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ABSTRACT

The problem of space debris tracking can be viewed as an
example of Bayesian filtering. Examples of such filters
include the classic Kalman filter, together with nonlinear
variants such as the extended and unscented Kalman fil-
ters, and the computationally more expensive particle fil-
ters. The purpose of this paper is to show with a careful
choice of coordinate system, the uncertainty in the space
debris tracking problem can often be formulated in terms
of a multivariate normal distribution, and hence filtering
can be carried out using the Kalman Filter or one of its
variants.
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1. INTRODUCTION

An object orbiting the earth follows an elliptical path, ig-
noring perturbation effects. The simplest way to describe
the orbit is to specify the position and velocity of the ob-
ject, a six-dimensional quantity, in earth-centered iner-
tial (ECI) coordinates. However, even if the initial un-
certainty of the object is normally distributed, the prop-
agated uncertainty of the object after orbiting for several
periods becomes distinctly non-normal. In particular, the
shape of the point cloud for position becomes increas-
ingly “banana-shaped” [2].

In general, the filtering problem is simplest when the joint
distribution of the state vector and the observation vector
is normally distributed. However, as just noted, ECI co-
ordinates are not very suitable other than for short term
propagation. It is tempting to consider one of the other
coordinate systems used for orbiting objects, such as Ke-
plerian orbital elements and equinoctial orbital elements.
Unfortunately, these coordinate systems do not generally
preserve normality either.

Hence, in this paper we introduce a new coordinate sys-
tem called “adaptive structural coordinates” to describe
the orbiting object. The key idea is to use certain tangent

coordinates to describe the uncertainties in the parame-
ters of interest. The phrase “adaptive” means that if the
center of the distribution changes as new data arrive, then
the choice of tangent projection changes. The key in-
gredients of this 6-dimensional coordinate system are as
follows:

• An ellipse in the plane can be described in terms of a
symmetric positive definite 2×2 matrix. The eigen-
vectors represent the directions of the major and mi-
nor axes and the ratio of eigenvalues determines the
ellipticity. Uncertainties in the three distinct entries
of this matrix will typically be approximately nor-
mally distributed.

• The normal direction to the elliptical plane can be
viewed as a point on the unit sphere. Uncertainty in
this direction can be represented in tangent coordi-
nates to the sphere, a two-dimensional quantity.

• One coordinate is needed to describe the displace-
ment of the object along the ellipse. We shall use
the mean anomaly. Typically, the mean anomaly is
treated as an angle on the circle, but if we keep track
of the winding number during the propagation step,
the “unwound” version can be treated as a real num-
ber. This coordinate propagates nonlinearly, but un-
certainty tends to remain normal.

For an orbiting object following Keplerian dynamics,
the first five adaptive structural coordinates remain un-
changed in time; only the mean anomaly changes over
time.

The paper is organized as follows. First we discuss why
Keplerian and equinoctial coordinates can sometimes fail
to preserve normality under propagation. In particular,
we consider a simple example based on spherical coor-
dinates and describe situations under which they will or
will not tend to have normal distributions.

Next we look at the behavior of the propagated uncer-
tainty under the four coordinate systems described.
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Finally, we discuss briefly how these propagation calcu-
lations can be combined with angles-only observational
data to carry out an update step for the Bayesian filter.

2. SINGULARITIES AND DISTORTIONS IN CO-
ORDINATE SYSTEMS

Coordinate systems can be classified into two cate-
gories: global and local. ECI, Keplerian and equinoc-
tial elements are examples of global coordinate systems,
whereas adaptive structural coordinates are local. Global
coordinates can fail to preserve normality for two main
reasons:

• Curvature. This problem is best illustrated in ECI
coordinates. where the uncertainty spreads out
along a curved path. Switching to spherical coor-
dinates can fix this problem for the position vector
(see, e.g. [3]-[4]), but a more comprehensive solu-
tion is given by the adaptive structural coordinates
used here.

• Bounded range. For some of the parameters, there
may be a natural finite range. For example, ellip-
ticity of an ellipse lies between 0 and 1. Similarly,
the latitude of a point on the sphere ranges between
−90o and 90o. Further, these endpoints are often
achievable: an ellipse with zero ellipticity is a cir-
cle, and latitude 90o corresponds to the north pole.
If uncertainty is concentrated near one of these end-
points, then the resulting distribution cannot be nor-
mal; the best it can be is folded normal, but often the
behavior is even more complicated to describe.

A simple example to illustrate the problems with bounded
range is given by the unit sphere, where points can be
represented either in cartesian coordinates (y1, y2, y3) or
in spherical coordinates, θ and φ,

y1 = cos θ cosφ, y2 = cos θ sinφ, y3 = sin θ.

Here θ ∈ [−90o, 90o] denotes the latitude and φ ∈
[−180o, 180o) is the longitude.

Consider a highly concentrated distribution on the sphere
(more specifically, a Fisher distribution with concentra-
tion parameter κ = 2500), with two possible centers.

A. The first center lies on the equator at (1, 0, 0) with
θ0 = 0o, φ0 = 0o.

B. The second center lies at the north pole (0, 0, 1) with
θ0 = 90o and φ0 undefined.

Point clouds for simulated values of φ and sin θ are plot-
ted in Fig. 1. For the first distribution (A), θ lies a long
way from its endpoints, and the distributions of φ and

sin θ ≈ θ look normal (top line of Fig. 2). For the sec-
ond distribution (B), θ0 = 90o lies at the endpoint of
possible values. In this case the distribution of 1 − sin θ
approximately follows an exponential distribution and φ
is uniformly distributed on the circle (bottom line of Fig.
2), both of which are very non-normal.

