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ABSTRACT

Space debris nowadays is widely recognized as a po-
tentially severe problem for (future) space flight activi-
ties. Because of this, surveying orbit regimes via sen-
sors connected to a processing system aimed at creating
and maintaining a catalogue of all detected objects au-
tomatically is thoroughly researched (Space Surveillance
and Tracking, SST). In this context Institute of Space
Systems, Technische Universität Braunschweig, develops
simulators for such processing systems, one approach be-
ing Datastream Management Systems (DSMS). Just like
conventional database management systems DSMS cope
with huge amounts of data and provide standardized and
optimized means for data storing and retrieving. Un-
like conventional database management systems DSMS
don’t store data tuples perminently, but instead continu-
ously expect incoming data streams and provide outgoing
data streams while providing standardized and optimized
means for controlling data flow and processing. Sen-
sor data streams may, for example, be branched to dis-
tribute computation load on different processors and/or
machines, joined to collect data from different sensor
sources, filtered to eliminate ”bad” sensor data, aggre-
gated to calculate minima/maxima values etc. Process-
ing may be modified without recompiling and, in many
DSMS, during run-time. Whenever new data tuples ar-
rive, processing is kick-started (data-driven processing).
Overall, DSMS have been explicitely developed with dy-
namic, adaptable, real-time processing of and reaction on
high-rate continuous input of data in mind making them
an ideal candidate for usage in SST systems.

This paper evaluates a DSMS in the context of a radar
system simulator (RSS). For this purpose one basic func-
tionality of a RSS is implemented and executed: Initial
Orbit Determination, i. e. a first estimation of an object’s
orbit based on – in this case: simulated – measurements.
It is described what steps have been taken to achieve de-
velopment of a prototype and what challenges arose. Re-
sults of a general test case are presented and discussed.
A benchmark test case follows where the prototype is put
under stress by sensor data at a realistic rate.
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1. INTRODUCTION

Modern space environment usage requires an accurate
and up-to-date knowledge of as many objects on Earth’s
orbits as possible. Space Surveillance and Tracking
(SST) describes the effort to achieve this by surveying
space via ground-based sensors and by collecting and
processing the measurements taken at a central place in
order to create and maintain a catalogue of all detected
objects and their orbits. Such a SST system must be
able to cope with sensor data from multiple sensors at
high rates. It must be able to task sensors, to schedule
the processing of all input data while refreshing the ex-
isting information right on time. Because of this, tech-
nologies and algorithms for SST systems are a promising
subject of research. Institute of Space Systems (IRAS)
at TU Braunschweig follows the approach of simulating
a SST system specialized for connecting radar sensors:
Radar System Simulator (RSS). RSS utilizes a relational
database in which all measurement, object and control
data is stored. One software tool named PROCOR han-
dles the control data, which is used by other software
tools to determine their tasks on the data. This way, pro-
cessing is coordinated. RSS is detailed in section 3.

This approach, though very promising, can be counted
as conventional. The relational database is stored in sec-
ondary memory. Despite the trend to use Solide-State-
Drives (SSDs) for this kind of computer memory, the
factor between their speed and commonly used primary
memory like DDR3 RAM reigns at about 4 – with the
successor DDR4 being available already. As a result, in
SST context, it seems wise to rely more on primary than
on secondary memory.

Additionally, in RSS, the data flow is mainly controlled
by the separate software program PROCOR and by the
way the other seperate software programs interpret the
control data in the data base. Changing data flow thus
may involve reconfiguring or even recompiling these pro-
grams. A more flexible way to adjust data flow could be
necessary to face future challanges.
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Another point is that conventional SST systems must im-
plement some kind of ”polling” for new data at many
places in order to establish a continuous processing. This
leads to delays in processing because the polling time in-
tervals set at in one situation may be unsufficient for an-
other situation. A more adaptable way would be advis-
able in the light of SST systems, since their system load
may vary significantly.

Because of all this, another approach researched at IRAS
involves a rather new kind of data processing technol-
ogy designated as Data Stream Management Systems
(DSMS). In these variants of common data bank sys-
tems, a query to the system results in so-called operators,
sources and sinks being created and interlinked. This
way, the sources, operators and sinks provide continuous
data processing chains which indefinitly wait for new in-
put data and automatically kick-start processing as soon
as new data elements arrive (called Data-Driven Process-
ing). The processing is done in primary memory only.
This way, fast ”data streams” run from one station in the
system to the next allowing fast reaction times. A sched-
uler which ensures the timely processing of all data is an
inherent part of DSMS. Section 2 gives a short overview
of the current DSMS environment.

For this approach, a DSMS called STREAM is evaluated
for usage in SST context. The system is elaborated upon
in section 4.

Two test cases have been defined in order to make first
evaluations. The first test case is a general one which
targets executing an Initial Orbit Determination (IOD)
on simulated radar measurement data. The radar data is
produced by a RSS program called Messwertgenerator
(MWG, ”Measurement Generator”, cp. section 3). The
second test case is a benchmark test case targeting IOD
execution with the same kind of data as before, but with
a realistic timing for each data element. Several runs are
defined with varying data rate of the measurement data.
Metrics are defined to allow judging the outcome of these
test case runs on the test system. All of this is explained
in section 5.

Some work had to be done to make STREAM fit for
the execution of these test cases. Most importantly, the
RSS program which actually executes IOD had to be in-
terfaced and STREAM had to be extended to allow im-
plementation of an IOD operator. Section 6 gives an
overview of these modifications.

