encoun-
ters, and those cycles will evolve over time. Two further
modifications to the general time-dependent Ornstein-
Uhlenbeck process are proposed here for describing this
evolution: first, a tendency to follow the varying mean;
and second, the additional property of keeping the pro-
portional distance to the mean and standard deviation the
same as in the standard Ornstein-Uhlenbeck process.



The main effect of the first modification is that, for any
point in time, the distance between the sample path of
the process and the mean is the same as the standard
Ornstein-Uhlenbeck process. The advantage of this mod-
ification is that if any large, or cyclic, variations are
present, as is the case for atmospheric density, then in-
stead of simply drifting towards the mean, the process
will also follow the fluctuations, keeping the evolutions
of both the process and the mean in agreement.

The second modification seeks to control the fluctuations
of the process in order to keep the proportional distance
to the mean and standard deviation the same as for the
standard Ornstein-Uhlenbeck process, for any point in
time. The advantage of this is similar to the advantage
of the first modification. It will follow more closely
the relative path of the standard Ornstein-Uhlenbeck pro-
cess when compared to its mean and standard deviation.
In the long-term, the general time-dependent Ornstein-
Uhlenbeck process (Eq. (5)) can drift to larger distances
away from the mean than the process with the two modi-
fications, not representative of the properties of the stan-
dard Ornstein-Uhlenbeck process (Eq. (3)).

Combining the two changes, we arrive at a modified
Ornstein-Uhlenbeck process with time-dependent param-
eters. The SDE describing this process is as follows:

dXt = θt(µt−Xt)dt+σtdWt+dµt+
Xt − µt

st
dst (7)

where the third and fourth term on the right-hand side
represent the first and second modifications proposed, re-
spectively.

The modified Ornstein-Uhlenbeck stochastic process can
be applied to atmospheric density, and in particular, to or-
bit propagation due to atmospheric drag, by considering
the sample path of the process as the atmospheric densi-
ties experienced during the satellite trajectory through-
out the propagation period. The modified Ornstein-
Uhlenbeck process can also be applied to study the in-
fluence of the uncertainty in a specific model by using
the calculated value from that model and its claimed ac-
curacy for µt and st, respectively. However, the object of
this study is to determine the effect of the uncertainty due
to the intrinsic differences between the three models sum-
marized in Section 3. This can therefore be measured by
considering µt as the mean at every point in time of the
three atmospheric density models, DTM-2013, JB2008,
and NRLMSISE-00, and st as their standard deviation.
In doing so, the stochastic framework implicitly assumes
that no single atmospheric model is more accurate than
the others and that the uncertainty in the atmospheric
density is in fact captured by the differences between the
models. Unlike µ and s, which are obtained directly from
the models, θ is a property of the Ornstein-Uhlenbeck
process and can therefore be kept constant. When applied
to atmospheric density, Eq. (7) now becomes:

dρt = θ(µt−ρt)dt+σtdWt +dµt +
ρt − µt

st
dst (8)
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Figure 3. Ornstein-Uhlenbeck process applied to atmo-
spheric density

An example sample path of the Ornstein-Uhlenbeck pro-
cess using Eq. (8) can be found in Fig. 3. The orbit of
Envisat was propagated for 0.2 days (≈ three orbits) us-
ing the mean atmospheric density from the three mod-
els (solid black line) to calculate aerodynamic drag. The
dashed black lines represent µ±s and the dotted lines rep-
resent the densities from each model. In parallel, Eq. (8)
was propagated to obtain a sample path of the density,
shown by the light blue solid line. To emphasize the
need for the two modifications to the stochastic process,
a sample path solution using the SDE in Eq. (5) instead
of Eq. (8) is shown by the purple line, while a sample
path solution using only the first, but not second modifi-
cation, is shown by the green line. One can see how the
green line diverges from the mean value for low densi-
ties even though the three models are in close agreement.
The same random increments generated by the Wiener
process are kept for the three sample paths to emphasize
the difference between each process.

A value for θ of 10−6 was chosen for the results pre-
sented in Fig. 3: using another value of θ does not only
change the speed at which the random variable reverts
back to the mean, it also changes the value of the in-
stantaneous volatility, σt, since the long-term variance in
Eq. (6), s2t , is fixed by the values of atmospheric density
found in the three models. Therefore, an increase in θ
leads to an increase in the instantaneous volatility. Larger
θ values displayed too strong fluctuations in density not
representative of actual density variations. On the other
hand, smaller values of θ led to slower and smaller drifts
in the observed trend, an indication of the worst-case sce-
nario when larger departures from the mean are kept for
longer periods of time. A sensitivity study on this param-
eter can be found in Section 6. In the following section,
the numerical integration method is explained, where, un-
like for the results in Fig. 3, the value of density from
the sample path will be used to compute the orbit. The
mean density was used here in order to provide a valid
and meaningful comparison between the sample paths.



