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ABSTRACT

The accurate representation of the orbital state uncer-
tainty is important, for example, to realistically estimate
the risk of collision. Efficient algorithms exist especially
for the case of Gaussian uncertainty distributions with
other restrictions such as short encounter times. The cur-
rent paper investigates the time frame for which the un-
certainty volume of objects in GEO may be assumed to be
Gaussian and how it is affected by the size of initial vari-
ances. The analysis begins with the best-case scenario
of unperturbed two-body motion where the Gaussianity
is preserved the longest. This is followed up by simu-
lations employing a high accuracy numerical integrator
considering a more complete perturbation force model
with higher order gravitational harmonics, sun and moon
gravitational effects, and direct solar radiation pressure
to obtain a more realistic estimate over a wide range of
variances. A comparison with realistic uncertainties of
GEO object states concludes the analysis and insights are
gained into the applicability and limitations of available
data.

Key words: covariance; uncertainty prediction; GEO;
Gaussianity; Henze-Zirkler.

1. INTRODUCTION

In the prediction of the uncertainty volume surrounding
an object’s state, an important question is currently being
asked: “How long does the uncertainty volume which is
described by the covariance matrix take to become non-
Gaussian?” The short answer: Immediately after the ini-
tial epoch. The long answer: Mathematically, the normal
distribution used to describe the uncertainty extends to in-
finity. With this picture in mind it becomes easy to imag-
ine that those parts of the uncertainty space which are
very close to the Earth’s surface for instance will be dis-
torted differently than those which extend out into space.
The uncertainty space in its entirety therefore cannot re-
main Gaussian for any significant amount of time. The
uncertainty volume close to the object itself on the other
hand may very well remain Gaussian to within machine

precision for non-negligible time frames. The same can
be shown to be true even for the simple, unperturbed two-
body case. Figure 1 is produced by predicting an object’s
position using only uncertainty in two dimensions of the
position in ECI coordinates. The blue lines are made up
of individual particles created at the σ-lines 1 to 10 at
the initial epoch where Gaussianity is given by defini-
tion. The red lines are made up of the same particles after
propagation to t1 = t0 + ∆t. To ease comparison of the
two samples, the particle positions are transformed into
Mahalanobis space. Within this space, particle distances
from the mean are given in multiples of standard devia-
tions (more detail on this is provided in Section 3.3). At
t1, it can be seen that while Gaussianity close to the state
mean is still intact, this is not the case at 10σ. Obviously,
the initial question is not complete, if the basic concept of
the covariance matrix is left untouched. Before address-
ing it as it stands, we must therefore answer the question
as to which confidence level (how many standard devia-
tions from the mean) we are interested in.

Figure 1. Particles taken at the 1-σ to 10-σ lines be-
fore propagation (t0) and after propagation (t1). Close
to the uncertainty mean, Gaussianity is still intact after
propagation while it is no longer given at 10-σ.

The current paper is concerned only with covariance ma-
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trices defined in the cartesian ECI frame. In the next sec-
tion, confidence intervals in multidimensional space are
introduced. In the third section, state-of-the art tests for
multivariate normality are briefly explained which go be-
yond the commonly used Kolmogorov-Smirnov, Cramér-
von Mises, and Anderson-Darling tests. The Henze–
Zirkler test is then introduced and its applicability to the
given problem is assessed by analysing Type I and Type
II error rates and how the test results are affected by
the number of Monte-Carlo runs and the particle sample
size. This is followed by the analysis of when Gaussian-
ity breaks down for different initial variances for objects
near GEO. The analysis is based on the simple two-body
propagation. It is followed by a brief look at the influence
of using a fully numerical propagation tool on the time-
frame for which Gaussianity remains intact. The paper
concludes with a look at published variances for objects
in Earth orbit to give a first impression of how long Gaus-
sianity may remain intact for these.

2. MULTI-DIMENSIONAL CONFIDENCE IN-
TERVALS

The confidence intervals for the single Gaussian are well
known: Assuming that the state of an observed object is
defined completely in one-dimensional space, the likeli-
hood that it is located within the ± 1σ, ± 2σ or ± 3σ
intervals is 68.3 %, 95.4 % and 99.7 %, respectively. For
two-dimensional space, samples which are within a given
interval in one dimension, may still fall outside the same
interval in the other dimension. The chance of the ob-
ject residing within the ± 1σ interval in two dimensions
for instance reduces from 68.3 % to merely 39.3 %. The
confidence intervals can be computed using the χ2 (Chi-
squared) distribution. Its probability density function is
described by

χ2(x; k) =


x((k/2)−1)e−x/2

2k/2Γ(k/2)
, x > 0;

0, otherwise
(1)

where k is the degrees of freedom, x is the variance and
Γ(k/2) is the Gamma-function. Here, k takes on integer
values and – unlike in the categorical χ2 test for indepen-
dence – is equal to the dimensions of the sample space.
The parameter x in our case is the variance, σ2. Table 1
gives an overview of confidence intervals for multidimen-
sional Gaussians for relevant cases which are outlined in
the following sections.

