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ABSTRACT

To assess the impact of different future developments of
spacefaring, long-term projections of the space debris
environment are performed. In these projections, all
major source and sink mechanisms that impact its
evolution are considered. They include launches of
new objects, propagation of their orbital states, collision
rate analysis and performing of fragmentation events
(collisions and explosions). Based on these capabilities,
different scenarios are simulated and their results are
compared. These scenarios consider assumptions for the
future launch traffic, solar-activity variations and the im-
plementation of debris mitigation, such as post-mission
disposal strategies, and remediation measures, such as
active debris removal.
LUCA (Long Term Utility for Collision Analysis) is a
software tool developed at the Institute of Space Systems
(IRAS) of the Technische Universitaet Braunschweig to
perform such simulations. It has been used in several
ESA contracts, IADC studies and studies supported by
the German Aerospace Center (DLR). The development
of this tool started in the late 1990ies. In recent year,
the historic implementation of LUCA faced several chal-
lenges. A combination of enhanced computational power
and the demand for much more detailed simulations
lead to the decision of a complete re-implementation
of this tool, leading to its latest version, LUCA2. The
main goals for this new implementation were to allow
for maximum flexibility in the models used for single
sinks and sources, the extension of its functionalities as
well as the consideration of new standards in software
engineering.
In this paper, at first the overall software architecture of
the new tool is described. For this, an object-oriented
concept in Fortran 2008 has been developed, which
allows easy exchange of different models by using
plugins via a generic interface. Following, the single
functionalities of the tool are introduced, including
implemented methods for collision rate determination,
propagation, solar cycle forecasting, break-up modeling
and the determination of post-mission disposal orbits.
Exemplary results of these core functionalities are
presented. Lastly, results of long-term projections of
the space debris environment used for the validation of
LUCA2 are shown. These results furthermore contain
a sensitivity analysis of the new tool to user-defined

input parameters, such as different solar cycles or launch
traffic assumptions, but also to different physical models,
for instance using different collision rate determination
algorithms.

Key words: LUCA; long-term evolution; CUBE; Orbit
Trace; NASA Breakup Model.

1. INTRODUCTION

Long-term projections of the space debris environment
are performed to compare the impact of different future
scenarios on its evolution. Exemplary, they can be used
to analyse the effects of passive mitigation measures
(such as post-mission disposal (PMD) [20]) and active
remediation (such as active debris removal (ADR) [10]),
but also the impact from possibly disruptive events,
such as the release of the so-called Mega-Constellations
consisting of several hundreds of satellites [2].

To perform this task, several tools exist which are com-
parable in their general functionality: starting from an
initial space debris population at a certain date, the com-
plete environment is propagated over the desired time
frame. During this propagation, all major source and
sink mechanisms of space debris are simulated. These
models include amongst others the consideration of
main, most secular, orbital perturbations, the calculation
of collision rates and triggering of collisions, inclusion
of future launch traffic, and assumptions regarding future
space debris mitigation measures. As all the models
include uncertainties, depending on the study, certain
events are triggered randomly. In all cases, this includes
the collisions, but it can be extended to all other models
as well. Models to project the long-term space debris
environment evolution include, amongst others, the
Italian SDM [18], the British Damage [9], ESA’s Delta
[13], NASA’s LEGEND [12], and CNES’MEDEE [4].

LUCA (Long term utility for collision analysis) is a tool
to project the long-term evolution of the space debris
environment which has been developed at the Institute
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of Space Systems (IRAS, former Institute of Aerospace
Systems, ILR) since the late 1990s. It has been used
in a large number of projects and publications (for
example [16], [17], [2]), and more recently contributed
to still on-going studies performed in the frame of the
Inter-Agency Space Debris Coordination Committee
(IADC) on behalf of the German Aerospace Center
(DLR).

