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ABSTRACT 

The increasing amount of space debris in orbit around 

Earth poses a serious threat to active satellites or space 

stations. A profound knowledge of the orbit of space 

debris is necessary for both collision avoidance and 

future removal approaches. The presented Stare and 

Chase concept combines a survey sensor and a tracking 

sensor with each other. An extensive simulation 

campaign is performed to analyse orbit determination 

algorithms in dependence of various orbital parameters. 

Within an experimental campaign an astronomical 

camera with a wide field of view was used to derive 

pointing information to uncooperative targets. After 

initial orbit determination using the derived pointing 

angles satellite laser ranging was achieved within the 

same pass without a-priori orbit information. 

Keywords: Space Debris, Plate Solving, Satellite Laser 

Ranging, Space Surveillance and Tracking, Initial Orbit 

Determination 

1 INTRODUCTION 

The increasing number of space debris around Earth 

poses a great threat to active satellites in space [1]. In 

addition to approx. 1000 active and 1000 inactive 

satellites by applying scientific models [2] and radar 

measurements it was estimated that approx. 30000 

objects larger than 10 cm and more than 700000 objects 

larger than 1 cm are in orbit around Earth [3,4]. An 

impact even of small particles on an active satellite with 

an orbital velocity of approx. 7 km/s can lead to serious 

damage [5]. 

Any improvement of re-entry predictions as well as 

approaches to active debris removal need not only 

profound knowledge of the orbit but also of the attitude 

(spin parameters) which can be obtained via laser 

ranging [6-9].  

Tracking space debris objects using a priori information 

(e.g. from an existing catalogue) allows to cover 

significant fractions of the orbital period producing 

accurate orbit determinations which results in a good 

knowledge of the orbital parameters of the object. 

However, a more complete characterisation of the near-

Earth environment is necessary; including non-

catalogued debris (e.g. resulting from fragmentations) 

as well. Surveillance sensors are devoted to perform this 

task, using fixed or predefined pointing laws which are 

not adapted to the motion of the object, leading to short 

observation arcs and poor orbital information. There are 

several examples of these scenarios, such as fence array 

radars [10], survey telescopes or beam-park experiment 

[11,12]. 

Stare and Chase is a combination of both scenarios, 

survey and tracking, allowing to detect new objects and 

to obtain a good orbital determination simultaneously. 

This scenario uses multiple sensors which are not 

necessarily located at the same site but working in close 

collaboration. Sensors in the “Stare” mode, detect all 

objects crossing through their FOVs while sensors in 

“Chase” mode are ready for an immediate tracking of 

the detected objects. Stare observations are processed as 

soon as they are collected to obtain orbit predictions of 

the object for the tracking sensors as fast as possible. 

This scenario could also be achieved using only one 

sensor, changing from stare to chase mode, however 

two or more sensors are preferred due to their different 

observation capabilities, accuracy, sensibility or slew 

agility. 

An analysis of the different algorithms to compute the 

orbit predictions and an extensive set of simulations are 

presented as preparation for the experimental part: A 

proof of concept of the stare and chase scenario using a 

LEO surveillance telescope and Satellite Laser Ranging 

(SLR). SLR is an excellent method to further improve 
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orbit predictions up to the order of a few meters [13]. 

During the framework of this experimental campaign an 

analogue astronomical camera with a field of view of 

approx. 7° was used as a surveillance sensor to 

determine pointing angles to sunlit space debris targets. 

Within the same pass of the satellite, the orbit 

calculation results were used to successfully perform 

space debris laser ranging [14-16] to several targets. A 

detailed analysis shows the Observed-Minus-Calculated 

residuals and offsets to TLE predictions. 

2 INITIAL ORBIT DETERMINATION 

ALGORITHMS 

The algorithms to be implemented for Stare & Chase 

will use observations with two main characteristics: 

short tracklets (around seconds in case of LEO orbits, 

some minutes for the higher regime) and a small number 

of observations (two or three) particularly for 

telescopes. Additionally, the algorithms shall be fast 

enough to process the observations and to obtain the 

orbit predictions within seconds in order to command 

the tracking without delay. The selected algorithms have 

been classified regarding two criteria: 1) the number of 

Keplerian elements that can be estimated and 2) the kind 

of observations used. The implemented algorithms are 

summarised on the following sections. 