2.1. Position only

In the simplest case we are only concerned with an
object’s position at one instance in time. Only the
three-dimensions of space are required and searching the
± 3.8σ space in all three dimensions yields a 99.7 %
chance of one finding the object.

Table 1. Standard deviation σ at given confidence inter-
vals.

σ at given Confidence Level
k 68.2 % 95.5 % 99.7 %
1 1.0 2.0 3.0
2 1.5 2.5 3.4
3 1.9 2.8 3.8
4 2.2 3.1 4.0
5 2.4 3.4 4.3
6 2.7 3.6 4.5
7 2.9 3.8 4.7

2.2. Position prediction

If we want to predict the position of an object at a differ-
ent time with a certain confidence, the situation changes.
Now, we must not only take its current position, but also
its position change rate and other parameters such as bal-
listic coefficient into account which have an effect on its
position at another time. Assuming the simplest case
without perturbing forces, we can use six dimensions:
three for position and three for velocity. As soon as we
account for drag or radiation pressure, the ballistic pa-
rameter or radiation pressure coefficient may be included.
Realistically, we will be using at least seven dimensions.
In this case, to predict the object’s position with a 99.7 %
confidence, the initial sample space up to ± 4.7σ must
be accounted for.

2.3. Manoeuvres & Measurement Errors

As soon as the orbit determination includes additional
parameters such as manoeuvres or station biases for in-
stance, the covariance space dimensions may quickly in-
crease, requiring the sample space to be extended.

2.4. Process Noise

None of these cases take into account variations and un-
certainties in the prediction of the perturbing forces them-
selves. These affect the object’s state evolution during the
prediction interval.

3. TEST FOR MULTIVARIATE NORMALITY

Mecklin and Mundfrom [7] performed a large scale com-
parison of 13 different tests for multivariate normality
(MVN). They split MVN tests into four categories:

• Graphical and correlational approaches

• Skewness and kurtosis approaches



• Goodness-of-fit approaches, and

• Consistent approaches.

The well known Kolmogorov-Smirnov, Cramér-von
Mises, and Anderson-Darling test all fall into the cate-
gory for “Goodness-of-fit approach”. Among the selected
methods was an extension of the Anderson-Darling test
published by Romeu, J., Oztur, A. [11] which is given
the name Romeu–Ozturk test. The Henze–Zirkler [4] test
falls into the category of “Consistent approaches”. Con-
sistent is used to indicate that it has been mathematically
shown that the test will – at least in theory – consistently
reject all non-MVN distributions. An example of tests of
the category “Skewness and kurtosis approaches” are ap-
proaches based on the work of Mardia [6]. Among the
criteria which the authors used to assess the tests was the
rate of Type I1 and Type II2 errors as well as feasibility for
implementation and desirable mathematical properties.
The two major conclusions of this analysis were: a) No
single test for MVN delivered perfect results and it was
recommended to employ multiple methods for testing of
MVN where possible; and, b) If only one test is used, the
Henze–Zirkler was recommended. The Romeu–Ozturk
was rejected early on in the study due to high Type I type
error rates which in some cases exceeded 10 %. These re-
sults are supported by a later study by Farrell et al. [2]. In
these publications, particle sample sizes were varied be-
tween 25 and 250 and sample space dimensions of up to
10 were considered. Based on these results, the Henze–
Zirkler test was selected.

3.1. Implementing the Henze–Zirkler Test

The test is implemented based on its original publication
[4]. The use of the log-normal probability distribution as
per [12] is considered as alternate method for evaluating
the Henze–Zirkler test statistic HZ. The basic parame-
ters which are required are:

• ~xi - particles representing the probability density
function

• np - particle sample size

• d - dimension of vectors ~xi (= dimension of sample
space)

First, the sample covariance matrix S for the given par-
ticle cloud is calculated. This in turn requires the vector
containing the sample means ~̄x to be determined:

~̄x =
1

n

n∑
i=1

~xi (2)

1Type I error: An MVN distributed sample is incorrectly identified
as being non-MVN distributed.

2Type II error: A non-MVN distributed sample is mistakenly iden-
tified as being MVN distributed.