Being under development for about 20 years now, it was
decided to completely re-develop the code. Reasons
for this were on the one-hand-side, to be able to easier
exploit modern computation techniques, such as GPU
computing, by using newer software standards. The main
reason though was to increase the overall flexibility and
functionality of the tool. In its first version, not much
emphasis was put on a modular implementation, making
it almost impossible to exchange certain models, for
example to calculate the collision rates between on-orbit
objects.

2. LUCA2

LUCA2 is a tool to project the long-term evolution of
the space debris environment. Using the same starting
point in terms of an initial population together with a de-
fined scenario, simulations are performed as Monte-Carlo
runs, in which certain events and/or inputs are varied ran-
domly. The random variations performed thereby depend
on the scenario to be simulated, but include the triggering
of collisions in almost all cases though, based on calcu-
lated collision rates. The top level work flow of a LUCA2
simulation is shown in Figure 1. The plugins that are used
during a simulation depend on the scenario that is to be
simulated. A standard scenario usually calls the follow-
ing plugins:

• Create solar forecast.

• Read initial population.

• Reliability and lifetime reduction of active satellites.

• Propagate population.

• Determine encounters and collision rates.

• Trigger collisions.

• Perform post-mission disposal manoeuvres.

• Write outputs.

More details on some of the plugins are given in Sec-
tion 3. To analyse the different scenarios, the results
from all single Monte-Carlo runs are taken and statistics
of for example the number and distribution of objects,
collisions etc. are calculated.

Figure 1. General work flow of LUCA2.

2.1. Implementation

One of the main goals for re-development of LUCA was
to modularize the program to allow a flexible exchange of
functionalities. To be able to re-use parts of the code from
LUCA as well as to easily integrate available libraries at
the Institute of Space Systems, LUCA2 was written in
Fortran (standard 2008). To achieve the desired mod-
ularization, a Fortran approach was developed, which
consists of three levels: Fortran-modules, object-oriented
classes and plugins. LUCA2 consists of all three of the-
ses levels, the schematics of this approach are shown in
Figure 2.

Figure 2. Three levels of modularization in LUCA2.
”OO-Class” stands for ”object-oriented class”.

Fortran modules are directly available in Fortran and
used to group procedures, variables and types that belong
to the same context. One typical example is a module
“files”, which contains all code related to file handling.
Modules can furthermore be used in other parts of the
software, in which the public attributes can be used. All
code in LUCA2 is written in Fortran modules.

Object-oriented classes

Object-oriented classes are types of software compo-
nents used in a software design paradigm called Object-
Oriented Programming (OOP). In this paradigm, vari-
ables and procedures which belong together are bundled
to form classes. As a result, a class can be seen as the def-



inition of a software component which has certain proper-
ties, defined through the variables of the class. The com-
ponent also has certain capabilities, defined through the
procedures of the class. This allows to create a model of
the part of reality which shall be represented in software.
An input file, for example, may be represented then in
its own class. A property, or variable, of this class could
be its file name. Capabilities, or procedures, of the
input file class could be set file name(), open()
and read line(). An input file could then be read in
a program by using the class as a template to create a
concrete object from it. This object would represent the
concrete input file that should be read (as opposed to an
abstract input file represented by the class). The input
file’s capabilities in form of the procedures listed above
could then be used to read the file in an easy-to-read man-
ner. This approach also leads to an easier way for creating
software documentation, demonstrated by Figure 3. For
the LUCA2 development, one class consists of a special
kind of Fortran module containing a special kind of For-
tran type putting Fortran 2008’s OOP features to use.

Plugins provide the single functionalities of LUCA2. For
this, a plugin system has been designed, which consists
of a generic plugin class with a generic interface. The
plugins with different functionalities are derived from the
generic plugin and can then be extended by plugin spe-
cific needs.

Using this approach for modularization, the software
itself is split into two parts: the “luca core” and the
“plugins”. The scheme of this separation together with
an excerpt of available classes is shown in Figure 3.

