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ABSTRACT

A novel numerical method for solving the initial orbit de-
termination (IOD) problem is developed in the frame of
space debris surveillance systems. Differently from clas-
sical IOD methods, where three sets of angles or two po-
sition vectors are used, the method presented in this pa-
per makes use of N Doppler measurements along with
their associated pairs of angular measurements coming
from an Earth-based radar station. Numerical results are
presented for objects in three different Low Earth Orbits
(LEO) showing the accuracy and performances obtained
by this method.
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Space Debris; Cataloguing; LEO objects.

1. INTRODUCTION

Space Situational Awareness (SSA) refers to the ability
to view, understand and predict the physical location of
natural and manmade objects in orbit around the Earth.
While the ability to view is made possible thanks to
ground and space based sensors (e.g. Radars, Telescopes
or Lasers), the ability to understand and predict the phys-
ical location of objects needs the determination of their
orbital state vectors, which uniquely determine the tra-
jectory of the object in space.

For the determination of the orbital state of an object,
mainly two different situations have to be considered. Ei-
ther the object is already catalogued (i.e. it is regularly
observed by sensors and an a priori state vector is avail-
able) or the object has been newly discovered by a so-
called surveillance sensor. In the first case, the a priori
orbital state of the object can be refined thanks to the new
gathered observations following a Least-Squares (LS) or
an Extended Kalman Filter (EKF) filtering approach. In
the second case, an a priori orbital state has to be com-
puted from the gathered observations, in order to predict
the position of the newly detected object at short term
and to improve the accuracy of the orbit with the acquisi-
tion of new observations from surveillance and/or track-
ing sensors.

Present work is focused on the second problem, and, in
particular, we develop a method to estimate an initial or-
bit from surveillance radar measurements. A distinctive
feature of such surveillance radars is that they are, for the
most part, Doppler radars, which means that they provide
the angular measurements and the Doppler shift (i.e. the
radial velocity) of the observed target at each observing
time. While an extensive literature exists on algorithms to
estimate an initial orbit from three pairs of angular mea-
surements ([1], [2], [3]) or from two pairs of angular mea-
surement and ranges (i.e., the Lambert’s problem, [4],
[5], [6]), few literature exist on methods to estimate an
initial orbit from measurements coming from a Doppler
radar.

On this paper we introduce the developed method, its
practical implementation and its performance by means
of several test scenarios with simulated data of LEO ob-
jects.

2. DESCRIPTION OF DOPPLER IOD ALGO-
RITHM

In order to process surveillance radar data, it is necessary
to be able to solve the initial orbit determination problem
based on its measurements. Contrary to a tracking radar
for which an a priori orbit is available, surveillance radar
can produce measurements from non-catalogued objects.

It is assumed, then, that no information on the state-
vector of the object is available. Radar data comprises N
consecutive observations (gathered in an observation arc
or observation pass), not necessary equally time spaced.
Each observation is composed of measurements on the
line of sight L, defined by a pair of angles (for exam-
ple, the right ascension α and the declination δ), and
the Doppler shift ḋ of the unknown object, where d is
a distance that depends on the type of radar1 and the dot
represents the time derivative. In the case of a mono-
static radar, this distance refers directly to the object

1We consider the cases of monostatic and bistatic radars. The former
refers to a radar in which the transmitter and receiver are collocated, and
the latter to a radar in which the transmitter and receiver are in different
locations, maybe hundreds of km away.
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Figure 1: Scheme of the geometry for a bistatic sensor.

range, dmonostatic = ρ. This equation assumes im-
plicitly that the propagation time in the two-way trip
from ground-based radar to orbiting object is negligible
and, in consequence, the epoch of emission and recep-
tion is the same (see Appendix to take into account this
term). On the other hand, for bistatic radars, this dis-
tance corresponds to the transmitter-object-receiver dis-
tance, dbistatic = ρTO +ρRO (see Figure 1). In this case,
we will speak of object range to the distance between the
receiver and the object, which can be expressed as fol-
lows:

ρ =
d2 − |TR|2

2(|TR| · L+ d)
(1)

The estimation of the derived distance measurements
d(t) is the main concern of the algorithm, so that the
Doppler initial orbit determination can be reduced to a
well-known Lambert’s problem between the boundaries
of the observation arc. This estimation is performed us-
ing optimization techniques. We begin by integrating2

the Doppler measurements between the initial time of the
observation arc t0 and a time t ≤ tf , where tf is the final
time of the observation arc:

d(t) = d0 +

∫ t

t0

ḋ dt. (2)

This equation assumes that the radar is taken measure-
ments of the object continuously within a visibility pass.
For LEO objects, this visibility pass covers typically a
few minutes span. The evolution in time of the distance
d and, consequently, the evolution in time of the object
range, is known up to a constant of integration d0, which
corresponds to the distance at the initial time. Somehow
we are transforming the Doppler radar problem into a dis-
tance radar problem where an unknown bias on the dis-
tance measurement applies.

The procedure for the determination of this constant is
based on the conservation, to first order, of the total or-
bital energy. Actually, the energy of the orbit that passes
through any two observations can be determined as a

2Within this work, numerical integration of the Doppler measure-
ments is done through the Simpson’s 3/8 rule, based upon a cubic in-
terpolation. Equally spaced in time measurements are, in consequence,
considered in the simulations.
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Figure 2: Specific orbital energy of the orbit passing
through diffferent pairs of measurmeents as a function of
the integration constant (black lines, left scale). Standard
deviation of the distribution of energies (grey line, right
scale). More pairs than those plotted are used in the com-
putation of σ.

function of d0 by solving the associated Lambert’s prob-
lem. Let ρi = ρ(ti, d0)Li and ρj be the position vectors
of the selected pair of points (i, j) and ∆t = tj − ti > 0
the corresponding flight time, we can then solve the Lam-
bert’s problem to get the specific orbital energy of the
two-body problem, that is to say, εij(d0) = −µ/2a. An
ideal two-body system is conservative, that is to say, the
total energy of the problem is conserved. Furthermore, if
we consider ideal (error-free) measurements, the curves
εij(d0) for any combination of two observations intersect
into a single point (see Figure 2). Thus, this point defines
the initial range d0 and, by extension, a preliminary esti-
mate of the orbit. This point satisfies the energy integral
of Kepler’s motion and it is, in this way, the optimal solu-
tion. In a real case, however, the object will be subject to
dissipative forces (for LEO objects, the atmospheric drag
is the most important one), and the measurements will
not be error-free but the sensor noise and bias should be
considered. In this situation, a unique intersection in the
graph ε(d0) is not possible but, on the contrary, a distribu-
tion of energies εij can be computed for any value of d0.
The value of d0 that leads to the minimum standard devi-
ation, σmin, in the distribution of energies is the optimal
solution. This distribution of energies depends directly
on the way the pair of measurements (i,j) are selected.
The selection cannot be done at random since observa-
tions needs to be handled equally (i. e. being selected
the same number of times) in order not to introduce any
artificial bias in the solution. In Section 3.1, different ap-
proaches are analysed.

Thus, the standard deviation of the distribution of en-
ergies is a univariate function that only depends on the
integration constant, σ(d0). The minimization is per-
formed by means of the Brent’s method [8] that does
not require the use of derivatives. The optimization
search interval varies depending on the type of radar.
For a monostatic radar we will search within the inter-
val [hr/sin(el), ρmax], where hr is an altitude below
which reentry is considered imminent (' 120 km), el is



Scenario LEO 1 LEO 2 LEO 3
Semi-major axis [km] 7198.0 6778.0 7578.0
Eccentricity [-] 0.0 0.0 0.0
Inclination [deg] 98.71 60.00 60.00

Table 1: Keplerian orbital elements defining the three ref-
erence orbits.

the elevation and ρmax the maximum range of radar ac-
quisition. For a bistatic radar, this search interval stays
[2hr/sin(γ), 2ρmax], where γ = atan(2hr/|TR|).