The sample mean is also known as the first moment of
the sample probability density function. The second mo-
ment, the variance, which is represented by the sample
variance-covariance matrix in the multi-variate case, is
then determined:

S =
1

n

n∑
i=1

(
~xi − ~̄x

)
·
(
~xi − ~̄x

)T
(3)

The inverse S−1 of the covariance (‘dispersion’) matrix
must then be found. This can be done efficiently using for
instance the Cholesky-Decomposition and succinctly in-
verting its lower triangular decomposition to obtain S−1.
This method works only for symmetric, positive defini-
tive matrices like covariance matrices. An implementa-
tion is readily available for instance in Press et al. [10].
With this achieved, everything is available to calculate
the test statistic HZ:

HZ =

 1

n

n∑
i=1

n∑
j=1

e−
β2

2 Dij


−

[
2
(
1 + β2

)− d2 n∑
i=1

e
− β2

2(1+β2)
Di

]
+
[
n
(
1 + 2β2

)− d2 ] (4)

Herein Di gives the squared Mahalanobis distance of the
ith observation to the centroid and Dij gives the Maha-
lanobis distance between ith and jth observations:

Dij = (~xi − ~xj)T S−1 (~xi − ~xj) (5)

Di =
(
~xi − ~̄x

)T
S−1

(
~xi − ~̄x

)
(6)

The test statisticHZ is small when the particles are MVN
distributed and increases with deviation from MVN. The
only remaining parameter which has not been defined is
β. Henze and Zirkler [4] present an equation to estimate
this value based on the particle sample size np and sample
space dimensions d:

β =
1√
2

(
n (2d+ 1)

4

) 1
d+4

(7)

3.2. Testing the Null-Hypothesis

Henze and Zirkler [4] and Trujillo-Ortiz [12] propose dif-
ferent methods for testing the null-hypothesis H0. Both
take advantage of the fact that the test-statistic HZ is ap-
proximately log-normally distributed. HZ is thus evalu-
ated by comparing where the result falls compared to the
log-normal distribution with mean µ̂ and standard devi-
ation σ̂. These in turn depend only on the sample space
dimensions d and β. Different formulations are given by



different authors. Henze and Zirkler [4] define them as:

µ̂ = 1− a− d2
[
1 +

dβ2

a
+
d (d+ 2)β4

2a2

]
(8)

σ̂2 = 2
(
1 + 4β2

)− d2 (9)

+2a−d
[
1 +

2dβ4

a2
+

3d (d+ 2)β8

4a4

]
−4w

− d2
β

[
1 +

3dβ4

2wβ
+
d (d+ 2)β8

2w2
β

]

with a = 1 + 2β2 and wβ =
(
1 + β2

) (
1 + 3β2

)
.

Henze and Zirkler [4] approximate the critical p-
quantile (p = 1 − α0), based on the chosen value for β,
the sample space dimensions d and the significance level
α0:

qβ,p(1− α0) = µβ,p

(
1 +

σ2
β,d

µ2
β,d

)− 1
2

(10)

×

Φ−1(1− α0)

√√√√logn

(
1 +

σ2
β,d

µ2
β,d

) 
where Φ−1 is the inverse of the standard normal cumula-
tive distribution function (also known as the probit func-
tion and commonly denoted as zp) and can be calculated
using the inverse error function:

Φ−1(r) =
√

2 ·
(
erf−1 (2 r − 1)

)
, r ∈ (0, 1) (11)

The null-hypothesis H0 being that the sample is indeed
MVN distributed is then tested:

HZ > qβ,p(1− α0) ⇒ H0 should be rejected
HZ ≤ qβ,p(1− α0) ⇒ H0 cannot be rejected

If H0 is rejected, the sample is not MVN distributed. If
it cannot be rejected, the sample is assumed to be MVN
distributed.

Trujillo-Ortiz [12] initially calculates the log-
normalised mean µ̂ and standard deviation σ̂ which are
correctly defined by the following equations:

µ̂ = ln

(√
µ4

σ2 + µ2

)
(12)

σ̂ =

√
ln

(
σ2 + µ2

µ2

)
(13)

The significance level is then calculated from the cumu-
lative lognormal distribution:

α = 1− lognormal (HZ, µ̂, σ̂) (14)

The lognormal can be expressed via the error function
erf which in turn can be calculated using the incomplete
lower gamma function γ(k = 0.5, r). Resolving this
chain leads to the implementation:

lognormal (HZ, µ̂, σ̂) = (15)
0.5 ·

(
1− γ

(
0.5, x2

HZ,µ̂,σ̂

))
, x > 0.0

0.5 ·
(

1 + γ
(

0.5, x2
HZ,µ̂,σ̂

))
, x ≤ 0.0

where, x() is given by:

x (HZ, µ̂, σ̂) = − 1√
2
· ln (HZ)− µ̂

σ̂
(16)