The LUCA core uses the first two levels of modulariza-
tion: All code is written in Fortran modules, which are
provided to the programmer in object-oriented classes.
Its task is to manage a long-term simulation. For this,
most simply, it runs a loop over a time frame with a time
step. Always valid for the current time step, it further-
more contains the debris population. A debris popula-
tion consists of an array of debris objects, which them-
selves contain all properties needed during the long-term
runs, such as an identification, orbital parameters, object
characteristics etc. All entities are themselves objects,
which can be accessed using get functions. This helps
protecting values and keeping all properties of the ob-
jects consistent: for example, if the semi major axis is
to be changed, it has to be done using the set function
“update orbit”, which automatically adopts all other val-
ues which depend on the semimajor axis. Additionally
to debris objects, a population contains an array of en-
counters, which contain a pair of debris objects as well
as characteristics of the encounter, such as the collision
rate and the relative velocity. Alongside with these main
functionalities, LUCA core provides a large number of
support classes to the programmer. Examples are a class
to handle input files, a settings manager to handle all main
inputs (simulation time frame, time step etc.), classes for
fast access to certain types of debris objects (for exam-
ple all active objects or all objects of a certain kind), a

category rules store, and a sophisticated logging frame-
work. The category rules store is an object-oriented class,
which allows defining rules (or rather a certain behaviour
during the long-term simulation) of freely definable cat-
egories for on-orbit-objects (such as their type, orbit re-
gion, mass etc.), without needing to know beforehand,
how and which categories will be needed in a simulation.

The plugin system provides a generic plugin class that
can be used to derive specific plugins. The plugin class
provides all needed routines to create and destroy in-
stances of a plugin. It furthermore takes care of the cor-
rect call of specified plugins. The plugin basically pro-
vides a generic interface between the LUCA core and the
specific plugin. This interface was broken down to the
minimum similarity between all plugins: their intention
to process a debris population. Therefore, the plugin in-
terface always only provides the current debris popula-
tion (including objects and encounters), the starting point
of the simulation and the duration of the current time step.
The plugin then receives a local reference list to the pop-
ulation, which can be updated as desired to perform the
tasks of the plugin and in the end be returned to LUCA
core.

3. PLUGINS

As of date, 17 plugins are available for LUCA2, some of
which are alternatives for the same functionalities

• Create solar and geomagnetic forecasts.

• Launch Traffic: Either based on a repeating launch
cycle or based on the initial population.

• Include and maintain Mega-Constellations.

• Reliability and lifetime reduction of active payloads.

• Explosion: Either by using a fixed number of ex-
plosions per year based on past events or by using
explosion rates for freely definable object types.

• Propagation of population.

• Collision rate determination using either Orbit-
Trace or Cube.

• Collision avoidance.

• Triggering of collisions using two different imple-
mentations of the NASA Breakup Model.

• Post-mission disposal to freely definable remaining
lifetime orbits.

• Active Debris Removal.

• Write population and collision rates to file.

A subset of the plugins are presented in this section in
more detail.



Figure 3. Visualization of central LUCA2 classes and their relationships. core, plugins and reliability are
LUCA2 subsystems which contain the classes. The lines beginning with a diamond symbolize a ”has x” relationship, with
”x” being the cardinality of the relation. For example, one luca (object) has exactly one population (object). An
asterisk indicates an arbitrary amount of objects.

3.1. Solar and Geomagnetic Activity Forecast

LUCA2 can be launched with any externally provided so-
lar and geomagnetic activity forecast. Nevertheless, if re-
quired for the simulations, it is capable of creating its own
forecast. In this case, a different forecast is used for every
single Monte-Carlo run. Currently, two different types of
projection are supported: either creating a random com-
bination of past solar cycles, or a series of Monte-Carlo
sampled cycles, which is recommended for long-term so-
lar flux forecasting by the ISO 27852:2011 standard [6].
In general, for the long-term simulations themselves, ran-
dom combinations of past cycles are used, to include both
cycles with low and those with high activities. An exem-
plary forecast is shown in Figure 4.

