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ABSTRACT 

Determining the kinematic state of objects in space is a 

topic of major concern for both researchers and 

spacecraft operators. The scientists and engineers are, 

e.g., interested in the influence of the attitude changes on 

the orbit of the object, be it for long-term propagations of 

the state vector or for re-entry predictions, driven by the 

varying geometric cross-section. For the operators the 

capability becomes highly important in the case of 

contingency situations, when communications with the 

satellite might be lost and solutions have to be found. 

Different approaches are currently being explored, such 

as laser ranging, light-curves or Inverse Synthetic 

Aperture Radar (ISAR) techniques. Our work focuses on 

the latter, in which the apparent motion of the object with 

respect to a single radar station is used to determine the 

geometry and motion of the reflecting object.  

This paper presents the analysis and results of applying 

computer vision techniques to estimate the pose of a 

space object only from ISAR images. 

1 INTRODUCTION 

The ultimate goal of this study was to achieve automated 

attitude (both state and evolution) extraction of space 

objects observed by ground radars. This will facilitate the 

interpretation of the observations done on non-controlled 

objects such as defunct satellites or rocket bodies (or 

parts thereof), whose kinematic state is not known. In 

general, the attitude evolution of a decommissioned 

object is supposed to be irregular at first, and then 

regularise slowly under the influence of external torques, 

depending on the inertia tensor of the object. 

Knowing the kinematic state of these objects is important 

since on one hand it provides more information on the 

actual status of the observed objects and possibly leads to 

the analysis of the root problem cause, and on the other 

hand it may help designing any potential active removal 

mission. 

One of the challenges regarding ISAR imagery is that the 

image plane lies quite differently from the optical case, 

for which computer vision techniques were usually 

designed. The line of sight for ISAR images is embedded 

in the image plane and not orthogonal to it as in optics, 

whereas the other dimension of the image plane depends 

on the rotational motion of the object. This has a strong 

impact in the motion estimation stage, which has to be 

adapted to cope with this particularity. Furthermore, 

ISAR images suffer from noise during the generation 

process, especially due to the existence of multipath 

reflections, and as such, algorithms have to exhibit a 

certain robustness with respect this kind of noise (whose 

multiplicative nature is also different from the additive 

one found in optical imagery). 

Availability of ISAR images is small and acquisition 

campaigns are also costly. In line with these restrictions, 

three different scenarios were considered: 

- Coarse pose estimation, based on a single image 

(or eventually a sequence) and knowledge (in 

the form of a simplified CAD model) of the 

target.  

- Pose estimation refinement. This can be either 

the refinement of a single frame coarse 

estimation, either extracted automatically or 

with the assistance of an operator, or the 

processing of a whole sequence, where the 

output of one frame is considered as the coarse 

estimate of the following one. 

- Model-less pose estimation, when there is no 

information about the model, but a sequence of 

consecutive ISAR images is available 

2 COARSE POSE ESTIMATION 

The basic idea for the coarse pose estimation procedure 

is to first acquire a training set of images or views (called 

templates) of the target in many different poses. Then, at 

runtime, a similarity measure between the input image 

and the templates is computed. The template with the 

highest score is selected as the best match, which then 

enables us to retrieve the pose of the camera with respect 

to the object. 

Rather than directly comparing images, more robust 

features are extracted from both the input image and the 

training dataset and the comparison is performed using 

those. The choice of which features to use is not only 

marked by their discriminative capabilities, but also by 

the ability of extract them in the available training 

images. Focusing on the case of ISAR imagery, we are 
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highly restricted in the number of such training images, 

where typically few or no images with known ground-

truth are available. Therefore, we must restrict the 

training dataset to synthetically data simulated through 

tools such as GRECOSAR [7], which simulates the entire 

process of transforming Doppler-Range measurements, 

or MOWA (Models on Orbit With an Attitude) [6], which 

shows how ideal ISAR images would be generated by a 

ground based radar. 

The simulation of real imagery with GRECOSAR (in the 

sense that the output of the simulation is the same as the 

real image) can only be achieved by a deep knowledge of 

the model, including not only geometry but also material 

properties, which seems difficult in a normal operating 

scenario. We focus on features which can be extracted 

from the input images and matched against 

corresponding features extracted in the (less realistic) 

simulated imagery produced by MOWA. 

The training set is thus made by sampling the whole 

space of viewpoints and generating reference images at 

each of these viewpoints (see Fig. 1). 

 

Figure 1. Sampling the viewing sphere from a discrete 

number of points. 

Taking into account these considerations, we opted for 

the shape or silhouette as the method to compare the 

templates with the reference image. Silhouette-based 

methods are reasonably robust against illumination or 

noise and they are also invariant to scaling, translation 

and orientation (in the image plane). Besides, the 

generation of a database of silhouettes of ISAR 

simulations is feasible even if the knowledge of the 

model of the target is limited. As a drawback, the 

silhouette is not a very discriminative characteristic of the 

model (especially if the model has symmetries). 