2.1 Four Keplerianelements. 

2.1.1 One angular and angular rate 

observation 

This algorithm has been extracted from [17]. The 

geocentric position and velocity of the debris r and v, 

can be decomposed as  

 𝒓 = 𝒓𝑺 + 𝝆 = 𝒓𝑺 + 𝜌 ∙ 𝒑 (1) 

And the velocity 

 𝒗 = 𝒗𝑺 + �̇� ∙ 𝒑 + 𝜌 ∙ 𝝎 ∧ 𝒑 (2) 

where 𝒓𝑺 and 𝒗𝑺 are the position and the velocity of the 

sensor, 𝒑 is the pointing vector from the sensor to the 

debris, 𝜌 and �̇� are the slant range and the range rate 

respectively and 𝝎 the angular velocity of the debris 

with respect to the sensor. 

Using a circular orbit hypothesis (𝒓 ⋅ 𝒗 = 0), the 

equations of Keplerian motion allows to solve a non-

linear equation system numerically to compute 𝜌 and �̇�. 

2.1.2 Two angular observations 

The following algorithm has been extracted from [18]. 

The radius vectors 𝒓𝒊 from the centre of the attracting 

body are 

 𝒓𝒊 = 𝒓𝑺𝒊 + 𝜌𝑖𝒑𝒊 (3) 

where 𝒓𝑺𝒊 is the position of the sensor, 𝜌𝑖 the slant range 

and 𝒑𝒊 the pointing vector from the observer. Assuming 

a circular orbit the following geometrical solution for 𝜌𝒊 

could be derived 

 
𝜌𝒊  =  −𝒓𝒊 · 𝒑𝒊 + √(𝒓𝑺𝒊 · 𝒑𝑖)

2 − (𝑟𝑆𝑖
2 − 𝑎2) (4) 

From the dynamical point of view, the Keplerian motion 

applied to the angular difference ∆𝛼 between the two 

observations vectors 𝒓𝒊 results as: 

 
∆𝛼 = √

𝜇

𝑎3
(𝑡2 − 𝑡1) (5) 

where μ is the gravitational parameter, 𝑎 the semi-major 

axis and 𝑡 the time of each observation. Using again the 

hypothesis of a circular orbit, the non-linear equation 

can be solved for the semi-major axis 𝑎. 

2.1.3 One angular, range and range rate 

observation 

This algorithm is also known as Doppler-Inclination 

method. The first step is the computation of the semi-

major axis which can be deduced from the cosine 

theorem, assuming spherical earth: 

 𝑎2 = (𝑟𝑆 + ℎ)2 = 𝑟𝑆
2 + 𝜌2 + 2𝑟𝑆 · 𝜌 · sin 𝜀 (6) 

where ℎ is the geocentric altitude of the orbit and 𝜀 is 

the topocentric elevation from the observer station. 

The velocity can be split into components perpendicular 

(𝒗⊥) and parallel (𝒗∥) to the plane defined by position 

and pointing vectors. 

Considering a circular orbit. 

 𝒗∥ ∙ 𝒓 = 0 (7) 

 𝒗⊥ ∙ 𝒓 = 0 (8) 

the range rate is defined as: 

 �̇� = (𝒗 − 𝒗𝑺) ∙
𝝆

|𝝆|
 (9) 

The projection of the perpendicular component of both 

object and station velocities onto the pointing vector is 

zero. 

 𝒗⊥ ∙ 𝝆 = 0 (10) 

 𝒗𝑺⊥ ∙ 𝝆 = 0 (11) 

Then, range rate can be expressed as: 

 𝒗∥ ∙
𝝆

|𝝆|
− 𝒗𝑺∥ ∙

𝝆

|𝝆|
= �̇� (12) 

As mentioned before, 𝒗∥ can be defined as a linear 

composition of 𝒓 and 𝝆: 

 𝒗∥ = 𝜆𝒓 + 𝜇𝝆 (13) 

Finally, using the range rate equation and the projection 

of 𝒗∥ into a position vector, a linear system is obtained 



where λ and μ can be solved. 

 𝜆𝑟2 + 𝜇(𝒓 ∙ 𝝆) = 0 (14) 

 𝜆(𝒓 ∙ 𝝆) + 𝜇𝜌2 = 𝜌�̇� + 𝒗𝑺∥ ∙ 𝝆 (15) 

Once 𝒗∥ is computed, the modulus of 𝒗 is also known 

using the hypothesis of circular orbit, and then 𝒗⊥ can 

be finally computed. 

