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ABSTRACT

A debris cloud from a fragmentation on orbit is mod-
eled by transformation of variables from the instanta-
neous velocity distribution at the fragmentation time
to the spatial distribution at some elapsed time later.
We call this the Eulerian view of orbit dynamics, in
contrast to the traditional ephemeris of individual
particles, or Lagrangian view, borrowing terminol-
ogy from the field of fluid dynamics. The initial dis-
tribution in velocity can be of any form; for example,
the initial velocity plus a change equal in all direc-
tions and following the NASA EVOLVE 4.0 breakup
model in magnitude. The spatial density map com-
puted is derived from the solution of the Lambert
(two-point boundary value) problem and the state
transition matrix for unperturbed propagation. The
transformation from the initial velocity density to
final spatial density is therefore quite nonlinear, so
the traditional tools of analysis that approximate as-
suming linearity or a Gaussian distribution fail dra-
matically. The transformation of variables technique
does not make any such assumptions, and unlike the
Monte Carlo method, is not subject to sampling er-
rors.

The most time-consuming part of the computation
is obtaining what we call the complete Lambert so-
lution, that is, all possible trajectories between the
two defined points in the specified time interval. It is
a naturally parallel calculation; each calculation at
a point in space is independent of the others. More-
over, because of the cylindrical symmetry in the two-
body Lambert problem, solutions need be obtained
in only one half-plane; a simple rotation of the veloc-
ity vector and look-up of density solves all points on
the ring around the location vector of the fragmen-
tation.

Structures and features are evident in the density
maps, and these structures show promise for simpli-
fied approximation of the density map. The well-
known pinch point at the fragmentation location in
inertial space is clearly visible after an interval just a
bit greater than an source orbital period. The anti-
pinch line, or wedge, is also observed. Bands on the
opposite side of the earth from the fragmentation
are very noticeable, and their existence may be mo-

tivated from simple orbit dynamics. These bands
make the anti-pinch line actually more of a set of
anti-pinch line segments.

By computing these density maps over time and
making a video, the global evolution is clear. There
is a density generator, a wave of density emanating
from very near the surface of the earth, with a lead-
ing front at roughly the same altitude as the pinch
point. It cycles around the earth and creates the
impression of a source of the bands, with newly cre-
ated bands moving radially outward and diminishing
in density. Although the initial velocity distribution
affects the final spatial distribution, the Lambert so-
lutions, which are the most time consuming to com-
pute, need only be computed once. Therefore, dif-
ferent initial distributions may be changed and the
results recomputed with relative speed.

Validation of this technique and its implementation
is performed via Monte Carlo and quasi Monte Carlo
simulation. Since typical densities are found to be in
the range 10−13 to 10−9km−3, for expectation of one
particle in a cube 24 km on a side (13824km−3), a
minimum of 107 particles are needed in the simu-
lation, with more providing an enhanced ability to
check fidelity. Fortunately, this computation is nat-
urally parallel, like the density calculation itself.

A simulated fly-through provides insight into the po-
tential hazard experienced by an orbiting spacecraft
and its dependence on the orbit and timing relative
to the location and timing of the fragmentation.

1. INTRODUCTION

When an instantaneous fragmentation happens on
orbit, a single object suddenly becomes multiple ob-
jects, and the orbits of each of these pieces will be
different from the original, source orbit. In fact, the
fragmentation adds a random impulsive delta-v to
each piece, and analysis may proceed as would a ma-
neuver of such a type. Because this delta-v has in
general no constraints, except perhaps a limit to its
magnitude, the trajectory of such pieces can be al-
most anywhere physically possible.
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For decades, researchers have employed various tech-
niques to study the evolution of the “cloud” of frag-
ments. Jehn [1] divided the post-fragmentation time
interval into four phases, labeled “A,” “B,” “C,” and
“D.” In phase A, the cloud of fragments is a pulsat-
ing ellipsoid, being still confined relatively close to
the source orbit. The pulsation is seen to occur ev-
ery orbital period; the extent of the cloud decreases
and hence its density increases as it returns to the
fragmentation point. In phase B, the shape of the
cloud is a torus with a pinch point and pinch line.
This may occur as soon as a few hours after frag-
mentation; what drives the spreading of fragments
into the toroidal ring matching the source orbit is a
velocity change component in the in-track direction
that changes the orbital periods of the fragments.
In phase C, perturbations, notably the J2 geopoten-
tial perturbation, cause the nodal regression which
smears out the torus into a spherical shell truncated
at the polar caps. Finally in phase D, if the orbit is
low enough, the evenly distributed band loses pop-
ulation to atmospheric drag lowering and ultimately
deorbiting the fragments. In this study, we focus on
phases A and B.