First, the reference images, generated with MOWA are 

processed to extract the silhouette of the target. Both for 

efficiency and for more robust results, these silhouettes 

are grouped into clusters so that the comparison between 

the silhouette of the ISAR image and the silhouettes of 

the reference images is performed hierarchically, by first 

comparing against the cluster representatives and then 

against the children of the most similar representative. 

Clustering is not performed spatially but based on the 

similarity of the reference views. Therefore, the 

similarity between all views needs to be computed. 

To search for the best match, the silhouette of the ISAR 

image is also extracted and then compared against the 

(hierarchical) set of reference images. 

Hence, there are four different tasks in the procedure: 

- Silhouette extraction, both for the reference 

images and the ISAR images 

- Computation of the similarities between the 

silhouettes of the reference images. 

- Clustering of the reference images based on 

their similarities. 

- Compare the silhouette of the ISAR image 

against the set of reference silhouettes and 

search for the closest match. The viewpoint used 

to generate that reference view will indicate the 

attitude of the target. 

2.1 Silhouette Extraction 

We evaluated a number of techniques for the 

segmentation of the ISAR images and the extraction of 

the target silhouette, and found that the differences in the 

results between them was relatively small. 

In our particular scenario, with a clear distinction 

between the background and the foreground, more 

complex techniques do not seem to guarantee better 

results than the simpler ones, at the cost of being more 

difficult to tune (with a wrong tuning resulting in worse 

results, whereas simpler approaches provide a more 

consistent result independently of the tuning). 

Furthermore, since the choice of the metric for comparing 

silhouettes turned out to be of more importance in the 

comparison between the input ISAR image and the 

template images, we opted for a more simple strategy of 

global thresholding, either using Otsu’s method (which 

provides a threshold without any human intervention) or 

by setting the value manually by an operator. 

In order to obtain more compact silhouettes and remove 

some isolated pixels or fill small holes, different 

morphological operations were also applied. 

Fig. 2 shows some examples of the silhouette extraction 

procedure. The upper row presents the input ISAR 

images whereas the lower row depicts the resulting 

silhouettes. 
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Figure 2. Examples of the silhouette extraction step. 

2.2 View Clustering 

As stated before, the goal of the coarse pose estimation 

procedure is to compare the input ISAR image against the 

set of reference images and to find the matching pose as 

the image maximizing the similarity measure. Since an 

exhaustive search can be computationally costly, it is 

better to group similar views into clusters and to perform 

a hierarchical search. 

One might assume that reference images obtained by 

sampling the viewing sphere from near regions should 

result into similar images and therefore choosing as 

representative for each cluster the viewpoint located in 

the centre of the region. However, experimental analyses 

demonstrated this initial hypothesis of close viewpoints 

resulting in similar images does not hold in many cases. 

Areas of similar values are found locally, but there are 

also large differences between close viewpoints. 

Therefore, rather just grouping by distance in space, it is 

better to cluster viewpoints according to its own 

similarity. 

For this task, we used the Affinity Propagation (AP) 

algorithm [4]. AP is a clustering method that has shown 

state of the art performance for a variety of unsupervised 

clustering tasks. Furthermore, and unlike other clustering 

algorithms such as k-means or k-medoids, AP does not 

require the number of clusters to be determined or 

estimated before running the algorithm. 

Fig. 3 shows the results of applying the Affinity 

Propagation method to a set of reference images from 

ENVISAT. The colour code given to each combination 

of elevation and azimuth represents the cluster they 

belong to. Note that similar viewpoints tend to be 

clustered together (as we initially assumed) but not in a 

rigid manner, as it would be in case we would simply 

cluster views according to a spatial structure. 

 

Figure 3. Clustering of reference images. The colour 

code represents the assigned cluster for each 

combination of azimuth and elevation 

2.3 Shape Matching 

After the silhouette is extracted, both from the ISAR 

image and the reference image, a metric to compare and 

match them needs to be defined. From the different 

methods evaluated, we opted for the Shape Context 

Descriptor [1]. 

Given a set of points, the shape context captures the 

relative distribution of points in the plane relative to each 

point on the shape and encodes it as a histogram. A 

descriptor is then formed by flattening and concatenating 

the histograms for all points of the shape. 

An attractive characteristic of the shape context is the 

invariance to common deformations. Invariance to 

translation is intrinsic to the shape context definition 

since everything is measured with respect to points on the 

shape. To achieve scale invariance all radial distances are 

normalized by the median distance between all 𝑁2 point 

pairs in the shape. Angles at each point are measured 

relative to the direction of the tangent at that point to 

provide invariance to rotation. 

2.3.1 Rotation in the Image Plane 

The distance metric just described provides scale, 

translation and rotation invariance. This is a powerful 

feature as it guarantees matching only based only on how 

the model is projected, without taking into account the 

location in the image, the scale or the (in-plane) rotation. 