Section 7 shows the results of the test case executions and
discusses them. Section 8 gives a conclusion.

2. RELATED WORK

A wide range of DSMS are available. They can, for ex-
ample, be divided into commercial and free ones. Com-
mercial distributors are, among others, IBM (InfoSphere
Streams [1]), Microsoft (StreamInsight [2]), Oracle (Or-
acle Stream Analytics [3]) and AT&T (GigaScope [4]).

Freely available systems are usually results of projects
at research institutions, e. g. the universities of Berkley
(TelegraphCQ [5]) and Stanford (STREAM [6]) as well
as MIT (Borealis [7]). Some of the commercial DSMS
are based on freely available ones.

Another line can be drawn in regards to code avail-
ability of these systems. As a rule, this boundary is
generally the same as between commercial and freely
available systems. The open-source nature of most ”re-
search DSMS” was one of the main factors for selecting
STREAM for our research, even though the project from
which it emerged from ended in 20061. This is, however,
common in research because the availability of project
finances is often essential.

Programming languages used for these systems are nor-
mally C (e. g. TelegraphCQ), C++ (e. g. STREAM [8])
and Java (e. g. Odysseus [9]).

Contrary to common relational data bank systems, there
is no standardized query language to communicate with
these systems (yet). As a result, interoperability between
the systems is not ensured. However, the languages used
generally are derived from Standard Query Language
(SQL) – the standard which is used for common data base
systems. Some query languages become more and more
popular. Most notably, these are StreamSQL and Contin-
uous Query Language (CQL).

The technical approaches of DSMS vary radically. For
example, TelegraphCQ is based on the common database
system PostgreSQL, which leads to a rather seamless
connection between common databases and DSMS. On
the other hand, STREAM, for example, has been explic-
itly designed as a DSMS from the start leading to an eas-
ier and more complete integration of new DSMS concepts
as well as a more ”lean” system.

STREAM does not go ”all the way through” with the spe-
cialization, though. In fact, the idea was to keep most
relational methods like tables, table joins, projection, se-
lection etc. intact. Other systems like Borealis (including
its predecessor Aurora) turn away from these principles.
Borealis also uses a more graphical approach, while other
systems, STREAM included, are heavily based on formal
languages and formal correctness [10].

Current research in the field is done, for example, towards
distributed DSMS, which are able to scale better with in-
put data load by distributing the processing onto differ-
ent machines. Also, so-called Probabilistic Data Stream
Management Systems (PDSMSs) are a subject of current
research. These systems are specifically designed to cope
with uncertain data sets.

1http://infolab.stanford.edu/stream/ (Obtained 2017-04-10)



3. RADAR SYSTEM SIMULATOR

As part of a DLR-funded project, a Radar System Sim-
ulator (RSS) has been developed at IRAS. Its purpose is
to evaluate the impact a given radar sensor has on Space
Situational Awareness (SSA) activities, like building and
maintaining an object catalogue, orbit determination ac-
curacy and more. The simulation environment consists of
several tools:

• MWG (Measurement Generator),

• SMART (Sophisticated Module for Analyzing
Radar Tracklets),

• CAT (Catalogue Analysis Tool),

• PROCOR (Process Coordinator) and

• CAMP (Catalogue Maintenance and Pass Predic-
tion)

The Measurement Generator uses a given population,
which can be made of TLE objects or an artificial pop-
ulation based on the MASTER-2009 Space Debris envi-
ronment [11]. Using a numerical propagator NEPTUNE
(NPI Ephemeris Propagation and Uncertainty Extrapola-
tion), the population is moved forward in time [12]. A
Radar Performance Model (RPM) is used to simulate the
different kinds of radars. The RPM requires the knowl-
edge of the position of the objects on a microsecond time
scale. Reflector and array antennas can be simulated.
The RPM is supplied by Fraunhofer FHR. The simula-
tion will return tracklets of objects that passed the beam
and have been marked as detected. Tracklets may contain
multiple measurements of the same object, giving infor-
mation about azimuth, elevation, range as well as range
rate, signal-to-noise ratio and the probability of detection.
The tracklets are further processed by the PROCOR tool.
It analyses new tracklets and distributes them to SMART
processors that can perform orbit determination (OD). A
SMART instance pre-processes a given tracklet and de-
termines, which OD method to use. For initial OD the
methods Gibbs and Herrick-Gibbs are used as described
in [13]. For statistical OD the methods Weighted Least
Squares (WLS), Extended Kalman Filter (EKF) and an
Unscented Kalman Filter (UKF) are available. The cre-
ated or updated ephemeris are stored in a database. The
tool CAMP will overlook the database and update the
states as needed using the numerical propagator NEP-
TUNE. The implemented pass prediction will provide
forecasts of passes over a given sensor location. This can
either be passed back to MWG or to a real sensor. Once
the entire process chain is running, CAT can monitor the
buildup of the catalogue or determine the individual ob-
ject orbit accuracy over time. All tools have been imple-
mented in FORTRAN using the 2003 standard. Each tool
connects to a Postgres database via FORTRAN-C bridge.

4. STREAM – A DATA STREAM MANAGEMENT
SYSTEM

STanford sTReam datA Manager (STREAM) [6]2, devel-
oped by Stanford University, is a freely-available open-
source Data Stream Management System (DSMS). It has
been written in C++ [8] and is composed of a main li-
brary, a Generic Client and a Dedicated Server. The
main library contains all main functionality, which is
used and extended by the Generic Client and the Ded-
icated Server in order to provide a console tool and a
stand-alone server. A separate package contains a GUI
client, written in Java, that is able to connect to the Dedi-
cated Server.