These results will be denoted α as they provide the level
of significance as test metric. Finally, the test for MVN
becomes:

α > 0.05 ⇒ H0 cannot be rejected
α ≤ 0.05 ⇒ H0 should be rejected

3.3. Mahalanobis Space

For visualisation purposes, the particle cloud is repre-
sented in Mahalanobis space. Within this space the dis-
tance of any particle from the sample mean is represented
in multiples of the standard deviation. The transforma-
tion by which this is achieved is a so called “whiten-
ing” transformation which can be performed in differ-
ent ways. Here, the inverse lower triangular matrix L−1

of the sample covariance matrix S obtained through the
Cholesky decomposition is used. It is simply multiplied
with the vector pointing from the sample mean to the par-
ticle whose base is to be transformed:

∆~y ′ = L−1∆~y (17)

3.4. Type I and Type II Error

The quality of the test is determined by assessing Type I
and Type II error rates. Simulation results which quan-
tify both are given in [2, 4, 7]. Within these publications,
a multitude of multivariate distributions was used as basis
for the particle samples for assessing Type II error rates.
Across the publications particle sample sizes ranged from
20 to 250 and sample space dimensions ranged from two
to 10. Type I error was found to occur in three to six per-
cent of the simulation runs. Type II error rates depended
heavily on the multivariate distribution from which the
particles were created.

Here, the Type I and Type II error rate is assessed for par-
ticle sample sizes of 102, 103 and 104. Type I error is
simply assessed at t0 without propagation. Type II error
is assessed at t0 + 100 orbits where the distribution can



Figure 2. Particle distribution with a particle sample size of 10 000 at the initial epoch (left) and 100 orbits later (right) in
Mahalanobis Space. The units s are the sample standard deviations. The coordinates R and S are radial and along-track
directions within the object centred RSW frame and give the orientation of the depicted particle clouds to the first order.
The true orientation of the coordinates of the Mahalanobis Space are generated as part of the process of transformation
from ECI and may differ slightly from these depending on the make-up of the particle distribution.

safely be assumed to be non-Gaussian. Later simulations
will aim at detecting small deviations from Gaussianity
within the first couple of orbits. For the testing of the
Type II error rate, an obviously non-Gaussian distribu-
tion is preferred which exhibits the dominant characteris-
tics associated with uncertainty volume deformation we
are concerned with. For each particle sample size, 1 000
samples are computed and evaluated. The random num-
ber generator implementation of the Mersenne Twister of
the C++ library <random> is seeded with values be-
tween one and 1 000 to create the particle samples. To
account for possible errors stemming from the coordinate
transformations within the simulation environment, the
samples undergo the following steps before their distri-
bution is tested for multivariate normality:

1. Creation based on covariance matrix in ECI

2. Conversion to Equinoctial elements

3. Conversion back to ECI

4. MVN testing.

The conversion to Equinoctials is included as this is the
frame within which the two-body propagation operates
(see Section 4.4). The state ~s0 = (x, y, z, ẋ, ẏ, ż) in ECI
coordinates with position in meters and velocity in meters
per second for the simulation is:

~s0 = (42163960.6, 0, 0, 0, 3074.66772, 0) . (18)

and the covariance matrix is a purely diagonal matrix
where the position and velocity variances are taken as

σ2
x = σ2

y = σ2
z = 105 m2 (19)

σ2
ẋ = σ2

ẏ = σ2
ż = 10−3 m/s2

To visualise the distributions used for the Type I and Type
II error testing, Figure 2 presents the particle distribu-
tion with a particle sample size of 10 000 at the initial
epoch and 100 orbits later in Mahalanobis space in the
orbital plane. The curved distribution in the right hand
plot clearly shows the departure from Gaussianity.

Table 2 shows the percentage of tests in which a normally
distributed particle cloud was incorrectly flagged as be-
ing non-normally distributed (Type I) and the percent-
age of tests in which the non-normally distributed par-
ticle cloud was incorrectly flagged as being normally dis-
tributed (Type II). The results for the Type I error is con-
sistent with the values published by [2, 4, 7]. For Type
I errors, two things can be observed: 1) The results even
for the smallest particle sample size of 25 is accurate and
robust. 2) The error rate seems to increase slightly for
larger particle sample sizes. For Type II error rates, non-
normality is detected in most cases for a particle sample
size of 50 and in all cases for a particle sample size of
100. Across all simulations, the results for the two test
statistics is identical to within the first decimal place.