Hujsak [2], almost simultaneously with Jehn, derived
a nonlinear dynamical model of the relative motion
for the purpose of analysis of debris density from
breakup through what Jehn would call phase B. By
including select nonlinear terms and using a gener-
alization of the Hill-Clohessy-Wiltshire equations for
elliptical orbits, he was able to derive equations use-
ful even far from the source orbit. He shows the
inverse of the relative motion transformation is an
approximate solution for the whole orbit Lambert
(boundary value) problem. Including the geopoten-
tial J2 perturbation, he is able to analyze debris den-
sity differentially as a function of breakup velocity
distribution. He found that particle density can vary
by four orders of magnitude, and attributes increases
in density away from the pinch point to perturba-
tions. While we find the relative motion approach
too limiting and therefore take a different approach,
we regard Hujsak’s study as a novel and pioneer-
ing idea for debris cloud evolution studies, and in a
very significant sense inspired our present undertak-
ing. His claim of four orders of magnitude is plau-
sible, but concentrations of density occur even in an
unperturbed model.

Often, these analyses proceed with explicit or im-
plicit assumptions of the initial velocity distribu-
tion. Sometimes, for example, isotropic, or uniform
in all directions, sometimes uniformly distributed in
magnitude within some bound. The analysis may
be based on some established fragmentation model,
such as the NASA model [3], but more often it is
not. There is much that can be concluded without a
specific creation model, but having such a model al-
lows one to investigate in greater depth the collective
behavior of the fragments.

The purpose of this study is to determine the distri-
bution in space of the fragments within a few tens
of source orbits, to determine where areas of con-
centrated density are and whether they are static or
change dramatically over this time period. In or-
der to do this, we develop the mathematical tools
needed. In this regard, we have taken a fresh ap-
proach. In order to find the distribution in space at
the end of the time interval from the distribution in
velocity at the beginning, we use the transformation
of variables technique. This then provides a set of
data which can be used to apply to any velocity dis-
tribution to determine the spatial distribution. The
spatial distribution we seek is a function giving the
normalized number density at any point in space, and
it is measured in units of reciprocal volume, such as
km−3. Equally, this can be considered a probabil-
ity density function; for example, the probability of
finding a single vehicle in a location after a maneuver
of uncertain delta-v.

The transformation of variables method tells us how
to compute a density after mapping the domain space
through a transformation. It needs two pieces of in-
formation: the inverse image points under the initial
velocity to final position mapping, and the deter-
minant of the Jacobian of the map at each of those
points. Once those have been computed for a point in
the domain space of the transformation (velocities),
the data may be saved as a distribution map, and
the computation of a later spatial distribution from
an initial velocity distribution may be performed as
a value look-up, multiplication and addition, a rela-
tively fast calculation.

In orbital terms, the initial velocity to final position
mapping is, because the initial position is assumed
fixed, simply the initial value problem for orbit dy-
namics. Here, unperturbed two-body (Kepler) mo-
tion is assumed, and the propagator used are the La-
grange coefficients f and g. The inverse map needed
is the two-point boundary value problem, i.e., the
Lambert problem. From every point r2 at the end
of the time interval and from the fixed initial loca-
tion of the fragmentation r1, the task is to find the
initial velocities ṙ1 that solve the two-body motion.
Then, for each of those initial values, to find the de-
terminant of the Jacobian of the orbit propagation
problem. The method developed here we call the
Lambert-Transformation of Variables method of de-
termining orbital density.

Astrodynamics, and before it, celestial mechanics,
has been focused on point dynamics, that is, how
a single satellite (or planet) moves about a single
attracting body. For unperturbed motion particu-
larly, this problem is well in hand; not just the initial
value problem of orbit propagation, but the bound-
ary value, or Lambert, problem is as well. What we
propose here is new: that point dynamics induces
a cloud dynamics, an evolution of a density distri-
bution over time. This is significantly more difficult



to compute than the point dynamics case, but the
rewards are potentially very large.

2. AN ORBITAL DENSITY MAP

An orbital density map as we define it is the den-
sity of orbiting objects in Cartesian space around the
earth. This density is a function of the position, and
of time. It may be a distribution of actual objects,
such as fragments, but it may also be a probabil-
ity distribution, which can be considered the distri-
bution of virtual objects. A probability density or
normalized number density function will integrate to
one over the whole volume; a general density function
will not have a specified integral, and might integrate
to the total number of pieces, for example.

In order to find the density map, we will need to know
the location of the fragmentation r1 and the distribu-
tion of velocities. The distribution of locations r2(t)
for an elapsed time t can be computed from orbit
mechanics using the transformation of variables tech-
nique for density functions. The transformation (or
change) of variables technique [4] can be stated sim-
ply. Given a function F from a space X to a space Y ,
a density function GX in the space X can be trans-
formed into one in the space Y by summing over all
the points in the inverse image F−1(y) (y ∈ Y ) di-
vided by the absolute value of the determinant of the
Jacobian matrix of F

GY (y) =
∑

x∈F−1(y)

GX(x)

|det JF (x)|
, (1)

where x and y can be vectors. The Jacobian ma-
trix JF is the matrix of partial derivatives of the
function F . When the inverse image is a continuum
rather than a discrete set of points, the sum must be
replaced with an integral.