3.2. Collision Rate Determination

For the collision rate determination, two different algo-
rithms are available in LUCA2: One Orbit-Trace algo-
rithm and one CUBE algorithm.

Orbit-Trace The Orbit-Trace method used in LUCA2
is based on a method developed by E.J. Öpik in [14],
which was originally derived to calculate collision rates
between interplanetary objects. The method basically de-
termines how long space objects stay in a region around
the intersection of their orbits to derive a collision rate.

Figure 4. Exemplary solar flux forecast, using both
method supported by LUCA2: a random combination of
past solar cycles and a random sampling from past solar
cycles.

This can be calculated using:

P =
2 ·

√
(r1 + r2)2 − d2min

sin(α)v2 · Tu,1 · Tu,2
. (1)

Here, r1 and r2 are the radii of the two objects under in-
vestigation, dmin is the shortest distance between their
two orbits, v2 the velocity of the impacting object, α the
angle between the trajectories at the intersection and Tu,1
and Tu,2 are the orbital periods. To also be able to han-
dle objects with identical periods, the implementation has
been supplemented with a system of filters to avoid un-
realistic encounters between objects within constellations



[15].

Cube The second method available is CUBE, which
has been introduced in [11]. The general idea behind this
algorithm is to uniformly sample the system in time and
determine the collision rates for each of the time steps.

Referring to [11], over a long time step, the number of
collisions in a population can be described via:

Nc =

∫ tend

tbegin

Pi,j(t)dt =

∫ s=L

s=0

∫ ts+1

ts

Pi,j(t)dtds.

(2)

Here, Pi,j describes the collision rate, L the number of
time intervals between tbegin and tend, and ts and ts+1

the beginning and end of a time interval s. For sufficiently
short time intervals, whereas sufficiently means that the
collision characteristics do not change significantly, Pi,j

can be assumed constant during this interval. Therefore,
Formula 3.2 can be changed to:

Nc =

∫ s=L

s=0

[ts+1 − ts]× Pi,j(s)ds. (3)

To estimate the collision rate, the approach now assumes
that collisions are only possible, if, at one time step, the
two objects are located within a small cube. Therefore,
the collision rate for two objects at a specific time step is:

Pi,j = sisjVrelσdU, (4)

where si and sj are the spatial densities of the encoun-
tering objects in the volume, Vrel is the relative velocity
between the objects, σ is the collision cross section, and
dU is the volume of the cube.

In the implementation used in LUCA2, the Cartesian po-
sitions of all objects in the population are calculated at
each time step. To avoid aliasing effects between ob-
jects, especially in low Earth orbits, the main anomaly
of the objects are randomized at each time step [1]. The
three coordinates are then converted into integer posi-
tion indexes to allow a very fast identification of objects
within one cube. To additionally fasten this identification
progress, the objects are pre-sorted by their orbital alti-
tudes. Currently, in LUCA2 the standard settings from
[11] for the cubes’ edge length of 10 km and a time step
of 5 days are used. A sensitivity analysis on the appro-
priateness of these value for LUCA2 simulations is out-
standing.

The calculated collision rate within a population is highly
sensitive to the number of internal randomizations of the
mean anomaly (cf. Figure 5). Therefore, additionally
to the external randomizations, the number of random-
izations of the mean anomaly can be chosen via input

file. As default, currently 30 internal randomizations are
used, leading to 1500 overall randomizations in a stan-
dard long-term simulation with 50 Monte-Carlo runs.

Figure 5. Collision rate calculated with CUBE within a
typical space debris population over the number of inter-
nal iterations of the mean anomaly. Red boxes show the
average, black error bars indicate the standard variation,
green error bars the minimum/maximum values. MAN
stands for mean anomaly.