However, once the best match is obtained, it is necessary 

to perform an alignment of the reference image and the 

ISAR image to compute the remaining degree of freedom 

that defines the pose of the object. 

For this step, we opted for the Iterative Closest Point 

(ICP) algorithm [2]. ICP aims to find the transformation 

between two point clouds, by minimizing the square 

errors between corresponding entities. The algorithm 

iteratively revises the transformation (combination of 

translation and rotation) needed to minimize the distance 

from the source to the reference point cloud. 

3 POSE ESTIMATION REFINEMENT 

Once a given coarse pose estimate is obtained, either by 

using an automatic procedure as the one described in 

previous section, or with the help of a human operator, 
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the next step is to produce a refined estimate by 

minimizing a distance function around the initial 

estimate. 

This approach can also be employed to compute the pose 

in a sequence of ISAR images as long as the change of 

orientation of the target is reasonably small. In this case, 

the refined pose obtained for one frame is given as coarse 

estimate for the following frame. 

The distance function to be minimized uses the same 

shape metric utilized to get the coarse estimate (in the 

case of having been estimated automatically). 

The most simple and naïve approach of compute a finer 

estimate of the pose starting from a coarser value is to 

exhaustively compute the distance between the query 

image and a reference image generated at every single 

combination of values (sampled at a finer step than the 

one used to get the coarser estimate) in a region of values 

around the starting value, and keep the solution than 

results in a minimum distance to the query image. 

Naturally, this method can be computationally very 

expensive if the resolution at which we want the refined 

estimate is high. 

When the search space is quite large, simulated annealing 

is an alternate solution for the minimization. Simulated 

annealing [3][5] is a method for solving unconstrained 

and bound-constrained optimization problems. The 

method models the physical process of heating a material 

and then slowly lowering the temperature to decrease 

defects, thus minimizing the system energy. 

At each iteration of the simulated annealing algorithm, a 

new point is randomly generated. The distance of the new 

point from the current point, or the extent of the search, 

is based on a probability distribution with a scale 

proportional to the temperature. The algorithm accepts all 

new points that lower the objective, but also, with a 

certain probability, points that raise the objective. By 

accepting points that raise the objective, the algorithm 

tries to avoid being trapped in local minima, and is able 

to explore globally for more possible solutions. An 

annealing schedule is selected to systematically decrease 

the temperature as the algorithm proceeds. As the 

temperature decreases, the algorithm reduces the extent 

of its search to converge to a minimum. 

4 MODEL-LESS POSE ESTIMATION 

When there is no knowledge (at least in the form of a 

CAD model) of the object being observed, but a complete 

sequence of ISAR images is available, the goal is to find 

correspondences between images and using those to infer 

at the same time the structure (shape) and the motion. 

This is called Structure from Motion. 

Structure from Motion is traditionally separated in two 

steps. First, point-to-point correspondences are 

established among different views of the same scene, 

using assumptions and constraints on its photometry. 

Then, these correspondences are used to infer the 

geometry of the scene and the camera motion (see Fig. 

4). 

 

Figure 4. From point observations and internal 

knowledge of the camera parameters, the 3D structure of 

the scene is computed from the estimated motion of the 

camera. 

4.1 Feature Detection and Matching 

Feature detection concerns the automatic extraction of 

sparse point features from a general scene, whereas 

feature matching involves tracking them across a set of 

successive image frames. 

In the context of motion estimation, features refer to 

point-like entities in an image, which locally have a two 

dimensional structure. Once features have been detected, 

a local image patch around each feature can be defined 

and a corresponding representation can be extracted from 

it. If those areas are similar according to some criteria, 

both features corresponding to different instants of time 

are matched. The outcome of this procedure is known as 

a feature descriptor or feature vector.  

Different combinations of detector and descriptors were 

evaluated with different parameters to better understand 

their capabilities (number of matches, number of true 

matches vs number of wrong matches). The algorithm 

that consistently demonstrated a higher number of good 

matches and a higher ratio of true vs false matches was 

the covariant region detector combined with the SIFT 

descriptor.  

Fig. 5 shows an example of the detection and matching 

of features between two consecutive frames of a 

sequence. 
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Figure 5. Example of feature detection and matching 

between consecutive frames. 

4.2 Motion and Structure Determination 

The determination of both the motion and the structure 

based on the sets of correspondences was made using the 

factorization method. 

The factorization method was first introduced by Tomasi 

and Kanade [9][10] for the orthographic case and later 

extended for weak [11] and para-perspective models [8]. 

It relies on the mathematical possibility of decomposing 

a set of image measurements into the product of two 

separate factors: 

𝑖𝑚𝑎𝑔𝑒 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 ⇔ 𝑚𝑜𝑡𝑖𝑜𝑛 × 𝑠ℎ𝑎𝑝𝑒 

An ISAR image lies between the purely orthographic 

case and the weak-perspective. Most of the mathematics 

are common to the first case with some modifications in 

the formulation. 