For parameters lying on a sphere, our strategy is to orient
the coordinate system to be like the first case rather than
the second case. A similar, but technically more involved,
strategy is used to represent a set of nearby planes in a
common planar coordinate system.

Figure 1. The unit sphere with two concentrated point
clouds plotted, one near the equator (A) and one near the
north pole (B).

PROPAGATING UNCERTAINTY

For the space object tracking problem, a simulation has
been carried out to assess the normality of the 6 coordi-
nates for three global coordinate systems and for our new
adapted structural coordinates. A short summary of each
global coordinate system is given below :

• ECI An object is represented by a three-dimensional
position vector and a three-dimensional velocity
vector.

• Keplerian orbital elements are represented using
semi-major axis (a), eccentricity (e), inclination (i),
RAAN (Ω), argument of perigee (ω) and mean
anomaly (M0). The eccentricity is bounded by 0
and 1, and the inclination lies on the bounded in-
terval, [0o, 180o]. The other angular components
Ω, ω, M0, lie on the circle. For the mean anomaly,
it also makes sense to treat it as a real number by
counting its winding number from the initial to the
current time. For this study the unwrapped version
of the mean anomaly is used.

• Equinoctial orbital elements are represented using
a, h = e sin(Ω + ω), k = e cos(Ω + ω), p =
tan(i/2) sin(Ω), q = tan(i/2) cos(Ω) and λ = Ω+
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Figure 2. Spherical coordinates for two distributions on
the sphere: A. top line; B. bottom line.

ω + M0. When the inclination angle i approaches
180o, p and q become ill-defined. The last element
is the sum of three angular elements.

Example 1. To illustrate the ideas in this paper con-
sider a space object in an elliptical orbit with eccentricity
e = 0.72. The orbital period is p = 724 minutes here and
the inclination is 180o. Starting from small isotropic nor-
mal uncertainties in the position and velocity in ECI co-
ordinates at initial time t = 0, the object has been propa-
gated for 4.26 times its orbital period. A pairs plot giving
marginal histograms and bivariate scatter plots has been
produced for each of the four coordinate systems (Figs.
3–6).

To some extent this example has been tuned to show Ke-
plerian and equinoctial elements in a bad light. On the
other hand the normal-looking shape of the point clouds
for the adaptive structural coordinates seems fairly uni-
versal, even under the extreme value for the ellipticity
parameter used here, e = 0.72.

Figure 3. Example 1. Six-dimensional pairs plot for posi-
tion (three-dimensional) and velocity (three-dimensional)
for ECI coordinates.

Figure 4. Example 1. Six-dimensional pairs plot for Ke-
plerian orbital elements.

Figure 5. Example 1. Six-dimensional pairs plot for
equinoctial orbital elements.

A number of features are immediately apparent in these
plots.

• ECI coordinates (Fig. 3). Strong curvature is ap-



Figure 6. Example 1. Six-dimensional pairs plot for the
adaptive structural coordinates.

parent in all the pairs plots. These plots are very
non-normal.

• Keplerian orbital elements (Fig. 4). Some of the
plots are very non-normal. In particular variables
4 and 5 are approximately uniformly distributed on
the circle.

• Equinoctial orbital elements (Fig. 5). Some of the
plots are very non-normal, especially the high con-
centration on the circumference of an ellipse for the
scatter plot of variable 2 vs. variable 3.

• Adapted structural coordinates (Fig. 6). All the his-
tograms and all the scatter plots look approximately
normal. Note that in plots such as variable 1 vs. vari-
able 3, the apparent line segment is really a highly
eccentric ellipse.

Example 2. In this example an object with medium ec-
centricity (e = 0.14) is considered with inclination 0o.
The orbital period is p = 132 minutes and the object is
propagated for 4.26 orbital periods.

Just as in the previous example, it can be seen that the co-
ordinates for the adapative structural coordinates system
(Fig. 10) are approximately normally distributed. For
other coordinate systems there are generally some prob-
lems. The ECI coordinate system (Fig. 7) shows the
same sort of curvature as before. For Keplerian orbital
elements (Fig. 8), variables 4 and 5 are again approxi-
mately uniform on the circle.

The distributions of the equinoctial orbital elements (Fig.
9) are much closer to normality than in Example 1. How-
ever, note that the histograms for the second and third
equinoctial orbital elements contain some outliers. The
two modes for variable 6 are a minor artefact due to treat-
ing λ as a number rather than an angle (see [1] for further
discussion).

Figure 7. Example 2. Six-dimensional pairs plot for posi-
tion (three-dimensional) and velocity (three-dimensional)
for ECI coordinates.

Figure 8. Example 2. Six-dimensional pairs plot for Ke-
plerian orbital elements.

Figure 9. Example 2. Six-dimensional pairs plot for
equinoctial orbital elements.

FUTURE WORK

So far we have concentrated on the propagation step in
filtering. It remains to carry out the update step of the



Figure 10. Example 2. Six-dimensional pairs plot for the
adaptive structural coordinates.

filter by incorporating observational data.

A typical observation might consist of an angles-only
measurement of the direction of the space object from
a ground-based observer, assumed to follow a Fisher dis-
tribution with high concentration. With a suitable tangent
projection, the tangent coordinates of these observations
will be approximately normal.

Hence the joint distribution of the propagated state vec-
tor in adapted structural coordinates and the angles-only
observation in spherical tangent coordinates is approxi-
mately 8-dimensional normal. Hence the update step for
the Kalman filter or one of its variants seems appropriate
here. Based on preliminary results and initial analyses,
this approach seems very effective. Work is in progress
to assess more fully its strengths and limitations.
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