2.2 Six Keplerian elements. 

2.2.1 Three angular observations 

Computing the orbit from three angular observations is a 

classical problem of initial orbit determination, which 

has been widely studied in astronomy since the 18
th

 

century. The classical algorithms are Laplace, Gauss 

and Double r-iteration which can be found in [19]. A 

modern computational approach, including a least 

squares method, is proposed by Gooding and revisited 

by Vallado [20,21]. 

2.2.2 Two angular and range observations 

This problem represents the classical Lambert’s 

Problem where classical algorithms (minimum-energy, 

Gauss…) have been collected e.g. by Vallado [19]. 

Moreover a new approach is presented by Izzo in [22]. 

2.2.3 Three angular and range observations 

Two methods are well known in literature to solve this 

problem: Gibbs and Herrick-Gibbs, both detailed in 

Vallado [19]. These methods are complementary, Gibbs 

solution fails when vectors are closely spaced, and 

Herrick-Gibbs obtains the best results when vectors are 

close together. 

3 SIMULATION CAMPAIGN RESULTS 

A parametric analysis is executed in order to evaluate 

the performances and limits of the algorithms for each 

of the different scenarios proposed in Tab. 3-1: 

Table 3-1: Summary of scenarios 

Orbit Radar Optical 

L
E

O
 500 km LEO_L_1R LEO_L_O 

1000 km LEO_M_1R LEO_M_O 

1500 km LEO_H_1R LEO_H_O 

MEO  MEO_O 

GEO  GEO_O 

HEO HEO_1R (Perigee) HEO_O (Apogee) 

 

- Two kinds of measurements, ideal and Gaussian 

noise, are considered. 

- A parametric study is performed in order to 

evaluate the pointing performance depending on the 

geometry of the pass and the direction the stare 

camera points to (Stare point: Azimuth, Elevation). 

Observations are simulated at the nominal rate for each 

sensor during the interval the objects remain in the 

FOV. In order to reduce the obtained tracklet to the 

number of observations required by each algorithm a 

fitting process is performed using a constant angular 

acceleration kinematical model (algorithms directly 

using more measurements were out of the scope of the 

study). 

 
Figure 3-1: Geometric configuration for LEO 

scenarios, orbit inclination and traces for different pass 

geometries. 

3.1 Radar Scenarios 

The algorithms used in this section are: 

- Propagation, angular extrapolation of the stare 

pointing. 

- One angular, range and range rate, Doppler 

Inclination method. 

- Two angular and range, Izzo’s Lambert method. 

- Three angular and range or Gibbs / Herrick-Gibbs 

methods. 

3.1.1 LEO 

The following contour plots correspond to a zenithal 

pass – a pass ranging from azimuth 0° to azimuth 180°, 

reaching at maximum 90° elevation. In some of the 

following figures passes with lower maximum elevation 

are considered as well. Stare point direction [%] is 

defined to make passes with different maximum 

elevations comparable: 50% means that the sensor 

points into the direction where exactly one half of the 

maximum elevation of the pass is reached. 

As shown in Figure 3-2, two and three observation 

algorithms return the best results in terms of accuracy, 

with a slight advantage of the latter one. Concerning the 

pass geometry a high pointing error zone appears close 

to 50º elevation and 10º azimuth. 

This effect can be explained considering that for low 

and high elevation values the range component contains 

important information necessary for the estimation of 

the velocity. The same is true for large azimuth values. 

Hence, at medium elevations / low azimuth the pointing 

error increases as the algorithms do not obtain enough 

information from the observations to produce an 

accurate prediction. 



 
Figure 3-2: Left: Temporal pointing error evolution 

after stare for different algorithms. Right: Maximum 

pointing error depending on the stare point position 

(azimuth/elevation) for the two angular and range 

method considering a zenithal pass. 

Concerning pass geometry, no noticeable differences 

between different geometries, maximum pass elevation 

or orbit inclinations can be found (Fig. 3-3). A slight 

improvement regarding the accuracy is observed for 

high stare elevations for each pass. 

 

Figure 3-3: Maximum pointing error depending on the 

stare point elevation and the maximum elevation point 

for three different orbit inclinations (0°,45°,90°).  