3. TEST SCENARIOS

Three reference orbits are selected as base scenarios for
testing the developed method. These orbits are circular at
altitudes of 400, 820 and 1200 km depending on the case.
Additional numerical data defining the orbits considered
are provided in Table 1. These scenarios only take into
account LEO objects (altitude below 2000 km [7]), since
the observation of objects orbiting on higher orbits is typ-
ically carried out with optical sensors. In all cases, the
observations were made from a ground station located in
France at the following geodetic coordinates: longitude
= 7.0 deg, latitude = 44.0 deg and alt = 1200.0 m. Then,
only monostatic radar results are presented in this paper.
Nevertheless, same scenarios have been executed consid-
ering a bistatic radar (with a distance transmitter-receiver
of 400 km), showing similar results. These three base
scenarios are enriched by a sensitivity study concerning
the following parameters:

• Measurement noise. In order to simulate realistic
data, measurements are corrupted with a Gaussian
noise characterized by its standard deviation σ. We
consider angular noise σang , equal in both direc-
tions (azimuth and elevation), going from 1 mdeg
to 1 deg, and Doppler noise, σdop in the interval 1
cm/s to 10 m/s. Two main cases are usually reported
as low and high noise case (see Table 2).

• Observation timespan ∆T . The duration of the ob-
servation interval has a direct impact on the accuracy
of the orbit estimate since it is related to the observ-
able portion of the orbit. We consider observation
intervals up to 10 minutes for LEO 1 and LEO 3
scenarios that roughly corresponds to the first visi-
bility interval, and up to 5 minutes for the LEO 2
scenario, which is the one at a lower altitude (' 400
km).

• Measurement acquisition frequency ∆t. We con-
sider time separation between observations that goes
from 1 to 30 seconds. These measurements are taken
all over the observation interval.

Noise case Angular noise Doppler noise
σang (mdeg) σdop (cm/s)

Low noise 10.0 10.0
High noise 100.0 100.0

Table 2: Gaussian standard deviations of the measure-
ments noise defining two noise cases.

Results presented hereafter are all average values ob-
tained from 1000 simulation runs.

3.1. Influence of the selection of measurements pairs

The aforementioned Doppler IOD method depends on the
way the pair of measurements are selected to compute the
distribution of energies. Two approaches are envisaged:

• Consecutive: We take one observation and the fol-
lowing one in such way as to have pairs of index
covering the whole observation interval. We con-
sider high frequency radar observations so that it is
possible to compute the velocity with a finite dif-
ferences approximation, vi = (ri+1 − ri)/∆t. We
compute then the orbital energy as εij(d0) = v2/2−
µ/r. We have made the assumption that close obser-
vations are not correlated to each other. In this work
sensor noise is simulated with a Gaussian compo-
nent added to the geometric value and, for each ob-
servation, the Gaussian noise is computed randomly,
so independently of other observations.

• Half-arc separation: The idea behind this approach
is to mitigate the effect of the measurement noise.
Thus, we take measurements separated by a longer
interval equal to the half of the observation inter-
val (considering that observations are equally spaced
in time). All the observations are considered once
in the computation. Moreover, Izzo method [6] is
used for solving the Lambert’s problem instead of
the simple finite differences scheme.