Intuitively the projected images are considered to result 

from two factors: the relative motion between the camera 

and the object and the object shape. These are composed 

in a bilinear form such that if either motion or shape is 

constant, then the image sequence will be a linear 

function of the other. The motion parameters refer to all 

of those parameters describing the interaction between 

the camera and the object; namely the relative orientation 

and translation of the object and intrinsic camera 

calibration parameters. These parameters may vary from 

image to image in the sequence, but are the same for all 

features in a single image. The shape parameters describe 

the 3D geometric characteristics of the object and are 

assumed to remain constant over the sequence. Typically 

the 3D coordinates of features on the surface of the object 

are used to specify shape. 

The solution is determined up to a rotation, since only the 

position of the world reference system has been imposed. 

One can fix its orientation by representing the different 

coordinate systems relative to that of the first frame. 

The factorization method benefits from having a large set 

of features tracks which cover a long period of time, both 

of which are typically incompatible (as the more time we 

consider, the less likely it is to track so many features), 

especially for ISAR sequences, where features are more 

difficult to be matched. 

The solution was to use a sliding window over a number 

of frames and apply the factorization method on each of 

these observation windows. Unfortunately, given that the 

solution for each window has an arbitrary reference 

transform, results cannot be directly concatenated. 

Nevertheless, the angular velocity independently of this 

arbitrary transform must be constant (at least for the 

period of time of the sequence). Therefore, if we can 

express the delta rotation between frames using an axis-

angle representation, the axis should be constant within 

each observation window and the angle should be 

constant for all windows. Consequently, we are capable 

of extracting the angular rate, which is still quite a 

valuable information, but also correlated with the 

imposed rate required to resolve the images from the 

received Doppler-shifted scatters. 

5 RESULTS 

5.1 Manual Fitting 

In order to assess the results of the different pose 

estimation methods, a reference attitude is needed for 

each image. For most of our test sequences, no telemetry 

or attitude information was available  

For this reason, we developed a tool for manually fitting 

a 3D model to the ISAR image under the consideration 

that a human operator might perform a better estimation 

than an automated one. This manual procedure also 

allowed us to assess up to which point this human-based 

estimation can be used as a reference. 

Fig. 6 shows an example of the manual fitting of the 

ENVISAT model to one frame of the sequence. One 

important point to note is that the intrinsic rotation used 

to produce the ISAR images in this sequence was not 

correct and therefore the cross-range scaling was also 

incorrect. This translates into an aspect ratio different 

from the reality. In order to achieve a more accurate 

fitting, the aspect ratio of the image need to be adjusted 

at the same time the model was aligned was the actual 

image. 

 

Figure 6. Manual fitting of a frame from sequence 

Envisat_12d117. Aspect ratio needed to be corrected 

(approximately in 30%) for a more accurate fit. 
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The main consequence is that a new degree of freedom is 

introduced (and thus more uncertainty). The operator 

needs not only to determine the pose of the target but also 

the correct aspect ratio that produces a better alignment. 

Additionally we also studied the repeatability of the 

manual fitting, that is, how close the estimates obtained 

by the same trained operator are if he analyses the same 

sequence several times. Our approach was to repeat the 

fitting procedure three times starting from scratch (not 

relying in a previous fit) and compare the three different 

estimates. 

5.1.1 Envisat_12d117 

Fig. 7 depicts the attitude estimation (expressed as yaw, 

pitch and roll) for these three different tests. Note that we 

focused in the second part of the Envisat_12d117 

sequence, where ENVISAT is seen from a more oblique 

view, and better fittings are expected. 

 

Figure 7. Manual attitude estimation for sequence 

Envisat_12d117. 

At a first look we can see that similar attitudes were 

obtained for the three cases, which is reasonable as the 

same operator was responsible for them (using different 

operators would introduce more uncertainty as you then 

compare the spatial abilities of one operator against those 

of other one). However, if we look into more detail, 

especially in the yaw component we find a more 

substantial difference. Fig. 8 shows the same results but 

only focusing on the yaw estimation. Here we can clearly 

see that differences up to 15 degrees can be found 

between two different experiments. 

 

Figure 8. Manual attitude estimation for sequence 

Envisat_12d117. Only yaw. 

Still, even if there are some significant differences we can 

identify a similar evolution in all the cases. To verify this 

hypothesis we computed the angular rate out of the three 

experiments and confirmed that they are all quite similar. 

Tab. 1 presents the statistics of the estimated angular 

rates.  