The Generic Client works mainly with text files. It pro-
cesses a script upon start in order to read queries. Queries
tell a DSMS how to adjust its processing flow. STREAM
uses a Continuous Query Language (CQL) variant which
lets users express nearly everything that can be expressed
in most other CQL variants [10]. An example for a
STREAM Generic Client CQL script is shown in list-
ing 1.

The ”table” and ”source” statements at the top tell
STREAM to create a new data stream which gets its in-
put from a text file called ”numbers.txt”. This data stream
consists of data elements which each contain an inte-
ger value for an attribute called ”some number”. The
Generic Client only supports text files for reading in
and writing out data elements, but STREAM’s Dedicated
Server makes it possible to also receive them from or send
them over network.

The first ”vquery” and ”vtable” statements perform a
CQL query on the number data stream. A 5-second so-
called time window is opened in which all numbers big-
ger than 100 of that stream are stored – as long as they ar-
rived maximal 5 seconds ago. This window mechanism
is common among DSMS and allows creating a ”view”
on a supposedly never-stopping data stream. This view
is updated over time as new data elements arrive. In
STREAM, such a view can either be another stream or
a ”relation” which is the case here. Just like in common
(relational) data base systems, relations can be thought of
as tables with each row containing one data element. The
attributes of the relation can be thought of as columns
of the table. In the background, this relation is actually
realized by a data stream of relational updates. However,
users that write CQL scripts don’t have to bother with this
fact and are able to ”think” in tables. Furthermore, users
of common database systems know Standard Query Lan-
guage (SQL) which CQL is based on. Relations are also
familiar to them. The ”leap” towards STREAM relations
is, compared to other DSMS, easy.

The first ”query” and ”dest” statements convert the re-
lation into a stream again by defining that a new ele-
ment is emitted, when a new element is inserted into the
previously-defined relation. This stream thus makes it

2http://infolab.stanford.edu/stream/ (Obtained 2017-04-10)



Listing 1. Example STREAM Generic Client script. Lines
have been indented for clarity. All indented lines must
actually be on the same line as the next unindented line
above it.

table: register stream
numbers_stream
(

some_number integer
);

source: numbers.txt

vquery: select some_number
from numbers_stream

[range 5 seconds]
where some_number > 100;

vtable: register relation
current_big_numbers_relation
(

big_number integer
);

query: istream
(

select *
from

big_numbers_count_relation
);

dest: new_big_numbers.txt

query: dstream
(

select *
from

big_numbers_count_relation
);

dest: old_big_numbers.txt

possible to react on the occurence of new big numbers
at the time they arrive at the system. This stream is writ-
ten to the text file ”new big numbers.txt” which may be
read by another program.

The second ”query” and ”dest” statements do a simi-
lar task. In this case, the big numbers are written to
”old big numbers.txt”, as soon as they drop from the 5-
second time window.

The term ”time” of DSMS normally differs from actual
time. STREAM, for example, does not really know about
the actual progress of time [14]. The aspect of time is in-
jected into the system by adding a timestamp attribute to
each input data element. STREAM processes data ele-
ments as fast as it can without bothering about the times-
tamps – except that data elements need to arrive at the
system in timestamp order. It is up to users of STREAM
to decide about the timing. As soon as STREAM receives
a data element with timestamp τ , commonly counted in
seconds, it assumes that time progressed from τ − 1.

The CQL script shown is parsed and interpreted in five
phases resulting in five different internal representations
(cp. figure 1). The final representation consists of inter-
connected operators. The script, for example, would be
translated to a source operator which emits new stream
elements from the text file, a window operator creating
a view on the stream, a select operator filtering numbers
bigger than 100, an istream and a dstream operator emit-
ting stream elements and two output operators writing
stream elements to files (cp. figure 2).

All operators have input and/or output queues for ele-
ments that are not processed by the operator yet and for
elements that have just been processed and are due to be
processed by the next operators in the chain.

Like all DSMS, STREAM includes a scheduler which is
responsible for coordinating all operators. The STREAM
version used for this paper contains a round-robin sched-
uler. This is a simple scheduler that cycles through all
operators and lets them execute a certain maximal num-
ber of elements (100000) one after another.

STREAM’s Generic Client is single-core meaning that it
distributes the time of one processor over the different
operators.

5. TEST CASES SETUP

The test cases data consists of one tracklet containing
detections of Envisat by TIRA (Tracking and Imaging
RAdar, Germany), simulated by MWG (cp. section 3).
The detections span is about 822 seconds on 2013-11-22.
They contain, among others, timestamp, azimuth, eleva-
tion, range and the respective rates. An overview of the
data is given in figure 3.

Each detection also contains a tracklet ID. Furthermore,
it is assumed that all detections arrive at the system in the



Text

(C-Strings)

Parse Tree

(NODE struct objects)

Queries

(Query struct objects)

Logical Plan

(Logical::Operator struct objects)

Physical Plan

(Physical::Operator struct objects)

Execution Plan

(Execution::Operator class objects)
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Figure 2. Example CQL script from listing 1, translated
by STREAM into execution operators. The arrows indi-
cate data element flows from one operator to another.
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Figure 3. Radar measurements of Envisat by TIRA as
simulated by MWG. The measurements span over 822
seconds on 2013-11-22 and are used for the general test
case.

correct order concerning the time of their recording and
that one tracklet is sent after another. This way, a tracklet
can be determined ”complete” when a detection arrives at
the system with a different tracklet ID than the detection
before that.