We have assessed both approaches with observations of
the sun-synchronous case (LEO 1) covering a 10 mn
timespan. It is worth noting that for close observations,
the consecutive approach fails in providing a satisfac-
tory orbit estimation (notice the error in semi-major axis
shown in Figure 3). This behaviour can be explained
by the influence of measurement noise on the Lambert’s
problem resolution when the observed portion of the or-
bit covers a tiny part (0.1% of the orbit for ∆t = 6 s)
and, in consequence, the relation ∆α, ∆δ >> σang be-
tween two measurements no longer stays. Half-arc sep-
aration approach presents, on the contrary, a more sta-
ble trend with respect to the time between measurements.
We are solving in this case a Lambert’s problem with
bounds separated around 5 mn (all pairs are separated by



0.1

1

10

100

1 10

A
ve

ra
ge

 s
m

a 
e

rr
o

r 
(k

m
) 

Time between measurements (s) 

Figure 3: Average semi-major axis error for LEO 1 case
with an observation timespan ∆T = 10mn. Low noise
case (circles) and high noise case (triangles) results are
obtained either with half-arc separation (black) or con-
secutive approach (grey).
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Figure 4: Average time per run in the LEO 1 case with
an observation timespan ∆t = 10mn.

the same timespan) which correspond to 5% of the or-
bit. For the half-arc separation approach, we identify two
main elements having an impact on the orbit accuracy:

1. Measurement noise. We can see in Figure 3 that
black lines are almost parallel. The difference be-
tween both lies in having increased the measurement
noise in one order of magnitude in the three com-
ponents observed (two angular values and Doppler).
Accuracy in semi-major axis roughly decreases by
one order of magnitude too.

2. Number of measurements. This is directly related
to the quantity of information that is available about
the orbit. When the observations pass from being
spaced 1 s to 30 s in the same timespan, we are
equivalently passing from 600 to only 20 observa-
tions. The less observations are available, the worse
the distribution of energies is represented.

We have compared the computational time required by
both approaches on a multi-core 2.66 GHz machine with
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Figure 5: Residuals on azimuth [deg] (top), elevation
[deg] (center) and radial velocity [m/s] (bottom) of a
LEO 1 object with measurements corresponding to the
high noise case taken within a ∆T = 5mn.
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Figure 6: Residuals of Figure 5 when the initial orbit
is refined with a least-squares filter. Dashed line corre-
sponds to the values 3σ of the sensor noise.

32 GB RAM. Results are plotted in Figure 4 show-
ing a negligible difference between the approaches em-
ployed. We can thus state that the simple finite differ-
ences scheme does not speed up the computation sig-
nificantly. Therefore, half-arc separation approach is se-
lected as optimal in terms of accuracy and computational
time. Results contained in the rest of this work refer in-
variably to this approach.

3.2. Scenario LEO 1 : sun-synchronous orbit

This scenario analyses the accuracy that can be obtained
for an object in a sun-synchronous orbit at 820 km of alti-
tude. If we look closely to the residuals that are obtained
after applying the Doppler IOD method (see Figure 5),
we notice that the estimates of the angular positions are
roughly contained within the order of magnitude of the
angular noise. However, estimates on the radial veloc-
ity present an important drift with respect to the observa-
tions. This fact indicates that the semi-major axis and ec-
centricity estimates are not as accurate as other angular-
related elements as the inclination or the argument of lat-
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Figure 7: Average semi-major axis error [km] (top) and
average eccentricity error (bottom) as a function of ob-
servation timespan ∆T . Circles correspond to the high
noise case and diamonds to the low noise case. Solid
black and dashed grey lines are the result of the Doppler
IOD method before and after applying the LS filter, re-
spectively. ∆t = 6 s.

itude. It is then necessary to refine the initial orbit by
means of a least-squares filter in order to obtain an op-
timal orbit estimate. The effect of this LS step can be
seen in Figure 6, where residuals in all three components
of the observation stays within the band ±3σ. This opti-
mal behaviour of the residuals in Figure 6 is attained by
considering the same dynamical model in the simulated
observation and in the LS filter. In a real case, the dy-
namical model used in the LS filter is essential to achieve
comparable accuracies. For an object in the LEO regime,
at least a dynamical model including osculating J2 effects
is needed.