Table 1. Statistics of the manually estimated angular rate 

(in deg/s) for sequence Envisat_12d117 

Test # Mean Std. Dev.] Median  

1 0.242469 0.1456573 0.238304 

2 0.233344 0.196166 0.154032 

3 0.254115 0.227907 0.173437 

We can conclude that the fitting of the first frame acts as 

a bias, derived from the fact that seven degrees of 

freedom (six from the pose plus one from the image 

aspect ratio) have to be estimated in this initial frame, but 

in the following frames, where only three (just the change 

in rotation of the target) need to be determined, the 

operator produces more consistent outputs. The smaller 

the resolution of the images is, the larger this bias will be 

(as it is the case for sequence Envisat_12d117) because 

there will be a wider range of poses that could fit to the 

same low resolution ISAR image. 

5.1.2 Envisat_13d317 

Tab. 2 presents the evolution and the statistics of the 

estimated angular rate for the sequence Envisat_13d317. 

The standard deviation is a little bit high, but this is due 

to the configuration of ENVISAT along the sequence, 

which is seen mostly from a nadir point of view and 

therefore there is more uncertainty in the estimation of 

one of the components. 

Table 2. Statistics of the manually estimated angular rate 

(in deg/s) for sequence Envisat_13d317 

Mean Std. Dev.] Median  

3.881096 1.199530 3.681769 

5.2 Coarse Pose Estimation 

Different ENVISAT models were evaluated trying to 

produce MOWA simulations closer to the actual ISAR 

images in the sequences. Through visual inspections one 

could notice a clear difference on how the solar panel 

appears in each sequence, especially if we consider the 

silhouette rather than the actual reflectivity. Whereas for 

sequence Envisat_12d117, it is can be seen as a compact 

solid plane, for Envisat_13d317, it appears as a set of 

high reflectivity points (corresponding to the attachment 

points where the panel was stowed) together with a line 

(corresponding to the cabling). 
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The model shown in Fig. 9 (left), was selected for 

sequence Envisat_12d117 and whereas the model in Fig. 

9 (right), was selected for sequence Envisat_13d317. 

  

Figure 9. ENVISAT models. Left, envisatAC_noant; 

right, envisatAC_apSa_1cab_large_noant. 

5.2.1 Envisat_12d117 

Fig. 10 summarizes the results of the coarse pose 

estimation procedure for one part of the sequence 

Envisat_12d117 (the whole set of results has not being 

included in this report for brevity, but can be made 

available under request). 

The figure consists in a matrix of images, where each row 

corresponds to each frame of the sequence. The first 

column depicts the silhouette of the actual ISAR image 

(named query image) for which the pose is to be 

determined. The following columns (from second to 

eleventh) correspond to the silhouettes of the best 10 

matches in increasing order of distance (that is, the best 

match is the second column). In each of these cells and 

below the silhouette of the reference image there are two 

rows of numbers. The upper row shows the distance 

between the query image and the reference image, 

whereas the bottom row gives the orientation of the 

viewpoint (as azimuth, elevation and rotation in the 

image plane). 

It is important to remark than the shape matching is 

performed using the azimuth and elevation (that is why 

the value is an integer, as it corresponds to one of the 

viewpoints of the sampled viewing sphere). Therefore 

two silhouettes will still be a good match even if one is a 

rotated version of the other. It is the estimated rotation in 

the image plane what brings them into alignment. 

Unfortunately, this estimation does not always provide 

the correct solution. The alignment method consists in a 

function minimization that is dependent on the initial 

point and therefore it might get stuck in a local minimum. 

 

Figure 10. Best 10 solutions for frames 59 to 63 of 

sequence Envisat_12d117 

Exploiting Temporal Coherence 

As already seen the most likely match (or, at least, the 

one an operator would choose as the most likely one) is 

not necessarily the one with the best score. Nevertheless, 

it is usually found between the best N scoring possibilities 

(with N being typically 5-10). 

Although the proposed solutions are reasonably similar 

to the input image, they correspond to quite different 

configurations. Without any additional knowledge, it is 

not possible to automatically determine which of those 

correspond to the reality (in some of the cases, not even 

for a human is possible). However, if rather than just one 

ISAR image, we have a sequence of consecutive images, 

we can introduce extra restrictions and reduce the set 

possibilities to those that provide a more coherent 

movement. This means that the target orientation chosen 

at a given frame should be similar to the one chosen in 

the previous frame, and similarly, the choice for the next 

frame should be close to the current one. 

This problem can be considered a graph optimization 

procedure where the goal is to select the combination of 

solutions that result in a minimum rotation of the target 

and taking into account that the inter frame rotation 

should be as close as possible to a known value (typically 

the intrinsic rotation used to derive the ISAR image). 

The optimization only considers azimuth and elevation, 

and not the camera angle, as the latter does not give 

consistent results in all the cases. In fact, this 

inconsistency translates into errors of 180 degrees (a 

whole rotation of the model in the image plane) which 

would highly penalize a proper solution in terms of 

azimuth and elevation. 
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Figure 11. Best 10 solutions for frames 59 to 69 of 

sequence Envisat_12d117 after constraining the search 

space. 