Regarding the observation noise analysis, an increase of 

noise level has no direct effect on the accuracy of the 

orbit due to the way the observations are fitted reducing 

the tracklet to the number of observations suitable for 

the algorithm. On the other hand, the size of the field of 

view has a direct impact on the accuracy of the resulting 

pointing, larger fields provide longer tracklets, and then 

more accurate predictions can be computed. However, it 

is limited by the model used on the fitting and how 

precise it fits the shape of the tracklet. 

3.1.2 HEO 

Fig 3-4, on the left, shows a comparison for the 

algorithms allowing to compute non-circular orbits. As 

it could be expected, the three angular and range method 

(Herrick-Gibbs) produces slightly better accuracy 

results than the two angular and range method (Izzo’s 

Lambert) due to the use of an additional observation. 

 

Figure 3-4: Left: Maximum pointing error for a HEO 

orbit of 500 km perigee using angular and range 

algorithms. Right: Maximum pointing error for a HEO 

orbit of 38000 km apogee using angles-only algorithms. 

3.2 Optical Scenarios 

The algorithms used in this section are: 

 

- Propagation, angular extrapolation of the stare 

pointing. 

- One angular and angular rate observation. 

- Two angular observations. 

- Three angular observations, Gauss method. 

3.2.1 LEO 

The same way as in the previous section, the more 

observations are used by the algorithms, the better 

results in terms of accuracy are obtained (Figure 3-5 

left). Pointing propagation based on angular fitting 

produces good results during the stare period, but 

degrades quickly on extrapolation. Regarding pass 

geometry, it can be observed (Figure 3-5 on the right) 

that the worst results are obtained for low elevations and 

azimuth stare points. Following the same explanation as 

in the previous section, this behaviour is related to the 

lack of information obtained from angular observations 

when the relative motion of the object with respect to 

the observer is close to the line of sight. 

 

Figure 3-5: Left: temporal pointing error evolution 

after stare for different algorithms, vertical line means 

end of stare period. Right, maximum pointing errors 

depending on the stare point position considering a 

zenithal pass (Azimuth: 0-180°, Elevation: 0-90°). 

The orbit inclination does not affect the accuracy of the 

prediction (Figure 3-6), however the higher the orbit 



altitude the better accuracy is obtained. This is mainly 

related to the previous explanation about the object 

relative motion.  

 

Figure 3-6: Maximum pointing error depending on the 

stare point elevation and the maximum elevation point 

for three different orbit inclinations (0°,45°,90°). 

Finally, an analysis using two different levels of 

Gaussian noise (0.3 mdeg and 0.6 mdeg) is performed in 

addition to the ideal observations (Figure 3-7). 

Measurement noise degrades the pointing accuracy of 

the predicted pointing, as expected, however, due to the 

fitting performed on the observations the increase of the 

noise level has only a small effect. 

 

Figure 3-7: Maximum pointing errors depending on the 

stare point position for three values of Gaussian noise. 

3.2.2 MEO and GEO 

As mentioned previously, for higher orbits angular 

observations provide more useful information than for 

lower ones. Consequently, a clear improvement on the 

accuracy of the orbit is achieved. 

Two simulated scenarios are considered: circular orbits 

at MEO and GEO regimes. The two angular observation 

algorithms show improved accuracy due to the fact that 

the eccentricity is not estimated. 

 

Figure 3-8: Upper-Left: Pointing error evolution from 

stare. Upper-Right: Maximum pointing errors for ideal 

observations. Lower-Left: Maximum pointing errors for 

Gaussian noised observations. 

 

Figure 3-9: Left: Pointing error evolution for different 

stare elevations. Right: Pointing error evolution for 

different angles-only algorithms. 

4 PRELIMINARY OBSERVATION 

CAMPAIGN 

In addition to the previous simulation campaign a 

preliminary observation campaign is designed in order 

to check the feasibility of the concept of the scenario 

using a LEO telescope as stare sensor and an SLR as 

chase sensor detailed on the following sections. 

Figure 4-1 and Figure 4-2 show the results for two 

satellites equipped with laser retroreflectors, TOPEX 

and ENVISAT, in order to perform a proof of concept. 