Sensitivity against the observation timespan can be seen
in Figure 7. We highlight the constant trend observed in
the accuracy obtained, which can be approximated to a
power law. It is worth noting the remarkable improve-
ment in the accuracy for longer timespans. This is due
to a twofold reason. We are not only increasing the ob-
served portion of orbit (with the consequently increase of
knowledge about the shape of the orbit, i. e. the eccen-
tricity), but we are at the same time increasing the num-
ber of observations, which helps in building up a more
reliable distribution of energies, εij , for the optimization
problem.

Figure 8 plots the average semi-major error as a function
of measurement noise. It is worth noting the preponder-
ance of the angular noise over the Doppler one, shown
up by the horizontal contour lines. For example, if the
angular noise is above 30 mdeg, there is no difference
if Doppler measurements are remarkable accurate with
σdop = 1 cm/s or, on the contrary, are obtained with a
less performant radar of 10 m/s noise. This behaviour
changes after applying the LS filter and the contour plot
exhibits, as expected, a diagonal increase of the error (to-
wards the upper-right corner of the figure), that is to say,
if the noise of any observational component increases,
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Figure 8: Average semi-major axis error [km] as a func-
tion of measurement noise. ∆T = 5mn and ∆t = 6 s.
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Figure 9: Average semi-major axis error [km] as a func-
tion of measurement noise after having refined the initial
orbit with a LS filter. ∆T = 5mn and ∆t = 6 s.

the accuracy obtained decreases. The orbital plane is, in
general, well defined. The difficulty to both, recover the
object a few orbital periods later and enable a LS filter
to converge with a measurement arc containing several
passes, comes essentially from the error in semi-major
axis. It is worth thinking of in terms of orbital period. In
this orbital regime, an error of 100 m in semi-major axis
corresponds to a difference of about a tenth of second in
a revolution, and in one day (' 14 revolutions) less than
2 s gap. Nevertheless, a 10 km error in semi-major axis
is translated in a difference of± 13 s in a revolution, and,
in consequence, one day later the object will pass through
the predicted region of sky about 3 minutes before or af-
ter the estimate, with a non-negligeable angular shift with
respect to the line-of-sight prediction.

3.3. Scenarios LEO 2 and LEO 3 : low and high
LEO objects

These two scenarios analyze the performance of the IOD
Radar for objects at 400 and 1200 km of altitude, respec-
tively. Figure 10 shows the sensitivity of the solution with
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Figure 10: Average semi-major axis error [km] (top) and average eccentricity error (bottom) as a function of observation
timespan ∆T , for LE0 2 (left) and LEO 3 (right) scenarios. See Figure 7 for more details on the legend.

100 101 102 103

Doppler noise (cm/s)
100

101

102

103

A
ng

ul
ar

no
is

e
(m

de
g)

0.2

0.5
1.0

2.0

5.0
10.0
20.0

50.0

100 101 102 103

Doppler noise (cm/s)
100

101

102

103

A
ng

ul
ar

no
is

e
(m

de
g)

0.01
0.02

0.05

0.1

0.2

0.5

1.0 2.0
5.0

100 101 102 103

Doppler noise (cm/s)
100

101

102

103

A
ng

ul
ar

no
is

e
(m

de
g)

5.0
10.0
20.0
50.0
100.0
200.0
500.0

1000.0
2000.0
3000.0

4000.0

100 101 102 103

Doppler noise (cm/s)
100

101

102

103

A
ng

ul
ar

no
is

e
(m

de
g)

0.1

0.2
0.5 1.0

2.0

5.0

5.0

10.0

20.0

Figure 11: Average semi-major axis error [km] as a function of measurement noise. ∆T = 5mn and ∆t = 6 s. LEO 2
results are plotted at the top and LEO 3 results at the bottom. Results are presented before (left) and after (right) having
refined the initial orbit with a LS filter.