Fig. 11 shows the sequence of solutions that minimize the 

rotation of the target for frames 59 to 69 (for better 

readability, the figure only presents a smaller set of 

images than those considered in the optimization). Based 

on this solution we can now estimate the attitude and 

angular rate for the sequence of frames.  

Fig. 12 shows the evolution of the target attitude for 

frames 43 and 69. Note that we are computing a coarse 

estimate, where two of the angles are computed with a 10 

degrees sampling step (only the third angle is computed 

by an optimization method with floating point accuracy). 

The strange behaviour at frame 64 is due to an incorrect 

determination of the rotation in the image plane. 

Remember the matching is performed only taking into 

consideration the azimuth and elevation of the camera 

and the last angle is determined by aligning the 2D 

projections, which leads to incorrect alignments 

sometimes (for elongated shapes, this error is usually 180 

degrees, corresponding to an alignment with a complete 

rotation of the model in the image plane). 

 

Figure 12. Coarse attitude estimation for sequence 

Envisat_12d117, frames 43 to 69. 

Tab. 3 shows the statistics of the angular rate having 

removed the outlier at frame 64. The values are close to 

the manual estimate, but the standard deviation is large 

and comparable to the mean value (still we have to 

remember that this is based on a reasonably coarse 

sampling step) 

Table 3. Statistics of the estimated coarse angular rate 

(in deg/s) for sequence Envisat_12d117, frames 43-69. 

Mean Std. Dev.] Median  

0.2683153 0.245363 0.183042 

5.2.2 Envisat_13d317 

When attempting to exploit the temporal coherence of the 

images, we first observed that due to orientation of 

ENVISAT during this sequence, which is seen mostly 

nadir, there are many frames with strong specular 

reflections that translate into noisy images where a 

suitable silhouette of ENVISAT can hardly be obtained 

The results of the algorithm for these particular images 

do not a have any similarity with the results obtained in 

temporally adjacent frames, which prevents exploiting 

fully temporal coherence to constraint the results to one 

solution. Furthermore, these phenomenon is cyclic and 

happens every 10 images. Therefore, we can only try 

exploiting the temporal coherence for subsequences of up 

to 10 frames. 

Fig. 13, red line, shows the set of solutions that minimize 

the rotation of the target for the subsequence going from 

frames 9 to 19. As we can observe, although this set of 

solutions guarantee a minimum rotation, they are not the 

mostly likely set (which could be the one depicted in 

blue). 
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Figure 13. Best solutions for frames 9 to 19 of sequence 

Envisat_13d317 after constraining the search space. Red 

line, solution with minimum distance; blue line, most 

likely solution. 

The problem we face is that the silhouettes extracted from 

the ISAR sequences and those obtained from the MOWA 

simulations cannot be matched univocally (in many 

cases, even for a human it would be difficult to say which 

reference silhouette corresponds to the silhouette 

extracted from a given ISAR image). Even if we see that 

the mostly likely reference silhouette is found between 

the best scoring solutions, we cannot guarantee that 

others wrong reference views are also included among 

this set of best scoring possibilities. Furthermore, and we 

saw it in this case, the same erroneous view is included 

in all the solutions of the sequence. 

5.3 Pose Estimation Refinement 

Once a given coarse pose estimate is obtained, either by 

using an automatic procedure as the one described in 

previous section, or with the help of a human operator, 

the next step is to produce a refined estimate by 

minimizing a distance function around the initial 

estimate. 

This approach can also be employed to compute the pose 

in a sequence of ISAR images as long as the change of 

orientation of the target is reasonably small. In this case, 

the refined pose obtained for one frame is given as coarse 

estimate for the following frame. 

5.3.1 Envisat_12d117 

We focus our analysis in the second part of the trajectory, 

where the solar panel is seen completely, and better 

conclusions can be obtained 

Stand-Alone Images 

We first analyse the refinement of the initial pose given 

by the coarse pose estimation algorithm but taking as 

input the result of this method and then refining each 

image independently (temporal coherence was only used 

to constraint the search space of the coarse pose 

estimation). As the sampling space used for the coarse 

estimation was 10 degrees, we restricted the optimization 

search space to ±5 degrees (in both elevation and 

azimuth) around the initial coarse estimate. Besides, 

given that the search space is small, we opted for 

exhaustive search as the optimization method (simulated 

annealing would make sense only if the search space is 

rather large). 

Fig. 14 shows the estimated attitude of ENVISAT for the 

last part of the sequence. The jumps in the attitude 

corresponds to incorrect estimates of the rotation in the 

image plane.  