The target of the general test case is to ensure that the
setup is able to execute an IOD based on the tracklet suc-
cessfully. The test case execution is considered success-
ful, if the orbit data output by the system matches En-
visat’s orbit data. The tracklet contains 822 detections,
i. e. the detection rate is 1 per second. The tracklet is
put into the system as a whole meaning that all detections
are input at the same time (but in the correct order). So,
in this case, there is no relationship between the detec-
tion timestamp and the time at which each detection is
inserted into STREAM. The tracklet is only put into the
system once which is why the tracklet ID of processed
detections does not change. In order to allow this one
tracklet to be determined complete at the end, one addi-
tional ”dummy” detection with a different tracklet ID is
sent as the last detection.

The target of the benchmark test case is to set the system
under stress using a realistic detection rate. This target
includes the following:

• Put the tracklet into the system using a clocked tim-
ing.

• Put the tracklet into the system three times directly
after another.

• Increase the input data element rate ι, counted in in-
put data elements per second (ips), stepwise until a
realistic value is reached.

Unlike in the general test case, the tracklet is put into
the system with a clocked timing. This means that each
detection is put into the system at the right time off-
set. The timestamp of the first detection serves as zero-
point for the data and the start of the actual execution of



STREAM’s operators (after initialization) serves as the
zero-point in STREAM execution. It should be noted that
the granularity of this timing is only one second. How-
ever, this granularity is enough for benchmark purposes.

Additionally, the tracklet is put into the system three
times in a row in order to simulate a long-during tracking
session. The run-time of the system is set to τmax = 1800
seconds which allows two consecutive IODs plus some
time buffer.

Lastly, the benchmark test case is executed multiple times
starting with a run in which the tracklet of the general test
case (but excluding the dummy detection) is set as input
for STREAM. The next run is executed using a similar
tracklet as before, but with ιi+1 = ιi +o∆i+1, where i =
0..n is the run number, n the number of the last run, o the
orientation of the input data rate change, ∆ the input data
rate change, ι0 = 1 and ∆0 = 1

2 . At first, ∆i+1 = 2∆i

and o = 1. As soon as the system is not able to cope with
the data rate anymore, ∆i+1 = ∆i

2 and o = −1. From
this point on, ∆i+1 = ∆i

2 always applies. As soon as the
system is able to cope with the data rate again, o = 1. o
keeps changing together with the ability to cope with ιi.
The algorithm ends with ∆n = 1 and i 6= 0.

The data-rate-change approach leads to ι5 = 32 (if the
system is able to cope with ι0..ι4) which is roughly the
detection rate of a radar sensor for a tracking of Envisat.
The intension of this approach is to both fullfill the targets
of the test case and to find an estimate for the input data
rate which the system can cope with.

The ability of the system to handle ι is determined based
on four metrics. The first two concern the operator input
and output queue loads. Qmax(τ) is the maximal queue
load in percent at timestamp τ . Q̄(τ) describes the av-
erage queue load in percent at timestamp τ . Both values
are applied to all maximal queue loads in ]τ − 1, τ ]. Ide-
ally, Qmax(τ) should never exceed 100, but it is possible
for the system to recover, if the value is lower for a long-
enough period of time. Q̄(τ) makes it able to judge if the
system only ”jams” in a few places or overall.

The third metric is L(O, τ) which denotes the ”lag” of
operator O at timestamp τ , i. e. the difference between
τ , the actual current time(stamp), and the timestamp of
the last element emitted by O. Ideally, L(O, τ) = 0 in all
cases, of course, but a small lag can always be expected as
the detections have to be propagated through the system
one after another. A bigger lag may also be tolerable, but
this depends on the scenario.

Contrary to the other metrics, which are used for analysis,
the fourth one is specific to the IOD scenario and used
to decide if the system is able to cope with the current
data rate. It is the idea that the system shall be able to
deliver an orbit derived from the detections without too
much delay, meaning that, after a whole tracklet arrives
at the system, the delay until an orbit is output shall be
lower than a certain threshold. Furthermore, the delay
shall remain constant for both tracklets that are inserted

completely into the system. In the following, the delays
are called LIOD0

and LIOD1
. The threshold value for the

benchmark test case is set to Lmax = 30 and the threshold
timestamp to τLmax = τmax = 1800 is defined.

In order to ensure that IOD still functions as in the gen-
eral test case, the orbit data is compared to Envisat’s orbit
data.

The computer system on which the test cases have been
executed had no CPU-time or memory-consuming tasks
running at the time of test case execution. The computer
had the following specifications:

• Processor: Intel(R) Core(TM) i7-2640M

– Base Frequency: 2.80 GHz
– Max. Frequency: 3.50 GHz
– Number of Cores: 4
– Number of Physical Cores: 2
– L2 Cache: 4096 KB

• Memory

– Type: PC3-10600 Non-Parity (NP) Double
Data Rate Three (DDR3) Technology

– Size: 7886 MiB
– Peak Transfer Rate: 10666.7 MB/s

• Swap: 15466 MiB

• Operating System: Debian GNU/Linux 8.7 (jessie)

• Word length: 64-bit

6. IOD IMPLEMENTATION

STREAM v0.6 has been chosen for a prototype IOD im-
plementation (cp. section 4). For this purpose, several
modifications had to be done.