Table 2. Type I and Type II error rate of Henze–Zirkler
test. Values are given in percent of simulation runs.

Sample Simulations / %
Size HZ α

Type I Error Rates (t0)
25 4.8 4.8
50 3.4 3.4
100 4.8 4.8
1 000 4.4 4.4
10 000 5.1 5.1

Type II Error Rates (t0 + 100 orbits)
25 44.2 44.2
50 1.6 1.6
100 0.0 0.0
1 000 0.0 0.0
10 000 0.0 0.0

4. SIMULATION SETTINGS

Careful definition of particle sample size and number of
Monte-Carlo runs is required to obtain meaningful results
for the breakdown of Gaussianity. This is performed first,
followed by the definition of initial orbits and initial co-
variances to be analysed. The propagation schemes are
outlined succinctly.

4.1. Sample Size

With increasing particle sample size, the chance of cre-
ating particles further away from the mean increases. As
was outlined in the introduction and visualised by Figure
1, propagating the uncertainty space would cause Gaus-
sianity to break down at the instance directly after the ini-
tial epoch. The upper limit can be defined by prudently
choosing a confidence level beyond which unneeded or
unusable accuracy would be generated. The lower limit
is given by the requirement of covering a large enough
interval to be certain to a defined level, that the object
future position is contained in the solution.

The dependence of the space being sampled on the par-
ticle sample size is visualised in Figure 3. The plot
depicts the distribution of the particles in Mahalanobis
space within the orbital plane. It must be noted, that even
particles which fall within the 1 s region in this represen-
tation may be outside of the 1 s region in any of the other
parameters not shown here.

Here it is assumed that the volume contained in the prob-
ability density function outside of the 99.7 % confidence
region has negligible impact on any useful applications
of the uncertainty volume. The lower limit is given by
the necessity to create a significant number of particles

Figure 3. Particle distribution in Mahalanobis space
at initial epoch with confidence interval lines in orbital
plane components superimposed.

up to the limits of that level. To assess a sample with re-
gards to these two limits, the number of particles which
are outside of the 99.7 % are counted and the number of
particles which are in between the 99.7 % and the 95.45 %
confidence interval are counted. This is done by calculat-
ing the magnitude of each particle vector in Mahalanobis
space by simply taking the square root of the position
and velocity components squared (in the two-body case,
only six parameters define the state fully). The results are
given in Table 3. The table offers a surprising result in
that it shows that particle sample sizes above 10 000 al-
ready create a significant number of particles which are
outside of the upper limit defined by the 99.7 % confi-
dence interval. In statistics any sample size below 30 is
typically regarded as being too low to hold significance
[1]. The particle sample size of 10 000 contains less than
11 particles (average value from 100 simulations) beyond
the upper limit and many more in the interval just below
and is therefore chosen for the current investigation.

Table 3. Number of particles within the 95.45 % and
99.7 % confidence interval and outside of the 99.7 % con-
fidence interval.

Sample Size 95.45 % – 99.7 % > 99.7 %
107 239 435 11 709
106 23 812 1 168
105 2 380 104
104 237 11
103 22 1



Table 4. Size of 95.5 % confidence interval for particle
sample size np = 10 000. The second column is the in-
terval of possible results. The third column shows the
decision threshold value for MVN.

Result Decision # of MC runs
Interval Threshold 10 100

HZ ]0,∞[ 1.00 0.024 0.007
α [0,1] 0.05 0.33 0.10

4.2. Monte-Carlo Runs

The number of Monte-Carlo runs influences the stability
of the simulation results. To visualise the effect, a parti-
cle sample size of np = 100 suffices. Three simulation
settings are tested: 100, 1 000 and 10 000 Monte-Carlo
runs (= nmc = “Monte-Carlo sample size”). Each Monte-
Carlo simulation is performed 100 times, each time with
a different randomiser seed. The resulting behaviour is
described by the Central Limit Theorem (CLT). Applied
to our case, the CLT states that the histogram of the mean
values from the 100 Monte-Carlo simulations will be nor-
mally distributed regardless of the probability distribution
they were computed with. Furthermore, the CLT offers a
simple equation of estimating the standard deviation of
the sample means σx̄:

σx̄(nmc) =
s(nmc)√
nmc

(20)

s(nmc) is the sample standard deviation from a sin-
gle Monte-Carlo simulation and nmc is the number of
Monte-Carlo simulations used to obtain it. The results
for the determined sample means of each of the three sets
for the α test statistic are depicted in Figure 4 with the re-
sult of the CLT superimposed. Results for theHZ test are
omitted as they do not provide additional insight. It can
be seen that the CLT offers a powerful tool in estimating
a sensible number of Monte-Carlo runs if requirements
are well defined.