The pointing prediction is correctly computed by all of 

the angles-only algorithms which were implemented: 



The two angular algorithm presented on the previous 

section and the Gauss algorithm for three angular 

observations. The two angular algorithm produces more 

accurate results thanks to the additional hypothesis of a 

circular orbit, which is correct for the analysed satellites. 

On the other hand, the three angles algorithm is not able 

to estimate the eccentricity of the orbit correctly due to 

the very short duration of the first tracklet. In both cases, 

the pointing accuracy is not accurate enough to point 

directly to the target with SLR, but it is to initialise the 

SLR search routine. 

 

Figure 4-1: Results for two of the algorithms, using two 

and three angular observations based only on the first 

tracklet and the comparison with the subsequent 

tracklets on the same pass and the comparison using 

TLE. 

 

Figure 4-2: Results for two of the algorithms, using two 

and three angular observations based on the first 

tracklet and the comparison of the pointing errors with 

respect the predicted TLE orbit. 

5 OPTICAL POINTING DETERMINATION 

5.1 Camera setup 

A Watec 910 HX/RC [23] astronomical video camera 

was equipped with an F/1.4, f = 50 mm photo objective 

resulting in a field of view of 7.3x5.5°. The camera 

system was piggyback mounted on top of the satellite 

laser ranging (SLR) receiving telescope of Graz SLR 

station and roughly aligned to the optical axis. The 

camera outputs an analogue video signal via BNC cable 

which is digitalized by using a video capturing device. 

A frame rate of 25 / second with a shutter speed of 20 

ms allows quasi-real-time monitoring of the night sky. 

So far the optical observations mostly made use of the 

analysis of faint streaks in images [24-26]. 

5.2 Plate solving and target recognition 

An arbitrary direction of the sky is recorded with the 

camera system and displays stars up to stellar magnitude 

9. Depending on elevation and atmospheric conditions 

between 50 and 200 stars are visible. The image is 

converted to black and white and the X/Y coordinates of 

the stars on the image sensor are monitored. Every two 

seconds by using a plate solving algorithm [27] the 

central position (in equatorial coordinates: declination, 

right ascension of epoch J2000) of the image is 

determined with an accuracy of approx. 15-20 arc 

seconds. The approximate initial starting coordinates 

(within 1°) are derived from the current altitude / 

azimuth position of the SLR telescope. The duration of 

a single plate solve can be reduced to 200-500 ms by 

using only the 50 brightest stars to perform the analysis. 

If a sunlit target passes through the field of view (Fig. 5-

1) of the camera it is automatically detected using a 

self-written algorithm: The current position of all 

“particles” on the image is compared to its position on a 

previous frame (e.g. 4 frames earlier). All particles 

which are “non-moving” are regarded as stars, particles 

which have moved more than e.g. 15 pixels are regarded 

as noise and particles which have moved between 2-15 

pixels are identified as a satellite. From the satellite’s 

X/Y position by using the most recent plate solving 

results the equatorial coordinates are stored in a file 

together with the current Julian date. 

 

Figure 5-1. Haiyang 2A passes through the camera’s 

field of view and is automatically detected and 

highlighted with a green rectangle. Its equatorial 

coordinates are calculated using a plate solving 

algorithm. 

6 SPACE DEBRIS LASER RANGING 

6.1 Experimental procedure 

For the following experiments a 20 Watt / 100 Hz space 

debris laser with 3 ns pulse width was used which Graz 

SLR station has on loan from DLR Stuttgart [28]. All 

targets were first tracked using standard TLE CPFs to 

collect SLR data which can be later on used for CPF, 

time and range bias comparison. After successfully 

ranging with TLE-CPFs the telescope was moved along 

track corresponding to a time bias of approx. 30 s until 

the target moved out of the field of view of the stare 

camera. Then the tracking was stopped and the 

telescope pointed into this fixed direction of the sky. 

After a few seconds the target reappeared and passed 

through the field of view of the camera. The pointing to 

the satellite was acquired by our software and the data 



stored to a file which was then immediately used to 

generate a new “Stare and Chase” CPF with the above 

mentioned algorithm. The CPF was hence just based on 

the pointing information and did not use any a-priori 

orbit information. The whole process from the satellite 

appearing in the field of view of the Stare camera until 

the reestablishment of tracking with the new CPFs can 

be completed in less than 2 minutes. After the re-

establishment of tracking the target was centered in the 

field of view of the stare camera by adjusting the time or 

range bias and the standard SLR searching routine was 

started. 