Lots of the modifications aimed at making STREAM eas-
ier to develop based on current developer tools and ver-
sions. Some of the changes were rather small – e. g.
adding ”#include” statements necessary due to GCC up-
dates –, some were rather big – e. g. changing the build
system to CMake and supporting 64-bit floating point at-
tributes. These changes, however, shall not be the topic
here.

The most important modification was to build an environ-
ment in which new operators (cp. section 4) could be eas-
ily added to STREAM in a modular way. The problem
was that an operator was defined and created at several
different places in the code. This, of course, is a result of
the STREAM script parsing and interpretation steps (cp.
section 4 and figure 1).

In the first data structure transition (from text to a parse
tree), for example, the parser subsystem of STREAM



Listing 2. Grammar rule in STREAM parser subsystem
to recognize the two binary (requiring two parameters)
set operators union (∪) and except (−).

binary_op
: T_STRING RW_UNION T_STRING

{$$ = union_node ($1, $3);}
| T_STRING RW_EXCEPT T_STRING

{$$ = except_node ($1, $3);}
;

operates on parsing rules. One of these rules is shown
in listing 2 and is intended to recognize the two binary
(requiring two parameters) set operators union (∪) and
except (−). If, at the place in the CQL script where
it is allowed to use a binary operator (represented here
by binary op), a string is followed by the union key-
word which then is followed by another string, a union
operator is recognized and the two strings are given to the
function union node(...). union node(...)
creates and fills a union-kind NODE struct and adds the
struct to the parse tree (the first internal representation of
the parsed script). The union-specific contents of that
node are only the two strings containing the two table
names connected via union in the CQL script. If two
strings are connected via except keyword at the place
where the two binary operators may be used in the script,
a similar processing occurs. At this level, just a small part
of the creation of a specific operator is done. However, it
is essential: Recognizing which of these two binary op-
erators a user wants to use. This happens in the parser
subsystem of STREAM.

Several steps later in the process, during the last data
structure transition (from a physical to an execution plan,
cp. figure 1) a C++ class PlanManager, which is part
of the metadata subsystem of STREAM, is told to
instantiate the Execution::Operators. The
PlanManager then executes serveral steps to do this.
One of these steps is to equip the execution operators with
input and output queues. Figure 4 shows how this is done
for the union operator.

Both examples above show important steps of union
operator definition (recognition of the operator’s key-
word) and creation (setting an operator’s input and out-
put queues), but they take place in completely different
subsystems of STREAM. Many other steps are involved,
spread over more parts of the system. Because of this,
adding a new operator quickly was rather complicated.

The implemented solution introduces a new operator
named processing. This one operator serves as
a base class for an operator family processing x
where x is the processing operator type (IOD, for
example). There is now only one (new) subsystem
called processing operators which has to be
modified in order to define and create a new opera-
tor. Its main constituents are shown in figure 5. A
ProcessingOperatorPool holds an arbitrary

PlanManager

+instantiate()

<<execution>>

Operator

PlanManagerImpl

+instantiate()

+inst_queues()

+inst_simple_queue()

(Global)

+set_input_queue()

+set_input_queue_union()

+set_output_queue()

+set_output_queue_union()

Union

+setLeftInputQueue()

+setRightInputQueue()

+setOutputQueue()

Figure 4. C++ classes and functions of STREAM
metadata subsystem responsible for setting union
operator’s input and output queues. PlanManager,
PlanManagerImpl, Operator and Union are
C++ classes. Directly beneath the class names the func-
tions of the respective class are listed. The two arrows
with unfilled ends mean ”is derived from”. The arrows
with the filled ends mean ”calls”.



ProcessingOperator

+run()

+process()

<<execution>>

Operator

+run()

ProcessingOperatorDefinition

+createOperator()

ProcessingOperatorPool

+getDefinitionByName()

+createPool()

 *

creates

Figure 5. Main C++ classes of the new
processing operators subsystem. The nota-
tion resembles the one of figure 4. However, the arrow
with the filled end here means ”creates” and the line
beginning with a diamond means ”contains an arbitrary
amount of”.

amount of ProcessingOperatorDefinitions.
Each definition is capable of creating
ProcessingOperators. These operators are
derived from Execution::Operators. A new
operator can now be easily added by creating a new
definition class and a new corresponding operator class
based on ProcessingOperatorDefinition
and ProcessingOperator. Lastly, the new
definition and operator are connected to STREAM
by adding one code line to createPool() of
ProcessingOperatorPool in which a definition
instance is added to the pool.

The ProcessingOperatorDefinition class also
defines the keyword with which the processing operator
is called in CQL scripts. An example is shown in listing 3
where exampleoperator is used to process the input
attribute example input attr in order to produce
the two output attributes example output attr0
and example output attr1. Currently, input and
output schema (the ordered list of attribute names and
types) of a processing operator have to be identical which
is why two dummy input values are given as input. The
output value produced for example input attr is
invalid in this case.