Comparison In a simple comparison case, the collision
rates calculated with CUBE and Orbit-Trace over time
were compared. In this case, a space debris population
from MASTER, valid for 1st of January 2013 was propa-
gated with constant solar flux (F10.7 = 130) and geomag-
netic activity (AP = 9) over a time frame of 200 years.
Figure 6 shows the yearly collision rates using both Orbit-
Trace and CUBE. Additionally, a comparison of the same
scenario using the old version of LUCA, which uses the
Orbit-Trace algorithm, is shown. All three set-ups lead
to very similar results. Nevertheless, a larger variance
in the collision rates calculated with CUBE can be ob-
served. Furthermore, over the complete time frame, cu-
mulatively, CUBE leads to 16.6 collisions while Orbit-
Trace calculates only 15.6 collisions.

Figure 6. Comparison of collision rates over time cal-
culated with Orbit-Trace in LUCA, and Orbit-Trace and
CUBE in LUCA2. Results from one Monte-Carlo run.



3.3. Implementation of the NASA Breakup Model

For LUCA2, the standard NASA Breakup model [7] has
been re-implemented, to be in-line with the new coding
standards. The advice on the proper implementation
given in [8] has been considered. A simplified flow chart
of the implementation is given in Figure 7.

In the first step, the number of debris objects to be created
is determined using the power law

N(Lc) = S6L−1.6
c , (5)

for explosion events. Here, Lc is the characteristic length
of the fragments and S a unit-less type-dependent scal-
ing factor, to allow account for different explosion ob-
jects and types. A set of scaling factors is given in [5].
For catastrophic collisions, the number of fragments is
calculated via:

N(Lc) = 0.1(M)0.75L−1.71
c . (6)

Here, M is the mass (in kg) involved in the collision. If
the collision is assumed to be catastrophic, M is simply
the sum of the two colliding objects, if it is assumed to
be non-catastrophic, it is the product of the mass (in kg)
of the smaller object and the relative velocity (in km/s)
of that collision. As distinction between catastrophic and
non-catastrophic collision, the generally used threshold
of 40J/g for the energy-to-mass ratio (EMR) is applied.
Both equations are valid between 1 mm and 1 m. Once
the total number of fragments that are to be created
referring to the power laws has been calculated, they
are reduced by the number of fragments at 1 m. This
is the threshold until where the power laws are applicable.

Starting with the smallest fragment, in a loop all frag-
ments below 1 m are created. This is achieved in five
steps:

1. The characteristic length of the fragment is calcu-
lated, using rearranged Equations 5 and 6.

2. Using the characteristic length as independent pa-
rameter, the area-to-mass ratio is determined. For
characteristic lengths larger than 11 cm, the two val-
ues are linked with a bi-modal distribution function:

DA/m(λc, X) =

α(λc, X)N(µ1(λc), σ1(λc), X)

+(1− α(λc))N(µ2(λc), σ2(λc), X),

(7)

for rocket body fragments smaller than 8 cm and
payload fragments smaller than 1.7 cm [5]:

DA/m(λc, X) = N(µ(λc), σ(λc), X). (8)

Here, λc = log10(Lc), X = log10(A/m), and N
refers to a normal distribution. All further needed

parameters, which differ for spacecraft and rocket-
bodies for the bi-modal distribution for larger ob-
jects, are given in [7]. In between the distributions,
bridging functions of the form:

Lb = 10(log10(Lc) + 1.76) (9)

for rocket bodies, and

Lb = 10(log10(Lc) + 1.05) (10)

for payloads are used. If Lc > Lb the large particle
distribution is used [5].

3. The average cross sectional area of the fragment is
determined. For fragments with Lc < 0.00167m,
the relationship is:

Ax = 0.540424 · L2
c , (11)

for larger fragments it is

Ax = 0.556945 · L2
c .0047077. (12)

4. The mass is then determined by simply dividing the
cross section by the area-to-mass ratio.

5. Last, the ∆V is needed. It is described by a sim-
ple normal distribution. Again, values for different
objects types and sizes are given in [7] and [5].