For the defined particle sample size of 10 000, simula-
tions with 10 and with 100 Monte-Carlo runs are per-
formed. Table 4 shows the size of the interval wherein
a simulation will fall with 95.5 % confidence based on
the CLT (interval given by±(2×1σx̄)). For α, the range
of values within which MVN is defined is ]0.05,1]. For
nmc = 100, α will remain within a range spanning more
than 10 % of this interval in 95.5 % of the cases. Although
this variation is still quite high, going to even larger nmc
is computationally too expensive in the current openMP
based implementation.

4.3. Initial Orbits and Covariances

The initial orbit used for the current assessment is given
in Table 5. Table 6 shows the settings for the initial vari-
ances. No initial covariances are assumed. The variances

Figure 4. Impact of the number of Monte-Carlo runs
on a simulation with particle sample size np = 100 at
t0. The figure shows the distribution of mean values for
the αlognormal statistic where each of the three Monte-
Carlo settings 100 (bottom), 1 000 (middle) and 10 000
(top) has been performed 100 times, with varying ran-
domiser seeds. The result from the Central Limit Theo-
rem are superimposed where the mean value is 0.482 and
the sample standard deviation for the three Monte-Carlo
sample sizes are s100 = 0.2763, s1 000 = 0.2766 and
s10 000 = 0.2769.

are given in the RSW frame where R points in the ra-
dial, W in the cross-track, and S in the along-track di-
rection. Due to the negligible eccentricity of the orbit,
the frame is synonymous to the NTW frame. Two sets,
set Cx1 and set Cx2, with three variance settings each are
simulated here. Set Cx1 has the largest uncertainties in
along-track and identical uncertainties in the cross-track
and radial directions. Set Cx2 uses the same values how-
ever with the largest uncertainties in radial direction. This
variation helps to gain insight into the effect of variances
in different directions in the object centered frame. Vari-
ances for velocity are nine orders of magnitude smaller in
the largest of the three uncertainty directions and seven
orders smaller in the other two directions. Case C3a is
roughly based on average orbit determination results us-
ing optical measurements of geostationary spacecraft. It
is however by no means representative as uncertainties in
individual directions will vary greatly between objects,
observations and based on the specifics of the orbit deter-
mination method applied. The cases C2y and C1y succes-
sively reduce all variances equally by two orders of mag-
nitude. Investigating small variances is of interest when
assessing the effect improvements in the orbit determi-
nation process may have as well as understanding how
ephemeris from operators of spacecraft may be expected
compare.



Table 5. Overview of initial Keplerian orbit elements.
Parameter Unit Value
a km 42163.9606
e – 5× 10−10

i ◦ 0.0
Ω ◦ 0.0
ω ◦ 180.0
ν ◦ 180.0

Table 6. Overview of initial covariances inRSW frame.
R = radial; W = cross-track; S =W × R = along-track

ID Variances
xR xS xW ẋR ẋS ẋW

m2 m2 s−2

C1a 10−2 101 10−2 10−9 10−8 10−9

C2a 100 103 100 10−7 10−6 10−7

C3a 102 105 102 10−5 10−4 10−5

C1b 101 10−2 10−2 10−8 10−9 10−9

C2b 103 100 100 10−6 10−7 10−7

C3b 105 102 102 10−4 10−5 10−5

4.4. Orbit Propagation

Two-body Propagation Two-body propagation is per-
formed in Equinoctial elements using the Mikkola/Halley
4 method as described by [8] with an Erratum to the
equation of the Mikkola starter value as per [9]. In the
current implementation, this method shows accuracy at
GEO altitude for eccentricities below 0.800 of better than
0.001 mm and better than 20 mm for eccentricities be-
tween 0.8000 and 0.9998.

Numerical Propagation Using an extended force
model instead of the simplistic two-body propagation
will lead to a quickening of the breakdown of Gaussian-
ity. To get a first impression of this effect, the General
Mission Analysis Tool (GMAT) version R2015a is em-
ployed. Standard input parameters are used which lead
to an area-to-mass ratio for a spherical object of about
0.001. No drag is used due to the high altitude being
investigated. Integration is performed using the Runge-
Kutta-89 method. The EGM-96 Earth Gravity Model is
used to degree and order 30. Third body gravity effects
from the Sun and Moon are taken into account.