5. STOCHASTIC ORBIT PROPAGATION

Now that a stochastic process for atmospheric density has
been determined, the SDE displayed in Eq. (8) can be
coupled with the differential equation defining a satel-
lite’s orbit in Eq. (1), assuming aerodynamic drag is the
only non-gravitational acceleration:

r̈(t) = − µ

r(t)3
r(t)− 1

2

cDA

m
ρtṙ

2
rel

ṙrel

‖ṙrel‖
(9)

Eqs. (8) and (9), propagated alongside one another, de-
fine the developed framework for the uncertainty charac-
terization of aerodynamic drag and its effect on orbital
propagation due to intrinsic differences in empirical at-
mospheric models.

Recently, numerical solutions to SDEs have quickly been
expanding because of increasing computational power
and the fact that most typical integration methods per-
form poorly when applied to SDEs [11]. The Milstein
method is one of the most simple, yet effective, integra-
tion methods for SDEs [11]. For an SDE of the form:

dX(t) = a(X, t)dt+ b(X, t)dWt (10)

the Milstein algorithm takes the form [11]:

xi+1 = xi + a(ti, xi)∆ti+1 + b(ti, xi)∆Wi+1

+
1

2
b(ti, xi)

∂b

∂x
(ti, xi)(∆W

2
i+1 −∆ti+1)

(11)

with ∆Wi = zi
√

∆ti and where zi is chosen randomly
from N(0, 1). Applying the Milstein method to Eq. (8),
and noting that there is no dependence of the b(x, t) term
on x in our case, gives:

ρi+1 = ρi + θ(µi − ρi)∆ti+1 + σi∆Wi+1

+ ∆µi+1 +
ρi − µi

si
∆si+1

(12)

This method is first-order, and higher order methods were
not attempted due to their dependence on atmospheric
density values at intermediate time steps, and hence,
more evaluations of the three atmospheric models lead-
ing to much longer computation times.

The framework revolves around propagating the coupled
Eqs. (8) and (9) in parallel. The first-order ODE in Eq. (9)
is integrated forward by using the desired numerical inte-
gration method and assuming constant atmospheric den-
sity over the time step to manage computation times. The
Runge-Kutta Dormand-Prince (RKDP) solver was used
for the results presented in Section 6 with a time step of
1 s. Atmospheric densities from the three models, their
mean and their standard deviation are determined using
r(t) and ṙ(t) at every time step and Eq. (12) can then be
applied. The initial density ρ0 was calculated to include
an initial uncertainty as follows:

ρ0 = µ0 + z0s0 (13)

Figure 4. Flowchart of the algorithm

where z0 is chosen from N(0, 1) and s0 is the standard
deviation of the densities from the three models at the
initial position. The normally distributed random number
with zero mean and unit variance can be obtained using
the Box-Muller transform. Using a pseudo-random num-
ber generator, one can obtain two random numbers, u1
and u2, uniformly distributed between 0 and 1, and trans-
form them into a normally distributed random value, z, in
the following way:

z = cos(2πu1)
√
−2 lnu2 (14)

Eqs. (8) and (9) are propagated for the desired period
of time. The entire process is repeated 1000 times in a
Monte Carlo simulation in order to obtain probability dis-
tributions for the orbital parameters over the time frame.
The complete framework is represented in a flowchart in
Fig. 4: the input is the initial orbital parameters; the out-
put of the procedure are the sample paths for the orbital
parameters, as well as their probability distribution over
time from the Monte Carlo simulation.

6. RESULTS

The simulation was performed for Envisat for the year
2000, that is, using the solar indices measured during that
year as input to the three atmospheric models. A value of
2.2 was adopted for cD, an approximate constant cross-
sectional area of 10 m2 was assumed, and a mass of 7828
kg was chosen [4, 1]. Furthermore, Envisat’s orbital pa-
rameters as presented in Section 3.2 were set as the initial
conditions.

The orbital parameters that are most affected by aerody-
namic drag and its variability are the SMA and the mean
anomaly [6]. Indeed, no significant changes in eccentric-
ity, inclination, or right ascension of the ascending node
were found in any of the simulations. As we are con-
cerned with the changes in the orbit and not the position
of the satellite within its orbit, only the SMA solutions
will be considered.

Fig. 5 shows the evolution of the probability density func-
tion (PDF) for the change in SMA every two months for
the runs with θ = 10−6. As can be expected, the dis-
tribution widens over time: a mean monthly decrease of



∆ SMA (m)
-300 -250 -200 -150 -100 -50 0

P
ro

b
a
b
ili

ty
 D

is
tr

ib
u
ti
o
n
 F

u
n
c
ti
o
n
 (

m
-1

)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

4 M

6 M8 M10 M

2 Months

12 M

Figure 5. Evolution of the PDFs for the change in SMA
at two-month intervals

approximately 22 m is observed, with a mean decrease
of 260 m after one year, while the standard deviation of
the distribution ranges from 2 m after one month to 12 m
after one year.