6.2 Experimental results 

Within a two-day campaign 5 different targets were 

successfully ranged with the Stare and Chase method: 

three uncooperative “space debris” targets and two LEO 

satellites. In the following, results are presented for SL-

14 R/B (NORAD 33505), GlobalStar M001 (NORAD 

25162) and Iridium 61 (NORAD 25263). 

The Observed-Minus-Calculated (O-C) residuals [km] 

of the above mentioned targets (Fig. 6-1) are ranging 

from approx. 150 m (SL-14 R/B) to 1000 m (GlobalStar 

M001). For comparison: TLE CPFs ranging had 

residuals between 30m (SL-14 R/B) and 400 m (Iridium 

61). 

The CPF offsets of the X/Y/Z Earth-centred earth fixed 

coordinates of the Stare & Chase CPFs are compared to 

TLE CPFs for the case of SL-14 R/B (Fig. 6-2). On the 

x-axis the time [min] passed after the first appearance in 

the field of view is shown. For the first ten minutes the 

offset is less than 10 km but it increases rapidly to up to 

40 km afterwards. This highlights the dependence of the 

method on rapid establishment of tracking after pointing 

determination. The faster the tracking can be established 

the better the CPFs and hence the higher the probability 

to have success with ranging. The offsets oscillate with 

a period close to 96 min which corresponds well the 

orbital period of 95.4 min of SL-14 R/B. After integer 

values of the orbital period the offsets reach a minimum 

value, which indicates that there is a small chance of 

tracking the target at the next revolution. GlobalStar 

M001 and Iridium 61 showed similar results, though the 

matching of the oscillation period to the orbital period 

was not as good as for SL-14 R/B. 

  

Figure 6-1. Observed-Minus-Calculated Residuals (O-

C) in km for SL-14 R/B, GlobalStar M001 and Iridium 

61 track by using the CPFs generated only from 

optically acquired pointing data. The x-axis shows the 

seconds of day 2016/06/29. 

 

Figure 6-2. CPF offset [km] X/Y/Z Earth-centered earth 

fixed: Stare & Chase CPF – TLE CPF. The results of 

SL-14 R/B are shown. On the x-axis the passed time 

after the first appearance in the field of view is shown. 

For the first ten minutes the offset is less than 10 km but 

increases rapidly afterwards. The offsets oscillate with 

a period close to 96 min which corresponds well to its 

orbital period of 95.4 min. 

Comparing the time and range biases of TLE and Stare 

and Chase laser ranging with each other led to similar 

results. The Stare and Chase based tracking had biases 



being approx. an order of magnitude larger than tracking 

with TLE (Tab. 6-1). 

Table 6-1. Time biases tb and range biases rb of SL-14 

R/B, GlobalStar M001 and Iridium 61 tracked with TLE 

CPFs and with Stare and Chase CPFs. 

 TLE Stare & Chase 

Satellite tb [ms] rb [m] tb [ms] rb [m] 

SL-14 R/B -23 144 -54 -700 

G-Star M001 71 -33 336 1750 

Iridium 61 -73 2 108 -764 

Monitoring the full duration of the pass of SL-14 R/B it 

can be seen that the whole process including TLE-based 

ranging (red), optical pointing determination (blue) and 

Stare & Chase – based laser ranging (green) can be 

easily completed within the few minutes of a LEO pass 

(Fig. 6-3). 

 

Figure 6-3. Elevation [°] of SL-14 R/B in dependence of 

the time [min] after the beginning of the pass over Graz 

SLR station. The three observation phases are: TLE-

laser ranging (red), optical pointing determination 

(blue) and Stare and Chase laser ranging (green). All 

phases can be easily completed with 10 minutes. 

7 SUMMARY & CONCLUSION 

A full analysis on the orbit determination algorithms for 

the stare and chase concept was performed. The 

algorithms were regarding their limits depending on the 

geometry of the pass and the quality of the observations 

for various scenarios. An experimental proof of concept 

was successfully carried out using a LEO telescope and 

a satellite laser ranging with a high-power space debris 

laser. Several uncooperative targets were tracked 

without using a priori orbit information just by 

compiling the previously acquired pointing angles. 

The work of this project was conducted within the ESA 

project 4000112734/14/D/SR ’Space debris stare and 

chase’. 
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