Formally, a processing operator has the signature

Listing 3. Example Generic Client script section using
an example processing operator exampleoperator.
Lines have been indented for clarity. All indented lines
must actually be on the same line as the next unindented
line above it.

vquery:
select processing exampleoperator

example_input_attr,
42.0,
42.0d

from example_input_relation;
vtable:
register relation

example_output_relation
(

example_input_attr integer,
example_output_attr0 float,
example_output_attr1 double

);

Relation→ Relation

which is the case for many STREAM operators [8]. This
means that an input relation is processed and an out-
put relation is delivered as output. However, in order
to define processing operators correctly, a more detailed
signature must be provided, since attribute number and
types are strictly specific for them. The signature for
exampleoperator, formally named Ex, for ”Exam-
ple”, would be:

Ex : I × F ×D → I × F ×D

or

Ex : I × F ×D

for short where I , F and D describe the sets of possible
values for 32-bit integers, 32-bit floating point numbers
and 64-bit floating point numbers (further sets are C and
S describing single characters and strings). In order to
describe the attribute semantics, a general mapping must
be given, as well:

Ex(innum0, aF , aD) = (aI , outnum1, outnum2)

with ”a” for arbitrary. Using both notations together, it
becomes visible that exampleoperator has a schema
of three attributes, the first one being of type integer, the
second of float and the third of double. The first attribute
is an input attribute named num0, while the other two
attributes are used as output attributes named num1 and
num2.

With the processing operator mechanism in place, an
IOD processing operator was created. For this purpose,
an EcsdIodOperator class has been derived from
ProcessingOperator class which can be used in
CQL scripts by writing processing ecsdiod. The
name was chosen as such, rather than IodOperator,



because other IOD operators may be included in the fu-
ture, apart from the operator presented for this European
Conference on Space Debris (ECSD) paper.

Formally, using the notation introduced before,
EcsdIodOperator, named IODECSD is defined as

IODECSD : I × I
×D
× F × F × F
× F × F × F
× F × F
× I × F × I
× F × F × F
× F × F × F

with

IODECSD(intracklet id, indetection id,

inmjd,

inrange, inazimuth, inelevation,

inrange rate, inazimuth rate, inelevation rate,

inRCS , inSNR,

inintegrations, inprob, inscore,

aF , aF , aF ,

aF , aF , aF )

= (aI , aI ,

outmjd,

aF , aF , aF ,

aF , aF , aF ,

aF , aF
aI , aF , aI ,

outx, outy, outz,

outvx , outvy , outvz )

IODECSD operates on ”complete” tracklets. A tracklet
is said to be complete, if one can reasonably assume that
no more detections will be added to the tracklet in the fu-
ture. In our scenario (cp. section 5), this is the case, when
a detection with a tracklet id arrives at the system that
differs from the detection that arrived directly before that.
So, the operator executes IOD as soon as a tracklet id
change takes place. To achieve an IOD, IODECSD has
been outfitted to execute RSS’ SMART (cp. section 3) via
system call.

SMART has been wrapped. The original code
stayed untouched except that the FORTRAN program-
ming construct program smart, which ontains the
main SMART execution code, was converted into a

subroutine named smart run default within a
new module called smart. Based on SMART’s exe-
cution arguments, the wrapping code decides to execute
IOD in a STREAM context or to execute the original code
residing now in smart run default.

The communication between STREAM and SMART is,
for this prototype, realized via text files. The operator
writes the detections of a tracklet into a text file as soon
as it assumes that it received all detections of the track-
let. This decision is based on the tracklet ID of which
a change will trigger writing the text file. SMART, ex-
ecuted via system call, reads the file, executes IOD and
writes the resulting ephemeris into another text file which
is then read by EcsdIodOperator.

The Generic Client (cp. section 4) is used for the exe-
cution of the test cases. In order to achieve this, the
FileSource class of Generic Client was equipped
with a ”timing mode” and a ”repeat mode” that could
be switched on and off. The timing mode makes the
FileSource read data elements from the input text file
only if the timestamp of the data elements equals the time
since the start of STREAM operator execution. The re-
peat mode makes FileSource read the data elements
of the text file again (with increased timestamps and dif-
ferent tracklet IDs), after the end of the file is reached.
Both modes are deactivated for the general test case and
activated for the benchmark test case.

A decision had to be made concerning the timing mode.
If FileSource is executed ”too late”, data elements
from the input text file with a timestamp less than the
time since STREAM operator execution start may be ei-
ther ignored or inserted into the system together with data
elements with the current timestamp. Ignoring these ele-
ments would simulate a dropping of data elements that
can’t be processed at the current time, inserting them
would simulate a buffering of incoming elements until
they can be processed. Both approaches may be seen as
legitimate and it depends on what system actually should
be simulated. An analogy could be drawn to the sending
of data via a network. It is possible to send data packets,
for example, via the so-called UDP protocol which does
not guarantee the arrival of all data packets. But it is also
possible to use the so-called TCP protocol which does
make this guarantee. The design of the system which
should be simulated is unknown here. Because of this,
the buffering approach has been selected without a spe-
cial reason.

The Generic Client script used for the test cases trans-
lates to four operators (cp. figure 6). A source operator
reads the tracklet input file. This input file has been cre-
ated beforehand by a script which converts MWG output
files to a format the Generic Client FileSource can
process. Contrary to the example in section 4, there is no
window operator necessary, since the script makes use of
an ”unbounded” time window meaning that all elements
that streamed in until the current time are being looked
at. For an actual application of STREAM, this should be
changed, but for the test cases, the time between the first



(Stream)Source

Project

(ECSD)IOD

Output

Figure 6. Generic Client script used for the execution of
the test cases, translated into STREAM operators. The
arrows indicate data element flow from one operator to
another.

detection of a tracklet and the last one is known (about
822 seconds). And since all detections of a tracklet shall
be used, no time limit is necessary. The project operator
is responsible for adding dummy values to the attributes
which are only used as output attributes. The IOD op-
erator executes IOD and the output operator writes the
resulting ephemeris (the orbit representation output by
SMART) into a text file.