In the present application, the space X is three di-
mensional, the velocity at the fragmentation point,
and the space Y , also three dimensional, is the loca-
tion of the fragment at a fixed later time. We seek
the orbital density function GY given the velocity
distribution GX . For each value of the elapsed time
after the fragmentation, the function GY must be
computed for all points. However, once computed
and stored, the values x in the inverse image of each
point y, and the corresponding Jacobian determinant
|det Jf (x)|may merely be looked up in a velocity dis-
tribution function GX from which GY can be rapidly
calculated.

There are clearly two pieces to the problem: finding
the inverse images F−1(y) and computing the for-
ward Jacobian determinant. In the orbital context,
the forward function F is the initial value problem
for orbit mechanics; given an initial position r1 and
velocity ṙ1, find the position after time t, r2 and ṙ2.

The inverse image calculation amounts to the two-
point boundary value, or Lambert, problem. These
are covered in order in the next two sections.

3. THE INITIAL VALUE PROBLEM

Unperturbed orbits may be propagated using the La-
grange f and g coefficients. Because an orbit lies in a
plane, any point on the orbit and any velocity vector
can be described by two vectors that span the plane.
Because they cannot be colinear, the initial position
r1 and velocity ṙ1 may serve as those basis vectors,
with suitable coefficients:

r2 =f(t)r1 + g(t)ṙ1 (2a)

ṙ2 =ḟ(t)r1 + ġ(t)ṙ1. (2b)

The initial conditions are must match these values
when t = 0,

f(0) =1, ḟ(0) =0 (3a)
g(0) =0, ġ(0) =1. (3b)

These form a set of vector differential equations
which can be solved for the coefficients f and g. Al-
though they are time dependent, we will drop the
function arguments henceforth. However, it is im-
portant to remember that these “coefficients” are ac-
tually functions of r1 and ṙ1, because we will need
to take the partial derivatives for the Jacobian.

There are different forms for the Lagrange coeffi-
cients; we use the eccentric anomaly formulation [5],

f =1− a

r1
(1− cos ∆E) (4a)

g =t−

√
a3

µ
(∆E − sin ∆E) (4b)

ḟ =
−√µa sin ∆E

r2r1
(4c)

ġ =1− a

r2
(1− cos ∆E), (4d)

where a is the semimajor axis, ∆E = E2 −E1 is the
change in eccentric anomaly between the two points,
and µ is the gravitational constant. In order to use
these coefficients, the semimajor axis and change in
eccentric anomaly must be computed from r1 and
r2, and the latter requires the application of Kepler’s
equation among other things. Typically in this ap-
plication a Newton method is used to solve Kepler’s
equation at each point. It is important to note that
E2 must be greater than E1, and it must include
whole orbits, that is to say, each whole orbit adds
another 2π to the change. No angle normalization
(reduction to a range −π to π or 0 to 2π) for E2 is
permitted here.



The Jacobian matrix needed for the transformation
of variables in this problem is 3× 3

J =
∂r2
∂ṙ1

=


∂r2I
∂v1I

∂r2I
∂v1J

∂r2I
∂v1K

∂r2J
∂v1I

∂r2J
∂v1J

∂r2J
∂v1K

∂r2K
∂v1I

∂r2K
∂v1J

∂r2K
∂v1K

 , (5)

where derivatives of each of the three Cartesian com-
ponents I, J , K are shown. This matrix is one 3× 3
block of the 6 × 6 state transition matrix for orbit
dynamics. It was computed by Battin [6], and Bat-
tin’s presentation was untangled by Arora et al. [7].
Equations (38)–(44), (47), and (50) of the latter pub-
lication form a clear algorithm from inputs r1, r2, ∆t
and f (eq. (4a)), g (eq. (4b)), ḟ (eq. (4c)), ġ (eq. (4d))
and the semimajor axis a; the latter set come out of
the Lambert solver (section 4). The formulas are

U1 = −r1r2ḟ√
µ

(6a)

U2 = r1(1− f) (6b)
U3 =

√
µ(t− g) (6c)

U4 = U1U3 −
1

2
(U2

2 − U2
3 /a) (6d)

σ1 =
r1 · ṙ1√

µ
(6e)

σ2 =
r2 · ṙ2√

µ
(6f)

χ =
t
√
µ

a
+ σ2 − σ1 (6g)

U5 = a

(
1

6
χ3 − U3

)
(6h)

C̄ =
1
√
µ

(3U5 − χU4 −
√
µU2t) (6i)

∂r2
∂ṙ1

=
r1
µ

(1− f) [(r2 − r1)⊗ ṙ1 − (ṙ2 − ṙ1)⊗ r1]

+
C̄

µ
ṙ2 ⊗ ṙ1 + gI, (6j)

where I is the 3 × 3 identity matrix and “⊗” repre-
sents the outer product, forming a 3×3 matrix from
two 3-vectors.