Once all small fragments are calculated, it is checked if
the cumulative mass of all fragments is equal to or lower
than the mass involved in the fragmentation event. If this
is not the case, the loop is repeated until this condition
is fulfilled. Else, the remaining mass is distributed
along different numbers of random large objects with
characteristic lengths above a 1 m. To achieve this, the
characteristic lengths is randomly drawn from a uniform
distribution between 1 m and the characteristic length
of the fragmented object. For catastrophic collisions,
this procedure is repeated until all mass is used. For
non-catastrophic collisions, only one large fragment is
created, during explosion events two to eight.

Figure 8 shows as example the area-to-mass ratio over
the characteristic length for the catastrophic collision of a
1000 kg spacecraft. The results resemble very well those
shown in [7] and [21].

3.4. Determination of End-of-Life manoeuvres

LUCA2 offers a wide selection of possible end-of-life
manoeuvres, depending on the orbital regions objects re-
side within. For LEO objects, the options are:

• Disposal to an either eccentric or circular orbit with
an arbitrary remaining lifetime (max. 50 years).



Figure 7. Simplified flow chart of the implementation of
the NASA Breakup Model for LUCA2.

Figure 8. Area-to-mass ratios over characteristic length
for the catastrophic collision of a 1000 kg payload with
a 10 kg impactor at 10 km/s, computed using the NASA
Breakup Model implementation from LUCA2.

• Disposal to an graveyard orbit at an arbitrary alti-
tude.

• Direct re-entry.

For GEO objects, the options are:

• Disposal to an IADC guidelines compliant grave-
yard orbit.

• Disposal to a graveyard orbit at an arbitrary altitude
above or below the GEO region.

The options to be used can be freely defined for each
object type separately using the category-rules store.
Additionally, a maximum available fuel ratio can be
defined, as well as a rule for what to do, in case the
fuel is insufficient. In this case, the options “perform
manoeuvre as far as possible” or “perform no manoeuvre
at all” are available. For the determination of the fuel
needed, in all cases Hohmann-Transfers without any
losses are assumed.

While the calculation of most disposal orbits is straight
forward, the computation of the arbitrary lifetime orbits is
more complex. It is achieved by an iterative propagation
of the objects to be disposed. In [3], using Regula Falsi
for the iteration lead to best results, therefore this method
is also used in LUCA2. To ensure that a correct disposal
orbit is found for most of the objects, the sensitivity of
the implemented algorithm to the number of iterations
performed has been tested by calculating eccentric dis-
posal manoeuvres with different remaining lifetimes for
all payloads within the population (both active and pas-
sive). Figure 9 shows the percentage of correctly calcu-
lated orbits over iterations. A disposal orbit is assumed to
be correct, if the re-entry occurs within ± 3 month of the
defined disposal lifetime. After 57 iterations, for 99.9%
of all objects a correct orbit could be calculated, therefore
this value is used in LUCA2. If after these 57 iterations
no disposal orbit is found, the manoeuvre is counted as
failed.

Figure 9. Share of objects for which a satisfying disposal
orbit was found over number of iterations needed.

As the disposal orbits are very sensitive to the provided
solar and geomagnetic activity, the user can choose
between two different options: Using either the same
values as for the complete long-term run, or using
Monte-Carlo sampled cycles. The first options always
leads to precise orbits, which might be wanted in some



simulations. The second option has the advantage of
leading to a realistic spread within the actual disposal
lifetimes of payloads. This is shown in Figure 10:
here, 173000 objects were disposed to 25-year orbits at
different times over a 100 year simulation time frame.
The red bars show the actually needed re-entry times,
if the forecasts for propagation and orbit iteration were
identical. The blue bars show needed re-entry times, if
for the propagation a random combination of past cycles,
and for the orbit iteration a randomly sampled cycle was
used. In these results, a clear trend of shorter disposal
lifetimes for the Monte-Carlo sampled cycle can be made
out. Note that the results shown here only indicate the
spread and the distribution valid for the test case and
should not be used as a general assessment of the solar
activity forecast for mitigation orbit determination.