Because of the operator chain resulting from the CQL
script, the scenario-specific metric LIOD (cp. section 5)
can be expressed as LIOD0

= L(Output, τtracklet 0) and
LIOD1

= L(Output, τtracklet 1) with τtracklet 0 and τtracklet 1
being the timestamps at which the first and the second
tracklet are completely input into the system.

7. RESULTS

The execution of the general test case produced the fol-
lowing state vector:

r =

[ −6299.2412109375 km
−3384.61645507812 km
−80.8650131225586 km

]

v =

0.0268006287515163 km
s

0.161169663071632 km
s

−7.42095041275024 km
s


The values translate to an orbital altitude of roughly
773 km and a velocity of 7.4 km

s . Hence, they corre-
spond to Envisat’s current orbit data and IOD functional-
ity has been successfully connected to STREAM. Execu-
tion time was 2 seconds.

16 benchmark test case runs have been executed after

that. The first run with ι0 = 1 ips, as expected, produced
the same state vector as in the general test case.

The performance results are shown in figure 7. The queue
loads are very promising, as both average and maximal
queue loads are practically 0, which means that there is
no ”element jam” in the system. The operator lags of the
source and project operators have values of 0 or 1 over
the whole simulation time – which should be expected:
On the one hand, the queues are empty most of the time
resulting in practically no lag. On the other hand, a small
time is necessary for reading the input text file and prop-
agating detections from one operator to another, resulting
in a small lag. IOD and output operator lags increase
steadily, since IOD does not ”fire” after each incoming
detection, but after a complete tracklet has been received.
As soon as this is the case, IOD is executed and the re-
sulting ephemeris element is output. This results in a very
steep decrease of the lag. After that, the detections of
the second tracklet begin to arrive at IOD operator, start-
ing the cycle again. These results are as expected. In-
terestingly though, IOD and output operator lags never
become 0 or 1 again, but 2 directly after both IOD execu-
tions. However, this can be explained with IOD execution
supposedly requiring an extra second execution time di-
rectly after the last detection of a tracklet has arrived. The
overall IOD lag LIOD is 2 seconds for both input tracklets
which is way beneath the threshold of 30 seconds. So,
this is an acceptable result.

Due to the stated benchmark test case algorithm and very
similar results to the run with 1 ips, the input rates of
the following runs were ι1..5 = (2, 4, 8, 16, 32). In these
runs, a blip in both queue loads becomes more and more
visible directly after the first tracklet has been input into
the system. The performance results of run 5 (32 ips)
are given in figure 8 to show this. The data shows that
the load first decreases and then suddenly increases above
the normal level, before it decreases to the normal level
again. The reason for this is assumed to lie in two factors:

• The source operator simulates a buffering of the de-
tections that arrive at the system.

• IOD operator ”blocks” the system because of
SMART execution.

IOD operator executes SMART synchronously which
means that STREAM execution is halted as long as
SMART is running, since Generic Client only utilizes one
CPU core. Furthermore, execution between STREAM
and SMART at this time is done via text files, which is a
rather slow way of communication. Because of this, the
source operator does not get the opportunity to inject new
detections into the system for a small amount of time. As
soon as it is called again, more buffered elements than
normal are emitted.

The operator lags show that the source operator lags a lit-
tle bit more than before which can be explained by the
fact that a magnitude more detections than before need
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Figure 7. Results for benchmark test case run 0 (1 ips).
Top: Average and maximum relative queue load of the
system over execution time. Bottom: Operator lag over
execution time. The lower boundary of L(O, τ) shown
is 0.8 to make a change between a lag of 0 and 1 visible
without taking up too much space in the plot. The two
black vertical lines mark the two timestamps at which
the tracklet has been completely input into the system
(τtracklet 0 and τtracklet 1).
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Figure 8. Results for benchmark test case run 5 (32 ips).
Similar plots to the ones in figure 7.

to be processed by all operators (26282 instead of 822)
which requires each operator to use more CPU time than
before. Another thing that becomes visible is the differ-
ence between IOD and output operator lags directly after
IOD execution. IOD lag improves, of course, a little bit
earlier than output lag, since IOD comes before output in
the processing chain.

In runs 1 to 5 the state vector remains, overall, the same.
It changes only by very small amounts due the different
number of detections. This was the case for all the fol-
lowing test case runs which is why the state vector is not
mentioned in the following anymore.

Runs 1 to 5 furthermore show only a small increase in
overall IOD lag from 2 to 3 seconds. In all these runs,
the lag remains constant. This means that a realistic ι ≈
30 ips case for a radar in tracking mode states no problem
for executing IOD with STREAM.

Runs 6 and 7 were executed with 64 and 128 ips. At 128
ips the system reaches its limits for the first time, alas
only for a small amount of time (cp. figure 9). In fact,
the data shows that this is only the case for one second.
Namely, the maximal queue load reaches 100 %. The rea-
sons for this should be the same as for the blips mentioned
before. Only, this time, at least one queue becomes full
which leads to a short rise in source and project lags. The
overall IOD lag reaches 9 seconds, but remains constant.

With run 8 and 256 ips the system is not able to cope with
the input data rate anymore (cp. figure 10). Qmax becomes
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Figure 9. Results for benchmark test case run 7 (128 ips).
Similar plots to the ones in figure 7.