4. THE BOUNDARY VALUE PROBLEM

4.1. Complete set of solutions

The inverse image needed for the transformation of
variables is a matter of finding the correct initial ve-
locity ṙ1 such that together with the known fragmen-
tation location r1, and the elapsed time t, the correct
final location r2 is obtained. That is, t, r1 and r2 are

given, and ṙ1 must be found. This is the classic Lam-
bert problem, or two-point boundary value problem
for orbit mechanics. Over the centuries since it was
first posed, numerous methods have been developed
for solving this problem. Some methods do better
on or are only applicable for certain kinds of orbits,
for example, short arcs, bound orbits, or those that
go less than a whole orbit; for this application, we
cannot restrict the kinds of orbits.

Between any two position vectors, an orbit can go in
one of two directions. If the transfer angle is less than
180 degrees (or between 360 and 540 degrees, etc.),
the arc is considered short way, if between 180 and
360 degrees, it is considered long way. Note the terms
refer to the angle; the amount of time is the same in
both cases, as assumed in the problem. If the earth
center and the two points are colinear, there is no
unique solution because the plane is undetermined,
but the planar elements a, e and true anomaly can
be determined.

If the trajectory passes the initial point r1 at least
once before t has elapsed, the trajectory is a whole or-
bit trajectory (customarily called “multi-revolution”);
it will pass r1 N ≥ 1 times before the elapsed time
is up. If it does not pass r1 before the elapsed time
is up, it is a zero orbit case, or N = 0. All possible
cases of non-negative integer N need to be examined
in the Lambert algorithm.

A zero orbit trajectory can be of any conic section,
but a whole orbit must be a bound orbit, i.e., circular
or elliptical. While there is a solution for a zero orbit
trajectory for any pair of points and time, assuming
unlimited speed is possible, the whole orbit case has
a minimum time. As N increases, this minimum
time increases. Therefore, the search for solution is
finite; if N is high enough that there are no solutions
because the elapsed time is less than the minimum
time, then no higher value of N need be searched.

Our application is unique among typical uses of Lam-
bert solvers: we must obtain all solutions for a given
set of boundary conditions and time; that is, all in-
verse images are necessary to form the sum in eq. (1).
This includes all conic sections circular, elliptical,
parabolic, and hyperbolic, both directions, and all
possible revolution counts N . Hence we call it the
complete Lambert solution.

The preceding exposition refers to the mathematical
solution of the Lambert problem. Not all mathe-
matical solutions are physical solutions; if the geo-
centric distance becomes less than the radius of the
earth over the trajectory, it is not physically possi-
ble. Therefore, after determining a solution mathe-
matically, it must be checked for minimum geocentric
distance. If it is a whole orbit trajectory, that is the
perigee radius. If it is zero orbit, and the trajec-
tory crosses perigee, then again the perigee radius is
the minimum geocentric distance. If the trajectory



doesn’t cross perigee, then the minimum geocentric
distance is given by the smaller of the distances at
the endpoints r1 or r2.

Another possible physical limitation is the velocity.
If the escape velocity is not a possibility because, for
instance, the energy of the fragmentation is known to
be too low, then the unbound (parabolic and hyper-
bolic) orbits need not be considered. A velocity limit
means that after a certain amount of time, there is a
lower limit on N above zero, because the orbit needs
a high enough orbital period to have that low an N .
For example, if r1 and r2 are antipodal, then after
one day, N = 1 is only possible if there is enough
velocity to reach a 16 hour orbit from the fragmen-
tation location.

Regardless of the Lambert algorithm used, a solver is
always necessary, because all algorithms involve some
sort of root solving of a function that is not invert-
ible analytically. The solver is typically a standard
algorithm such as a Newton method (if a derivative
is available), or a bisection solver.

4.2. Lambert algorithm

Battin’s hypergeometric [6] method gives consis-
tently complete sets of solutions for all types of or-
bits. The core Lambert algorithm computes a and
∆E; the Lagrange coefficients are then used to solve
for the initial velocity using eq. (2a). The Lambert
theorem states that the elapsed time ∆t is a function
only of semimajor axis (an unknown in the Lambert
problem), the sum of the geocentric distances r1+r2,
the chord length c = |r2 − r1|, whether the object
went the long way (past the antipodal line) or the
short way, and how many times N it passed the ini-
tial position r1 before the elapsed time. The Bat-
tin method computes a “normalized time,” the time
times the mean motion of the minimum energy orbit
(see (7.32) in [6])√

µ

a3m
∆t =

2πN

(1− x2)3/2
+

4

3
η3 F2 1

(
3, 1;

5

2
;S1

)
+4λη,

(7)
where N is the whole orbit count. Other quantities
needed are computed in succession

s =
r1 + r2 + c

2
(8)

am =
s

2
(9)

λ = ±
√

1− c

s
(10)

y =
√

1− λ2(1− x2) (11)
η = y − λx (12)

S1 =
1

2
(1− λ− xη); (13)

am is the minimal semimajor axis. The sign for λ
is chosen on the short way/long way information;
if the short way, the positive sign is taken, if the
long way, the negative. The variable x > −1 is the
unknown that must be solved. The function F2 1 is
a hypergeometric function. The gravitation constant
is given by µ.