Figure 10. Histogram of actually disposal time, when
identical forecasts have been used for orbit propagation
and disposal orbit iteration (red bars), and when differ-
ent forecasts have been used for orbit propagation and
disposal orbit iteration.

4. RESULTS FROM LONG-TERM SIMULA-
TIONS

In the frame of an IADC internal task, a large set of long-
term simulations to analyse the sensitivity of long-term
simulations to different input parameters and assump-
tions has been performed. Some of the results from this
study are shown in this paper.

4.1. Baseline scenario

All simulations were performed by varying different pa-
rameters compared to a baseline scenario. The baseline
scenario was defined as follows:

• Initial population based on MASTER-2009, includ-
ing all LEO crossing objects on January 1st 2013.

• Repeated launch cycle including all LEO crossing
launches between the years 2005 and 2012.

• 8-year nominal lifetime for spacecraft.

• Assume post-mission disposal for both spacecraft
and rocketbodies to 25-year orbits with a 60% suc-
cess rate.

• Assume no future explosions.

• Allow no stationkeeping for spacecraft and no colli-
sion avoidance.

• Use a simulation time frame of 200 years.

For all scenarios, 100 Monte-Carlo runs were performed.

The results of the baseline scenario are shown in Fig-
ure 11. For the results shown, as underlying solar and
geomagnetic activity forecast, a different random combi-
nation of past cycles has been used. The algorithm for
collision rates used in the results shown was CUBE.

4.2. Variation of the solaractivity

Following, the solar and geomagnetic was varied in four
scenarios, low, medium, high, and random. In the low
scenario, the F10.7 value moved between 60 and 120,
the AP between 6.5 and 15. In the medium scenario,
the F10.7 moved between 65 and 160, the AP between
10 and 18.6, and in the high activity scenario, the F10.7
value moved between 71 and 220, the AP between 13 and
22. The solar and geomagnetic activity forecast used in
the random scenario was very similar to that used in the
baseline scenario a random combination of past cycles,
but provided externally by ESA. The results for all four
scenarios, together with those from the baseline scenario,
are shown in Figure 12.

In these results, it can be made out that the solar and geo-
magnetic activity forecast has strong impact on the space
debris environment evolution: both the median number
of objects as well as the median cumulative number of
collisions differ by a factor of three, after 200 years of
simulation. Therefore, it is vital to always use a fore-
cast appropriate for the study. This is especially the case
for long-term studies performed using different long-term
evolutionary models, as different solar activity forecasts
might lead to strong differences in results and complicate
all further analyses. Furthermore, using too low solar and
geomagnetic forecasts might lead to an exaggeration of
the environment evolution. From the approach, using ran-
dom combinations of past solar cycles appears to be the
most appropriate for general studies, as in these all fea-
tures of past cycles (in term of maximum and minimum
values per cycle) are covered.



Figure 11. Results of the baseline scenario computed from 100 Monte-Carlo runs, collision rates computed with CUBE.
Left: Effective number of objects in LEO over time. Right: Cumulative number of catastrophic collisions.

Figure 12. Median results of the solar activity forecast variation scenarios computed from 100 Monte-Carlo runs, col-
lision rates computed with CUBE. Left: Effective number of objects in LEO over time. Right: Cumulative number
of catastrophic collisions. Note that quantiles and min/max values only have been omitted for clarity. All simulations
showed spreads similar or larger than in the baseline scenario.

4.3. Impact of the collision rate algorithm

Additionally, all simulations and variations have been
performed using Orbit-Trace for the collision rate deter-
mination. The median results of all scenarios are shown
in Figure 13.