100% at once, Q̄ 30%. Interestingly, the operator lags
show that the system is able to handle this kind of input
rate until τ = 253, correlating with an increase in Q̄ at
τ = 251 to 40% after a series of small local increases to
30.2%. An easy explanation would be that ι changes over
time. However, this is not the case. Currently, this aspect
of the results can’t be explained.

Operator lags also show that the system is unlikely to re-
cover after one tracklet has been processed. Only LIOD0

could be obtained in test case run execution time. It
amounted to 649 seconds which is why ips were reduced
for the next test case run for the first time.

Thus, run 9 was executed with 192 ips (cp. figure 11).
The maximum queue load stays at 100% over the
whole execution time. The sudden Q̄, L(Source, τ) and
L(Project, τ) increases are visible again, but the time at
which the increases happen is with τ = 448 later.

What’s interesting here is also that, despite at least one
of the queues being full the whole time, the source and
project operator lags completely recover after IOD exe-
cution. What’s more, LIOD1

(which has been obtained
through a longer execution time than normal) is roughly
the same as LIOD0

(164 and 163). This was not expected
and means that, even though the system lags significantly,
it seems ”stable”: It can be assumed that the system is
able to handle this kind of input rate over longer times
without, in the long run, falling behind.

This effect even becomes more apparent with run 10 us-
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Figure 10. Results for benchmark test case run 8 (256
ips). Similar plots to the ones in figure 7.
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Figure 11. Results for benchmark test case run 9 (192
ips). Similar plots to the ones in figure 7.
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Figure 12. Results for benchmark test case run 10 (160
ips). Similar plots to the ones in figure 7.

ing 160 ips. Here, clearly LIOD0 > LIOD1 with 34 and 31
seconds. Although these values remain above the thresh-
old set in section 5, the system is not only ”stable”, but it
seems to ”catch up”.

The system performance (cp. figure 12) shows a combi-
nation of the effects described for run 7 and 8: On the one
hand, the queue loads are higher than normal for a cer-
tain time after a complete tracklet is input. On the other
hand, there is a timestamp at which the average queue
load increases to the same level before complete tracklet
insertion and after a period of local blips. However, there
is no blip downwards in queue loads directly after track-
let completions as in 7. It seems probable that the effect
described for run 8 overlays the blip. Also, the maxi-
mal queue load shows the same behaviour as the average
queue load which was not visible in run 8 as, supposedly,
the input rate was too high to make this visible.

Run 11 produced results which were comparable to run
10. Consequently, run 12 was executed with 152 ips. 156
and 158 ips were used for runs 13 and 14, because the
overall IOD lag remained nearly constant and beneath the
threshold in runs 12 and 13. The performance results of
runs 12 and 13 look quite similar and are comparable to
the ones of 10 and 11, with the exception that no short
blips are visible in the queue loads before the effect de-
scribed for run 8 kicks in.

The performance results of run 14 look similar to run 13.
However, LIOD0 < LIOD1 . The difference only amounts
to 1 second and both lags are below the threshold, but,
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Figure 13. Results for benchmark test case run 15 (157
ips). Similar plots to the ones in figure 7.

to be sure, 158 ips were determined as too much for the
system.

Test case run 15 was the final run, since ∆15 = 1 ips. The
results are shown in figure 13. Here, LIOD0

= LIOD1
=

27 seconds resulting in a final ι = 157 ips.

ι, LIOD0 and LIOD1 for all the bechmark test case runs are
listed in table 1.

8. CONCLUSION

The main conclusion that can be drawn from the work
this paper is about is that the DSMS STREAM is capable
of executing IOD and that it is able to handle a realis-
tic input data rate of a radar sensor in tracking mode. In
fact, the benchmark test case results suggest that roughly
150 input data elements per second can be handled with
a lag of maximal 30 seconds indefinitely. In cases where
a higher lag of the system is tolerable, an even greater in-
put data rate may be coped with (minimal 192 ips). These
results were obtained on a widely available computer sys-
tem indicating that higher rates are possible on high-end
systems.

However, it should be noted that the execution of the test
cases involved IOD only. In actual SST systems multi-
ple functions are executed in parallel. Nevertheless, the
STREAM program used is single-core and no distributed
approach has been tested. Also, no performance tweak-



Table 1. Benchmark test case run results.

TC# ι LIOD0 LIOD1

0 1 2 2
1 2 2 2
2 4 2 2
3 8 2 2
4 16 3 3
5 32 3 3
6 64 5 5
7 128 10 9
8 256 643 -
9 192 164 163

10 160 34 31
11 144 25 23
12 152 16 16
13 156 29 27
14 158 27 28
15 157 27 27

ing has been done. Maximal queue sizes, for example,
could be modified. Text file usage could be eradicated, as
well. So, overall, the results look very promising regard-
ing an application of STREAM in SST context justifying
further research.

Future analyses could, for example, include a ”drop” ap-
proach for the FileSource. Also, another interesting
idea is to take advantage of the fact that IOD execution
(and possibly the execution of other SST functions) takes
a very small amount of time compared to the time that it
takes to receive all detections of one tracklet: IOD could
be executed several times based on the same tracklet, as
long as new detections come in in order to have orbit data
quicker. This would also be in line with the general idea
of DSMS to constantly update all internal views on the
data (like the view on orbit data) as soon as new data ele-
ments arrive at the system.

Quite some work presented in this paper has the poten-
tial to be reused in further research at IRAS. Processing
operators can be easily and quickly added for other SST
functions like Precise Orbit Determination (POD). Also,
among others, the formal processing operator definition,
the metrics and the testing procedure may serve well in
upcoming developments and analyses.
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