 

Figure 14. Refined attitude estimation for sequence 

Envisat_12d117, frames 43-69 

Fig. 14 and Tab. 4 show the statistics and evolution of the 

angular rate having removed these outliers. If we 

compare these values with those reported in Fig. 12 and 

Tab. 3, which correspond to the starting point for the 

refinement, we see that the angular rate estimate has 

worsened (if we consider the manual fitting as the 

reference). The reason for this is that for this sequence, 

where the rotation of the target is small, all the images 

are matched with the same reference viewpoint and the 

only difference between estimates was only due to the 
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rotation in the image plane. However, during the 

refinement procedure, the viewpoint is also being 

modified, which brings more uncertainty and higher 

errors. 

Table 4. Statistics of the refined angular rate (in deg/s) 

for sequence Envisat_12d117, frames 43 to 69. 

Mean Std. Dev.] Median  

0.805023 0.482144 0.677205 

Exploiting Temporal Coherence 

The second experiment relies on the temporality of the 

sequence and applies the refinement procedure 

sequentially, so that the output attitude at one frame is 

used as input attitude for the following one. The attitude 

for the first frame is obtained from the coarse estimation 

procedure after the search space constraining (that is, the 

input for the first frame is the same as for the stand-alone 

images refinement presented in previous section). 

Fig. 15 shows the estimated attitude of ENVISAT for 

frame 43 to 69 of the sequence. As it happened in the 

stand-alone images refinement, the jumps in the last part 

correspond to incorrect estimates of the rotation in the 

image plane. Compared to that experiment, we see that 

both pitch and roll result in similar values, but yaw has a 

different behaviour, which can also be a consequence of 

the error accumulation from one frame to the other. 

 

Figure 15. Refined attitude estimation for sequence 

Envisat_12d117, frames 43-69. 

Tab. 5 shows the statistics the angular rate, but 

constraining the estimation to frames 43 to 59 in order to 

avoid the last part, which we already know it is 

erroneous. We now find that the mean and median are 

aligned, which is always a good indication for this type 

of problem. Standard deviation is almost the same as in 

previous experiment. 

Table 5. Statistics of the refined angular rate (in deg/s) 

for sequence Envisat_12d117, frames 43 to 59. 

Mean Std. Dev.] Median  

0.673765 0.439934 0.703470 

5.4 Model-Less Pose Estimation 

This section presents the results of the model-less pose 

estimation procedure, based on Shape-from-Motion 

techniques 

5.4.1 Envisat_12d117 

Sequence Envisat_12d117 can be divided into two clear 

sections: during the first half, the solar panel is almost 

perpendicular to the line-of-sight and results in difficult 

estimates even for a human operator, and the second half, 

where ENVISAT is shown in a more oblique view 

facilitating the estimate of its pose. 

Fig. 16 and Tab. 6 present the results of the angular rate 

estimation only focusing on the second half of the 

sequence and using a more optimized set of parameters 

suitable for only this part. The resulting angular rate is 

very close to the one obtained by a human operator and 

also the standard deviation is smaller, indicating the 

estimates are consistent. 

Table 6. Statistics of the estimated angular rate (in deg/s) 

for the second half of sequence Envisat_12d117. 

Mean Std. Dev.] Median  

0.336426 0.185663 0.311379 

 

Figure 16. Evolution of the estimated angular rate for the 

second half of sequence Envisat_12d117. 

Still it is important to note that the resolution of the 

images for this sequence is very small (the size of 

ENVISAT in the image is only around 60×60 pixels) so 

the accuracy will be always limited. 

5.4.2 Envisat_13d317 

Similarly as we proceeded for Envisat_12d117, it is 

advisable to analyse the sequence in sections with more 

homogeneous characteristics (and not covering 

especially noisy parts) 

Tab. 7 presents the estimated angular rate for three 

different sections of the Envisat_13d317 sequence. We 

can clearly see how the estimated rate is more stable and 

in a similar range for three cases. Although lower than 

the manual fit, it is important to note that the manual 

estimation had a larger standard deviation of 1.19 deg/s 

and therefore the comparison needs to be performed 

judiciously. 

Table 7. Statistics of the estimated angular rate (in deg/s) 

for the second half of sequence Envisat_12d117. 

Frames Mean Std. Dev.] Median  

9-19 2.807013 0.587178 2.726546 

37-47 2.943567 0.899692 2.637382 

54-63 2.516819 0.725439 2.677517 
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Images in sequence Envisat_13d317 have a much larger 

resolution than those in Envisat_12d117 so we also 

analyzed the impact of the resolution on the quality of the 

results. For this experiment, we estimated the angular rate 

at different image resolutions, expressed as a percentage 

of the original size in each dimension (original images 

are all have a height of 641 pixels, so a 10% size means 

an image 64 pixels height). 

As we already noted before, rather than analysing the 

sequence as a whole, it is better to focus the analysis in 

different sections with more homogeneous 

characteristics (homogenous within the section, the 

sections can have different properties). Fig. 17 presents 

the same analysis but for different sections. The left plot 

corresponds to frames 9 to 19 whereas the right plot 

corresponds to frames 37 to 47. 