It can be seen that the results are very similar: both
the trends as well as the overall median numbers agree
well when using either method. Nevertheless, an offset
in the cumulative number of collisions can be found in
that the collisions computed with Orbit-Trace are in all
cases slightly lower than those computed with CUBE.
Therefore, the significance of this difference was tested,
using a Wilcoxon rank sum test [19].

This test is a non-parametric hypothesis test, which
tests if the medians of tested samples from independent
populations originate from statistical distributions with
identical medians at an defined significance level α
(null-hypothesis). The test then returns the probability p
of the two samples being from distributions fulfilling this
hypothesis. The hypothesis is assumed to be fulfilled,
if p > α, else it is rejected and the difference between

the populations is assumed to be significant. For the
analyses presented here, the standard significance level
of α = 0.05 has been chosen. In the comparison, always
the results computed with CUBE are compared against
those computed with Orbit-Trace, for both the number
of objects on orbit as well as the cumulative number of
collisions.

The results of the rank sum test are shown in Figure 14.
They support the findings from the general results: the
difference in number of objects is at most time steps not
found to be significant, only in the very beginning as well
around the year 2060 in the medium activity scenario,
differences are large enough to reject the null-hypothesis.
These might be effects from the low number of performed
Monte-Carlo runs. The cumulative number of collisions
shows a different behaviour: Although the results are
very similar, the differences are significant for most sce-
narios over a large share of the simulation time-frame.
Again, one reason might be the number of performed
Monte-Carlo runs, another possibility is the filer system
for objects on orbits with similar periods, which is used
in Orbit-Trace, but not CUBE (cf. Section 3.2). But as
the difference between CUBE and Orbit-Trace appears to
be systematic, this should be investigated in more details.



Figure 13. Median results of all scenarios computed from 100 Monte-Carlo runs, collision rates computed with both
CUBE (solid line) and Orbit-Trace (dashed line). Left: Effective number of objects in LEO over time. Right: Cumula-
tive number of catastrophic collisions. Note that quantiles and min/max values only have been omitted for clarity. All
simulations showed spreads similar or larger than in the baseline scenario.

Figure 14. Outputs of a Wilcoxon rank sum test performed with results from all varied scenarios using both CUBE and
Orbit-Trace. The p-value indicates the probability that the medians of the underlying distributions are identical. For
p < 5%, it is assumed that the difference is significant. Left: Test performed with the number of objects on orbit. Right:
Test performed using the cumulative collisions as parameter.

5. SUMMARY AND OUTLOOK

Over the last year, LUCA2 has been completely re-
implemented and by now reached a state of being
fully usable. During this phase, the main goals of the
re-implementation could be achieved: LUCA2 is now
a modern, modular software, which allows an easy
exchange of functionalities. For some of these, such as
the collision rate determination, already exchangeable
plugins were developed and are in use.

Using LUCA2, a set of simulations as part of an IADC
sensitivity analysis have been performed and presented in
this paper. The results from these underline the necessity
for a proper choice of the solar and geomagnetic forecast
used for the simulations. With the availability of an
automated creation of random combination from past
solar cycles, LUCA2 provides a good solution to this
problem. Furthermore, using the modularity of LUCA2,
the significance of the difference between using either
CUBE or Orbit-Trace as collision rate determination
method was investigated. Generally, it was found

that in all simulated scenarios, both methods lead to
simulations with very similar results in both median
number of objects and cumulative number of collisions.
Nevertheless, the difference in the number of collisions
was found to be significant in most cases. The reason for
this difference should be further investigated.

Now that the new tool is operational, next steps will be
to use it for dedicated long-term studies. Upcoming sim-
ulation campaigns will be performed to provide answers
to the question on “how to” achieve a certain goal. Addi-
tionally, the applicability of used collision rate determina-
tion algorithms for large constellations within long-term
simulations will be analysed.
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