The variable xmust be found that satisfies (7). Many
root-solving techniques can make use of the deriva-
tive of the right hand side. The derivative of the
hypergeometric function is another hypergeometric
function1, so the derivative of the right hand side of
eq. (7) is

6πNx

(1− x2)5/2
− 4

5
(px+ η)η3 F2 1

(
4, 2;

7

2
;S1

)
+ 4λp+ 4pη2 F2 1

(
3, 1;

5

2
;S1

)
(14)

with

p =
xλ2

y
− λ. (15)

For the zero orbit case, presuming there is enough
velocity, there is no minimum time to get to another
point (except the time it takes light to travel between
the points), so all solutions must be found. On the
other hand, for the whole orbit case N ≥ 1, there is
a minimum time tmin(N) such that if ∆t < tmin(N),
no solution exists. For each additional whole orbit,
this minimum time increases tmin(N + 1) > tmin(N),
so if it is found for a particular N that the minimum
time is too high, the search with increasing N may
be terminated for the input conditions. This leads to
the concept of the maximum orbit count, a function
of the desired elapsed time, Nmax(∆t), beyond which
no solutions are to be found.

Figure 1 shows a curve of normalized time versus x
by whole orbit N for

r1 =

[
7278.1363

0.0
0.0

]
km, r2 =

[ −10000.0
3750.0

0.0

]
km.

(16)
For this case, each normalized time unit represents
1332.05s, so 24 hours is 64.862 normalized time units,
represented by the dashed line in the figure. The plot
shows only short way curves; it is clear that N = 0
has one such solution and each of N = 1, . . . , 9 has
two solutions. The minimum time for N ≥ 10 is too
large for there to be any solutions for 24 hours. The
plot of long way curves looks similar and doubles the
number of solutions. The Battin variable is greater
than or equal to one x ≥ 1 for unbound orbits, which
is only possible if N = 0.

1http://functions.wolfram.com/
HypergeometricFunctions/Hypergeometric2F1/20/01/05/
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Figure 1: Typical curve of normalized time versus x
by whole orbit N ; short way only shown

4.3. Solving for orbits

The transformation of variables technique for density
calculation requires that every Lambert solution be
found, the inverse images of the initial value problem,
together with the forward Jacobian determinant, be
computed. This means each Lambert mode: whole
orbit count N , all short and long way solutions, and
for whole orbit solutions, both left and right of the
minimum. For every set of boundary conditions r1,
r2 and elapsed time ∆t, there is one Lambert mode
of each for N = 0 and two of each for N ≥ 1, as
can be seen in fig. 1. For each r2 point, the N = 0
solutions are first found (at present, unbound orbits
are not computed), then the whole orbit minimum
times. The maximum N considered is Nmax(∆t) at
any elapsed time; the maximum overall determined
from the highest elapsed time desired, Nmax(∆tmax).
Then the solution for each of the possible Lambert
modes is found. This constitutes the complete Lam-
bert solution which is necessary for accurate compu-
tation of the orbit density at that point.

The normalized time eq. (7) is computed as a func-
tion of x, as is its derivative eq. (14). Because the
function is not defined for x ≤ −1, a Newton solver,
which is an unconstrained optimization, is not ideal.
It is easy to find cases where a guess of a valid x
will produce a derivative such that the next itera-
tion of the Newton method gives an invalid value
x ≤ −1. Therefore, we use a hybrid bracketing
and Newton solver method. In this approach for
the first time step at which there is a solution, the
solver moves toward the extreme values of x (de-
pending on the derivative of the function at the cur-
rent evaluation point), halving the distance to the
boundaries x = ±1 until it has bracketed the desired
value. Then, a Newton solver is used to find the ex-
act (within specified tolerance) value of x. There is
no problem with Newton convergence here. For sub-
sequent time steps for that location r2, the Newton

solver is applied directly to the solution obtained on
the previous time step for that Lambert mode. This
requires the time steps be small enough that this al-
ways converges.

Once the solver has found a value of x that solves
eq. (7), the semimajor axis a and change in eccentric
anomaly ∆E may be found. The semimajor axis is
computed from am using x,

a =
am

1− x2
(17)

and the change in eccentric anomaly during the
elapsed time period

∆E = 2πN + 2 (arccosx± arccos y) , (18)

where the sign on the final term is determined by the
short (−)/long (+) way information. If x > 1, the
orbit is hyperbolic and the cosines become hyperbolic
cosines. The inclusion of the whole orbit count N is
important here, as correct (non-normalized) angle is
necessary to compute the rest of the orbit. From
the determined a and ∆E, the Lagrange coefficients
eq. (2) may be rearranged to solve for ṙ1,

ṙ1 =
r2 − fr1

g
. (19)

It is this velocity ṙ1 that is needed for the look-up
in the velocity distribution function at the fragmen-
tation for the density transformation. Also needed
is the Jacobian determinant of the forward map; by
calculating ḟ and ġ, the complete set of inputs to the
Jacobian calculation eq. (6) is available.