A useful parameter to measure the uncertainty on the
change in SMA in the propagation is the coefficient of
variation, cV , also known as the relative standard devi-
ation; it is a measure of the dispersion of a probability
distribution, and is defined as:

cV =
σ

|µ|
(15)

with µ being the mean of the distribution and σ its stan-
dard deviation. The advantage of using this value, in-
stead of the regular standard deviation, is its ability to
provide comparable information between different prob-
ability distributions. While a standard deviation usually
only provides information in the context of its dataset and
the mean associated with it, the coefficient of variation
can be used to compare distributions over time, and here,
even to compare various simulations.

A sensitivity study on θ was performed in order to under-
stand the dependence of the framework on this param-
eter. Fig. 6 displays the evolution of the coefficient of
variation for each of the Monte Carlo simulations with a
particular value of θ. These results show how modify-
ing the speed of reversion θ changes the evolution of the
coefficient of variation. In this case, the mean decrease
in SMA was the same for all the value of θ considered
(seen in Fig. 5 for θ = 10−6), but the standard deviation
soared for smaller values of θ, leading to higher values of
the coefficient of variation. A feature that is repeated in
most of the cV profiles is that the coefficient of variation
decreases with time, unlike the standard deviation. The
starting value of the coefficient of variation after one day
for all of the cases is approximately 15%, and it varies
to approximately 2, 4, 12, and 17% after one year for θ
values of 10−5, 10−6, 10−7, and 10−8, respectively.

As previously mentioned, a θ value of 10−5 displayed
fluctuations not physically representative of actual den-
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Figure 6. Evolution of the coefficient of variation

sity variations, while a value of 10−8 represents the
worst-case scenario, when larger departures from the
mean persist for longer periods of time. For comparison,
the coefficient of variation and its evolution were also cal-
culated from the three deterministic orbital propagations,
each computed with one of the three atmospheric mod-
els as seen in Fig. 2. The value of µ was taken as the
mean of the three decreases in SMA and σ as their stan-
dard deviation and the corresponding result for cV is also
plotted in Fig. 6. In this case, the coefficient of variation
of the orbital decay from the three models varies more
significantly than for the framework results, decreasing
for half of the year from 15 to 4% and then increas-
ing to 9% after one year. It can be concluded that the
developed framework provides a more accurate quantifi-
cation of the uncertainty than the orbit propagation us-
ing each model separately as the Monte Carlo simulation
will consider every plausible scenario. For example, if
the three profiles of the SMA changes incidentally cross
paths at some point, the coefficient of variation calculated
from the three models would be small (0 at the crossing
point), while the Monte Carlo simulation using the mod-
ified Ornstein-Uhlenbeck process would provide a much
larger and more realistic uncertainty estimate.

7. CONCLUSION

In this work, the three most widely-used empirical at-
mospheric density models were compared and a frame-
work was developed to characterize the uncertainty in or-
bit propagation due to their intrinsic differences in atmo-
spheric density modeling. The stochastic process known
as the Ornstein-Uhlenbeck process is described, and two
modifications are outlined for its application to atmo-
spheric density stochastic modeling. The propagation
method, which makes use of the three atmospheric mod-
els in conjunction, is detailed, and the framework is ap-
plied to the defunct European satellite Envisat.

It was shown that the developed framework was more
appropriate to measure the uncertainty in orbit propa-
gation due to aerodynamic drag than simply comparing



the propagated orbits that used individual atmospheric
models. However, a strong dependence of the stochastic
framework on its θ parameter was noticed. A worst-case
scenario, obtained by fixing θ = 10−8, showed twice the
uncertainty after one year, at 17%, than the relative stan-
dard deviation from the three individual models, at 9%.
On the other hand, using a value of θ = 10−6 resulted in
uncertainty on the change in SMA that decreased to 4%
after one year.

The uncertainties computed here in orbit propagation
would come on top of uncertainties in aerodynamic drag
arising from other sources, such as the unpredictabil-
ity of the solar flux. A sensitivity study on orbital pa-
rameters and other initial conditions could also be per-
formed. It would provide the results needed to develop
an appreciation of the framework for different applica-
tions. This methodology could also be used to gain in-
sight into individual atmospheric models. By applying
the described method to a single model with uncertainties
for that model’s input parameters, uncertainties on the
model outputs and their effect on orbit propagation could
be assessed. Furthermore, although only the semi-major
axis was considered here, analyses on the mean anomaly
of satellites could also be done. Finally, information on
the rotational dynamics of spacecraft could be obtained
by coupling attitude propagation to the framework and
including the influence of the aerodynamic torque.
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the McGill Engineering Doctoral Award. The au-
thors are further grateful for the support of Natural
Sciences and Engineering Research Council of Canada
(NSERC). Computations were made on the supercom-
puter Guillimin from McGill University, managed by
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