5. TWO-BODY RESULTS

5.1. Effect of Sample Size

The particle sample size effect on the epoch at which the
breakdown of Gaussianity is detected is exemplified in

Figure 5 based on two simulations and using the αmetric.
Results for theHZ metric are not shown as they are qual-
itatively identical and quantitatively almost the same and
will be discussed in the following sections. Simulation
1 uses np = 10 000 and nmc = 100. Simulation 2 uses
np = 100 and nmc = 10 000. Both simulations assume
the initial GEO given in Table 5 and initial variances as
per Table 6, case C1a. Given the initial conditions, the
variances are largest in the along-track. The difference
in Monte-Carlo runs between the two simulations affects
the stability of the median of the simulations. It follows
that the median from simulation 2 has a much higher like-
lihood of being close to the actual median for np = 100
than the result of simulation 2 will have of being close to
the median for np = 10 000. The results are represented
by the median, the area enclosed by ± 25 % of the runs
(= first and third quartile) relative to the median and the
extent of all results for both simulations. The median and
quartiles are preferred to the mean and standard devia-
tion for assessing the results because at values close to
zero, the standard deviation extends to negative values in
α which are mathematically meaningless. The time un-
til the breakdown of Gaussianity differs by about a factor
two. Even during the timeframe where the median and
first quartile are well above the hypothesis rejection level
of α0 = 0.05, some simulations will result in a Type I
error. This is consistent with the findings of Section 3.4
where it was shown that a Type I error should be expected
in about 5 % of the simulations which is a major reason
behind performing Monte-Carlo simulations.

Figure 5. The sample size affects the extent of the un-
certainty space being sampled. Large sample sizes cover
a larger area, becoming non-normally distributed more
quickly. The median, first and third quartile and maxi-
mum values from all simulations are shown for sample
sizes np = 100 and np = 10 000. The null-hypothesis
that particles are MVN distributed is rejected for values
below α = α0 = 0.05.

5.2. Effect of Monte-Carlo Runs

The effect of the number of Monte-Carlo runs from which
the epoch at which the breakdown of Gaussianity is de-



rived is detected is exemplified by comparison of two
simulations. Initial orbit as per Table 5 and diagonal vari-
ances as per Table 6, case C2b are used. Simulation 1
employs nmc = 100 and simulation 2 nmc = 10 000.
Although differences are obvious for the two simulations,
the median values for both are within 0.1 orbit periods of
one another. Due to the larger number of simulations per-
formed, the range of values is larger for nmc = 10 000.

Figure 6. Effect of Monte-Carlo runs on epoch of break-
down of Gaussianity. Comparison of nmc = 100 and
nmc = 10 000 for np = 10 000 and initial conditions as
per Tables 5 and 6.

5.3. Effect of Variances

Figure 7 compares the breakdown of Gaussianity for
the two-body case given the detailed simulation settings.
Each plot compares the evolution of the variance based on
a Cxa case with the largest uncertainty in along-track to
the results of the respective Cxb case with the same vari-
ances values however with the largest uncertainty in the
radial direction. The plots on the left hand side provide
the α-metric while the plots on the right-hand side show
the results using theHZ-metric for the same simulations.

Test metric comparison The results of the α and HZ
metric show almost identical epochs for the breakdown of
Gaussianity. The major difference between the two is es-
sentially that once the distribution becomes non-Gassian,
the α metric reduces to zero and no additional informa-
tion can be gleaned from the result. The HZ metric on
the other hand increases with growing divergence from
Gaussianity and thus offers slightly more information in
this region. Visually, the α metric is slightly easier to
interpret.

Large along-track vs. large radial uncertainties In
the case where the larger uncertainty is in along-track di-
rection, the Gaussian assumption holds for roughly three
times longer compared to the case where uncertainty is
largest in radial direction. Whether this difference is

driven by the position or the velocity uncertainty is not
clear and may be analysed in more detail in a future study.

Initial variance size impact As expected, Gaussianity
breaks down earliest for the case where initial uncertain-
ties are largest (C3y). Interestingly, the time span for
Gaussianity seems to double between C1y and C2y and
again between C2y amd C3y. Six test cases however are
too few to allow any exact correlation to be inferred. For
the largest uncertainties in the along-track, the longest
time frame during which the Gaussian assumption may
be applied is about six orbital periods with the first quar-
tile dropping below the rejection threshold at between
four and five orbital periods. For the largest initial vari-
ances, Gaussianity is only given for about one orbital pe-
riod (roughly one day). With the largest uncertainties in
radial direction, the longest time frame until breakdown
of Gaussianity is between 1.5 and two orbital periods.
The shortest time frame is less than half an orbital period.