This procedure determines the mathematical solu-
tions to the Lambert problem. Not all of these are
physical solutions, however; any trajectory that in-
tersects the earth will not contribute to the spatial
density after the collision. So, earth intersection is
determined; if there is no earth intersection, the ve-
locity density GX is computed for the appropriate
distribution, and the spatial densityGY accumulated
into the total for that r2 point. Even when ∆t > tmin
for a given N , there may be no physical solution,
for any of the four mathematical solutions possible.
However, as N increases and tmin increases, there
may be mathematical and physical solutions possi-
ble. In the case plotted in fig. 1, there are 38 math-
ematical solutions and two physical solutions (one
each short and long way) for each of N = 0, 7, 8,
and 9, and no more, for a total of eight. The corre-
sponding curves are marked in red on the plot; only
one each of the whole orbit solutions is a physical
solution, so there are four total short way solutions.
There are also four long way solutions, ungraphed.

Colinear points r1 ‖ r2 represent a particular prob-
lem for Lambert solvers. Most significantly, an or-
bital plane is not determined by colinear points, so
only the planar elements a, e may be solved. This



means that the inverse image of the initial value
problem is a continuum of points, so the sum in
eq. (1) must be replaced by an integral. We did
not perform this calculation; because there are an
even number of evenly spaced and symmetrically dis-
tributed points in the vertical (perpendicular to the
fragmentation) direction, this case is skipped.

5. INITIAL VELOCITY DISTRIBUTION

The method described has been used to compute the
spatial density resulting from the fragmentation of a
satellite in a 900 km altitude circular orbit that frag-
ments. From the computation of all physically possi-
ble Lambert solutions, the inverse images of each r2,
together with the corresponding forward Jacobian
determinant, a density is obtained for each point,
converted to a color, and rendered in a plot. Simu-
lated are two different initial velocity distributions,
GX , the first being a constant, or “top hat” distribu-
tion. The top hat distribution has a value of zero for
velocities whose difference from the initial velocity
(delta-v) exceeds 2kms−1; for values less than that,
it has a constant value equal to the reciprocal vol-
ume of a sphere of radius of 2.0. When viewed from
delta-v space, it is isotropic. This makes a maximum
possible inertial speed of 9.4kms−1 which is less than
the escape velocity, so parabolic and hyperbolic or-
bits are not possible in this particular simulation.

The NASA EVOLVE 4.0 distribution [3] has a value

GX =
1

2
√
πσ2

exp

(
−
[
log10(∆V )− µEXP

]2
2σ2

)
(20)

where the ∆V is the magnitude of the change in ve-
locity in meters/second, and σ = 0.4. The value
µEXP depends on the area to mass ratio of the
fragments. We have chosen to use µEXP = 1.65,
which corresponds to the EVOLVE model of frag-
ment speed for a fragment area to mass ratio of
0.1m2kg−1, near the peak of the empirical distri-
bution by area to mass ratio presented in the cited
paper. This distribution has a peak at 44.67ms−1;
while in reality there is an upper bound to the mag-
nitude of delta-v, this model does not have one. Al-
though the formula has the normalization constant
for the normal distribution, it does not integrate to
one. The volume integral over all velocity space∫ ∞

0

4πv2 exp

(
−
[
log10(v)− µEXP

]2
2σ2

)
dv

= 0.1176080km3 (21)

is divided into the spatial densities computed to give
a normalized spatial number density. The EVOLVE
distribution, like the top hat, is isotropic, so the inte-
grand includes the area of the spherical shell at each
value of v.

6. SIMULATION AND RESULTS

The two-dimensional images show the density in the
source orbit plane from −38256 km from the cen-
ter of the earth on the left, antipodal to the frag-
mentation location, to +7800 km on the right where
the fragmentation is. In the perpendicular direction,
it extends ±12948 km. The asymmetric plot in the
horizontal direction was chosen deliberately because
most of the interesting density variations are antipo-
dal to the fragmentation location. The mesh points
evaluated are every 24 km in both directions, and the
evaluation is on a grid of 1920 by 1080 points, cor-
responding to full high-definition video. Note that
for the top hat distribution with a maximum speed
of 9.4 km/s at a perigee of 7278 km (900km altitude),
apogee radius is 30369 km, and therefore, the left side
in this view is unreachable. The unbound EVOLVE-
like distribution, being exponential, has no such up-
per limit, so there can be positive density almost
anywhere on the image plane.

The densities obtained from the top hat distribution
are either zero, where there is no solution, or in the
range of 10−14km−3 to 10−9km−3 or so. A scale is
shown on the plots; the zero density points are plot-
ted as black. The lowest positive densities are plotted
in blue, brightening from black to the brightest blue.
From 7.5×10−13km−3 through 1.0×10−10km−3, the
hue changes on a logarithmic scale from blue to ma-
genta to yellow. Densities above 5.0×10−10km−3 are
shown as white. The densities are normalized num-
ber densities, meaning that the number of fragments
expected in a volume is the integral of the density
of that volume, multiplied by the total number of
fragments. There is a small green disk placed on the
image representing the “ghost” of the source orbit; in
the video sequences2, one pre-fragmentation orbit is
shown in green as well.