respect to the observation timespan. Note that axes do not
share the same scale, as visibility periods for the lower al-
titude case are limited to approximately 5 mn. In line with
the results from previous section, we notice an outstand-
ing improvement of the acccuracy obtained for longer
timespans, in the form of a constant decreasing trend that
can be fitted to a power law. It is important, then, to have

access to a prolonged observation timespan that covers
almost the entire visibility period. Comparing both sce-
narios, we observe that higher accuracies are obtained in
the LEO 2 case, which is the one at a lower altitude. This
fact is explained by two complementary reasons. First,
the observable portion of the orbit decreases, for a fixed
observation timespan, with the altitude of the object. For
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Figure 12: Scheme of time propagation effect on the ge-
ometry of the problem for a monostatic Doppler radar.

example, the percentage of observable orbit in 5 mn gets
reduced from 5.4 to 4.6% as the altitude increases from
400 to 1200 km. The extension of the observable orbit
arc limits the attainable accuracy. And second, the posi-
tion error induced by the angular noise depends directly
on the distance receiver-object, following the expression
σpos = ρROσang .

We can see in Figure 11 the average semi-major error as a
function of the measurement noise. We recover a similar
behaviour than that of the previous section. The strength
of the angular noise impact in the results is emphasized in
the LEO 3 scenario (higher altitude), as expected. In that
scenario, level curves are essentially horizontal, noting
a minor influence of the Doppler noise on the orbit ac-
curacy for the range of noise values explored. Again, the
use of the LS filter is necessary to greatly reduce the error
on the semi-major axis. In the configuration with the less
performant radar, we obtain accuracies on the semi-major
axis of the order of 5 and 20 km for LEO 2 and LEO 3
scenarios, respectively. If we repeat the exercise in terms
of orbital periods, we have that, for the LEO 2 regime,
an error of 5 km corresponds to a difference of ±6 s in
a revolution, and in one day (' 15.5 revolutions) around
1m30s gap. Furthermore, in the LEO 3 scenario, an error
of 20 km in the semi-major axis induces a difference of
±26 s in the orbital period. This causes, in one day (±13
revolutions), an uncertainty of more than 5mn30s on the
predicted moment for the radar to track the object again
(considering an optimistic angular shift contained within
the field of regard of the radar). Hence, the importance
of re-observe the object in the early revolutions after its
identification in order to achieve a good estimate on the
semi-major axis, that permit us to consolidate the object
orbit in the catalogue.

4. CONCLUSIONS

On this paper we have introduced a novel method to
compute the initial orbit of an orbiting object in the
LEO regime from Doppler radar measurements, includ-
ing monostatic and bistatic radar types. It is composed
of two steps. First step, an optimization problem is built
up taking into account energetic considerations in order

to reduce the problem to a two-body Lambert’s problem.
Second step, the initial orbit obtained previously is fitted
to observations in a LS filter with a more complex dynam-
ical model. The performance of this approach has been
assessed by the definition and analysis of three synthetic
cases including LEO object at different orbital regimes.
Furthermore, the robustness of the algorithm to a varia-
tion on the quality and quantity of information has also
been assessed, by a sensitivity analysis on the measure-
ments noise, the observation timespan and the time be-
tween measurements. In addition, the accuracy of the
proposed algorithm has been demonstrated through the
different simulation scenarios, which highlight the effi-
ciency of the algorithm to estimate an initial orbit from
N observations coming from a Doppler radar.

APPENDIX : CONSIDERING PROPAGATION
TIME

The propagation time of the two-way trip between a
ground station and an object is modelled by the following
equations:

d1 = |D(tD)G(tD − d1/c)|, (3)
d2 = |D(tD)G(tD + d2/c)|, (4)

d = (d1 + d2)/2, (5)

ḋ = Doppler measurement, (6)

where tD is the date of signal reflection by the object, c
is the speed of light and d1 and d2 are described in Fig-
ure 12. These equations shall be solved completely, with
an iterative scheme, for the reception time at the begin-
ning and end of the Doppler signal. A solver dedicated
to this problem should be included in the LS filter step
to take into account the effects of geometric propagation
time. Similar equations can be derived for bistatic radars.
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