6. EXTENDED FORCE MODEL EFFECT

A fair comparison is only possible, if all two-body simu-
lations are also using the full-force model as outlined in
Section 4.4. Here, a first impression is gained of the ef-
fect of using an extended force model by comparing the
position of 8 000 particles generated along the one to 10-
σ lines in the orbital plane after seven orbits. This is the
same setup as was used to generate Figure 1. Visually,
the two-body solution and the the extended force model
solution are almost indiscernible (see Figure 8). A larger
deviation should be expected when initial variances are
extended to higher dimensions and for objects with high
area-to-mass ratios.

7. PUBLISHED COVARIANCES

Flohrer et al. [3] performed an extensive analysis of the
position errors in historic TLE. They split TLEs into dif-
ferent categories and estimated the standard deviation in
position in RSW coordinates. The category with eccen-
tricity below 0.1 and perigee altitude above 25 000 km fo-
cuses on orbits in the GEO region. Between 1990 and
2008, the standard deviation in cross-track direction re-
mained quite constant at about 100 m; values in radial di-
rection varied between 400 m and 700 m and values in
along-track varied between 500 m and 800 m. Unfor-
tunately, no analysis of velocity uncertainties was per-
formed. Klinkrad and Martin [5] presented estimated
velocity uncertainties for low eccentricity TLE in LEO
which are on the order of 500 mm/s in radial and between
100 mm/s and 200 mm/s in along-track and cross-track.
These values are three orders of magnitude worse than the
ones assumed in the current simulation study. Case C3a
(Table 6) has the largest along-track standard deviation
simulated in the current study and was about 316 m. The



Figure 7. Timeframe until breakdown of Gaussianity using the Henze–Zirkler metric for test cases defined in Tables 5
and 6 for the two-body case.

published cross-track and radial standard deviations are
closer to those used in case C3b. In these two cases, the
uncertainty volume became non-Gaussian within the first
1.5 periods. If the velocity uncertainties given in [5] were
used, Gaussianity would break even earlier. Vallado and
Alfano [13] states that TLEs are created autonomously
and without incorporation of manoeuvres into the orbit
determination; assessments of the accuracy of TLEs are
therefore good for determining the order of magnitude of
uncertainties and how they may vary for different orbit
categories.

8. CONCLUSIONS

The current paper addressed the issue of uncertainty vol-
ume prediction for Earth orbiting objects. It was shown
that the time until the initially Gaussian uncertainty vol-
ume becomes non-Gaussian not only depends on the size
of the initial variances, but also on the size of the sam-
ple space which is assessed. This is especially critical for
random particle methods as the Gaussian itself extends
to infinity and increasing the sample size also expands
the physical extent of the uncertainty volume which is
sampled from. To be 99.7 % confident to find the ob-



Figure 8. Particles taken at the one to 10-σ lines. Com-
parison after propagation at t1 between two-body solu-
tion (gray) and full force model using GMAT R2015a
(red).

ject at a future epoch based on initial uncertainties alone
and assuming a seven-dimensional covariance matrix re-
quires assessing the initial uncertainty volume out to the
4.7σ level equally in all dimensions. A sample size of
10 000 is found to adequately sample this uncertainty vol-
ume. After a review of literature which compares dif-
ferent tests for multivariate normality, the Henze–Zirkler
test was chosen and implemented. All tests of the im-
plemented method show good agreement with published
values.

The case of a circular geostationary object was assessed
based on two-body motion. Six different initial covari-
ance matrices were considered. The uncertainties were
defined in cartesian, object centered coordinates. In three
of the cases, the largest position and velocity uncertainty
was assumed to be in along-track direction. In three other
cases, the largest uncertainties were assumed to be in ra-
dial direction. In the cases where the largest uncertain-
ties were in the along-track, the longest and shortest time
frames for which Gaussianity held was about six orbit pe-
riods and about one orbit period respectively. In the cases
where the largest uncertainties were in radial direction,
the time until Gaussianity broke down was three times
shorter.

Perturbations will lead to a shorter timeframe during
which the uncertainty volume may be assumed to remain
Gaussian compared to the two-body case assessed here.
An impression of its effect was gained by comparing the
particle positions in Mahalanobis space propagated from
positions initially defined along the σ-lines of the uncer-
tainty space to the two-body case. For the simple case of
uncertainty only in position within the orbit plane, visual
comparison revealed no obvious discrepancies. A more
detailed assessment of the effects of using a full numeri-
cal force model will be performed in future work.

Position standard deviations from studies of historical
TLE data are close to the largest initial uncertainties in-
vestigated here; velocity standard deviations are several
orders of magnitude worse than the ones assumed here.
An uncertainty volume based on these values can be ex-
pected to become non-Gaussian within the first orbit.
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