The video simulates the ensuing spatial distribution
of debris after fragmentation with the top hat distri-
bution, showing the first eight hours at 15 minutes
of real time per second of video, and after that, one
hour of real time per second, and ends at 36 hours af-
ter the fragmentation. Figures 2 to 5 shows several
frames from the video. There are many structures
apparent from the images. During the very earliest
times, Jehn’s phase A, which lasts approximately one
source orbital period, the cloud forms into a banana
shape (including the stem!) that has long been rec-
ognized [8]. Then, in phase B, the leading front of the
cloud curves around to make a full circle back to the
well-known pinch point at about three hours, or two
orbital periods. This forms the first of many bands
which are well-separated on the antipodal side.

Meanwhile, the outer tail of the lowest density re-
gion is moving outward. As time goes on, the leading
front keeps cycling, making new bands at the same

2See https://goo.gl/fgvJ0Y



Figure 2: Evolution of spatial density from the top
hat 2 km/s velocity distribution

Figure 3: Evolution of spatial density from the top
hat 2 km/s velocity distribution



Figure 4: Evolution of spatial density from the top
hat 2 km/s velocity distribution

Figure 5: Evolution of spatial density from the top
hat 2 km/s velocity distribution



radius (approximately the radius of the original ra-
dius), with the old bands moving outward. After
several hours, it is very difficult to see the leading
front because it is so narrow.

The “anti-pinch line,” or “anti-pinch wedge” as it has
been called, is distinctly noticeable after about an
hour. It is caused by the appearance of two N = 0
(zero orbit) solutions; because the earth blocks long-
way solutions that are too close to the original point,
the double solution is only possible near the antipo-
dal line. As the first (outer) band moves out of
the field of view at about three hours, it takes with
it most of that concentrated density. As the new
bands form, they each have the concentrated line,
but that region of concentration does not persist be-
tween bands; it is more a series of line segments.

As new bands are created and move outward, they
overlap the old bands, and the boundaries of the
bands are clearly visible in this case as superposition
of the individual densities. Between the bands, the
zero-density gaps on the antipodal side start out very
broad, and gradually fill in. At around 18 hours, the
bands in the middle are just starting to completely
overlap. Notice that the triangular shape gaps are
more on the upper half plane than the lower.

Although it is difficult to see at this resolution, the
“fronts” of the bands have a sudden drop off in den-
sity with increasing radial distance, from the very
highest density to actually or almost nothing, while
the climb back up in density is much more gradual.
Look for the thin magenta line along the outer edge
of the band at hours eight through twenty.

The simulation for the NASA EVOLVE distribu-
tion with a fixed fragment area to mass ratio of
0.1m2kg−1 are shown in figs. 6 to 9. Many of the fea-
tures seen in the top hat distribution are seen here,
such as the pinch point, anti-pinch line, and the an-
tipodal bands. That is because these are phenomena
of the dynamics rather than the initial velocity dis-
tribution. On the other hand, the relative concentra-
tion of density nearer the earth, rather than spread
out far from the earth, and the lack of sharp cutoff
in distance from the earth, are clearly characteristics
of the initial Gaussian-logarithm distribution, with
peak around 45 m/s, rather than flat distribution
with sharp cutoff. More subtly, at around an hour
in the EVOLVE sequence, the passing of the antipo-
dal line leaves a high density region there that works
its way outward, leaving a fading solid line that is
later replaced by the line broken by the bands. This
phenomenon, not seen in the top hat distribution, is
also clearly distribution dependent.

It bears reminding that this is a two-body simulation
only; perturbations will certainly alter the appear-
ance, and likely have the effect of smearing together
sharp density contrasts, most notably, the bands.

Figure 6: Evolution of spatial density from the
NASA EVOLVE 0.1 velocity distribution



Figure 7: Evolution of spatial density from the
NASA EVOLVE 0.1 velocity distribution

Figure 8: Evolution of spatial density from the
NASA EVOLVE 0.1 velocity distribution



Figure 9: Evolution of spatial density from the
NASA EVOLVE 0.1 velocity distribution

Figure 10: Three dimensional view of density after
24 hours for top hat distribution

7. THE DENSITY IN THREE DIMEN-
SIONS

Space is three dimensional; the above images show
only the density in the source orbital plane. For the
unperturbed problem, the computation of the den-
sity in a different plane does not require recomputa-
tion of the Lambert solution. Because they are cylin-
drically symmetric about the axis of the first point
(the fragmentation direction), it is only necessary to
solve for a halfplane whose edge is this symmetry
axis. The Lambert solution orbit initial velocity ṙ1
is then rotated by the needed angle to obtain the
lookup value of velocity. Note that the symmetry of
the solutions does not necessarily extend to a sym-
metry of the density: the initial velocity distribution
may not be, in fact usually is not, symmetric; an
isotropic distribution has equal probability in all di-
rections of the change of velocity; once added to the
initial velocity of the satellite, it is not symmetric.

An image of three dimensional density after twenty
four hours for the top hat distribution is shown in
fig. 10. This computation is based on the same grid
as the planar maps given previously. The rotation is
based on units of pi/31416 radians, or approximately
100 microradians. The number 31416 is picked so
it is possible to get exactly a plane with an integer
number of units; the prime factors of 31416 are 17,
11, 7, 3, 2, 2, 2; so for example, one can have 1309
24-unit steps; at 24 angle units and a cylindrical ra-
dius of 10 000 km, the distance between grid nodes is
almost exactly 24 km, the same value chosen for the
Lambert halfplane grid in these studies. However,
to make the picture clearer, we have chosen to plot
408 77-unit steps, which gives angle of about 0.44◦

between steps in the grid.

The regions of non-zero density are near the source
orbital plane, within about 25◦. This is to be ex-
pected, as the source orbital speed is much larger
than even the top hat maximum speed of 2km/ sec.
The “front” of the bands on the antipodal side is seen
in three dimensions to be a bow-tie shaped region of



high density. On the fragmentation side, the pinch
point is seen to be two opposite cones meeting at
the vertex. The opening angle of the cones, and the
angle of the bow tie, are about 50◦.

8. VALIDATION

The results of the density map calculation can be
validated by sampling the orbits from the initial ve-
locity distribution, propagating to the desired time,
counting numbers at each location and dividing by
the total number. If the sample is determined on
from a regular set of points, this is a quasi Monte
Carlo (qMC) method of validation.

Since typical densities are found to be in the range
10−13 to 10−9km−3, to obtain the expectation of one
particle in a cube 24 km on a side (13824km−3), a
minimum of 107 particles are needed in the simu-
lation, with more providing an enhanced ability to
check fidelity. Fortunately, this computation is nat-
urally parallel, like the density calculation itself. We
have chosen instead about 108 particles, to give more
than the minimum and get better resolution, so this
should give at least one significant figure of resolu-
tion.

The particle initial velocities are determined from a
Sobol sequence in three dimensions, which is a low-
discrepancy sequence designed to fill the space with
minimum variation. For the top hat distribution, the
points that fall outside the velocity sphere are not
propagated; the remaining particles are propagated
for the desired elapsed time using the method of La-
grange coefficients. The final location of each particle
is then determined, and from that the nearest node,
which determines its bin. A bin is determined from
the grid by finding the nearest node. For the rota-
tional dimension, the nearest node is computed on
a the approximated straight line, not an arc. The
length of this box depends on the cylindrical radius,
with 24 angle units between nodes, at 10 000 km, the
length almost exactly matches the chosen 24 km half
plane grid spacing.

A numerical value for the level of agreement between
our technique and the qMC result is obtained by
computing the root-mean-square (RMS) of the differ-
ence, with a lower value showing better agreement.
Exact agreement should not be expected because of
the sample size effect of the qMC method. At each
node of the grid, the difference of the two density val-
ues is squared, and over all nodes the square root of
the mean of this value is computed. Figure 11 shows
the density computed via our method and qMC in
the source orbital plane.

Figure 11: Lambert-ToV calculation and qMC at
the same elapsed time for top hat distribution

9. CONSTELLATION EFFECTS

While the map of density in inertial space is inter-
esting, what most concerns operators is the threat a
fragmentation represents to operational spacecraft.
To provide this information, we propagate orbits of
intact satellites and compute the densities at their
time-dependent locations. Specifically, imagine a
constellation in which the semimajor axis, eccentric-
ity, and inclination are all the same, and orbits are
circular. The right ascension of the ascension node,
and the mean anomaly at a given time, vary. The
NAVSTAR GPS constellation is an example of such
a constellation. If one of the spacecraft fragments,
what is the resultant debris density over time on the
orbits of the other members?

Figure 12 is a plot of the constellation effects 24 hours
after a top hat fragmentation of a satellite with the
same orbit as above. Its ghost location is at the cen-
ter of the plot. The other points on the plot are the
density at the locations of other orbits with differing
right ascension of the ascending node (abscissa) and
mean anomaly at fragmentation time (ordinate).

The pinch point is clear; it is not necessarily at the
center because at this elapsed time after the frag-
mentation, the ghost has not quite reached the frag-
mentation point. As one might expect, the greatest
threat is to orbits in the same plane (∆Ω = 0); even
significant differences in mean anomaly can still have
high density. The antipodal line presents threats to
all orbits regardless of plane, albeit at a lower den-
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sity.

10. CONCLUSION

The near-term aftermath of an orbital fragmenta-
tion, on the order of twenty orbits, is quite compli-
cated, consisting of bands with bow-tie like “fronts”
that merge into conical tubes of density whose ver-
tex is the pinch point. As the debris cloud evolves,
these bands have the appearance of being generated
at the source orbit altitude and move outward. Dur-
ing the later orbits, they spread and merge together,
especially toward the earth. When viewed constel-
lation orbits, the regions with fragments are seen to
cover almost all mean anomalies with the same true
anomaly as the fragmented satellite, and even many
of those with different ascending node, especially for
mean anomaly a quarter orbit away in either direc-
tion.
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