  

Figure 17. Estimated angular rate at different sections of 

sequence Envisat_13d317 and increasing resolutions; 

frames #9-19 (left) and frames #37-47 (right) 

Given that the casuistry is rather high and that the tests at 

each resolution were not individually tuned (the same 

parameters chosen for 100% size where used for the rest 

of sizes), we cannot derive a definitive conclusion, but 

the tendency shows that up to half the size (in each 

dimension, so one quarter in area), which translates into 

a height of approximately 320 pixels, there is an stable 

behaviour, with a progressively increase in the standard 

deviation, but going lower than 50% the estimates 

become considerably worse. 

One explanation for this effect is that the feature 

detection is multi-scale and therefore the same features 

are detected even at a smaller resolutions. The increase in 

the error mostly comes for the smaller precision. 

However, there is a point where the image becomes so 

small that those features are no longer detected (and/or 

matched), and therefore a more exponential growth of the 

error is experimented. 

6 CONCLUSIONS 

This section provides a summary of the conclusions 

obtained from the previous results 

As a general remark, it has been shown that the quality of 

the ISAR images is crucial. The resolution does not only 

have an important impact in the accuracy but also in the 

robustness. Small images, such as those in sequence 

Envisat_12d117, where ENVISAT occupies merely 

40×40 pixels should not be used in a real campaign. A 

reasonable cross-range scaling is also needed for 

silhouette based methods. Clearly, the only way of 

correcting the scale is by knowing the exact intrinsic 

rotation of the target, which is what we try to obtain, but 

in some of the sequences used in the activity error was 

considerably higher than desirable, adding an extra 

degree of freedom to be determined. 

Silhouette-based Pose estimation 

The silhouette of an object cannot unambiguously 

describe the shape of an object and different viewpoints 

can result in almost the same silhouette. Fig. 18 illustrates 

this problem, where we see how close the two proposed 

solutions are between themselves (apart from the rotation 

in the image plane which we have to remember that is not 

considered in the matching) and it is unclear which of 

both provides a better match, even if both correspond to 

a difference of 60 degrees. 

  

Figure 18. Two possible matches for frame 67 of 

sequence Envisat_12d117. 

This is even more of an issue for ISAR imagery where 

the extraction of the clean silhouette is a problem on its 

own due to the noise and specular reflections that mask 

the shape of the target. On the other side, the generation 

of valid reference images to be used for the matching 

(and hence to extract the pose of the satellite) is a difficult 

task. MOWA allows real-time generation of simulations, 

but uses a very simplified computational model. On the 

contrary, GRECOSAR allows the simulation of the full 

ISAR process but requires a very deep knowledge of the 

target, both in shape and materials, to produce a 

simulation comparable to the reality. Whenever this 

knowledge is not available (which is the most often case), 

everything is reduced to the ability of the modeler to 

introduce artificial details in the model in a trial-and-error 

fashion so that plausible imagery is produced. 

The reference set of images was produced taking into 

account two degrees of freedom, elevation and azimuth, 

as the distance metrics used for the comparison were 

rotation invariant (the third degree of freedom is the 

rotation in the image plane). This highly decreased the 

search space and hence the probability of false matches 

(for a sampling step of 10 degrees, we reduced the 

number of possibilities from 23328 to 648). However, the 

final step of determining the rotation in the image plane 
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turned out to be a challenge and did not guarantee 

coherent results. Different methods were tested but none 

of them could overcome the fact that the coarse shape of 

the silhouettes of both the ISAR image and the reference 

image can make the algorithm find a better fitting (in 

terms of distance) than the real alignment or, at least, the 

one an operator would determine  

Additionally, we also found that the input ISAR images 

are not guaranteed to have a correct cross-range scaling. 

This was somehow expected as the only way of 

correcting this scaling is by knowing the exact intrinsic 

rotation of the target, which is what we try to obtain, but 

the error was considerably higher than desirable, adding 

an extra degree of freedom to be determined. In some 

cases (for instance, in the ENVISAT sequences), an 

operator is able to find an approximate value for this 

aspect ratio correction, but there are some other scenarios 

(like GOCE sequence), where it is also difficult for a 

human to determine a better fitting is obtained by 

changing the aspect ratio or the attitude (see Fig. 19). 

  

Figure 19. Two different fittings for the same ISAR 

image, only changing the aspect ratio. 

Due to all these uncertainties, we found that the best 

match, according to the distance metrics, does not 

typically correspond to what we, as humans, would have 

considered as the best option. Still, this human based 

choice is likely to be among the first 5-10 solutions.  

Including temporal coherence helps to reduce the 

problem and in some sequences it produces a reasonable 

sets of solutions. However, for other sequences, 

especially those were there angular rate of the target is 

small, the same erroneous solution is found for all frames 

and makes the graph optimization algorithm fail because 

the distance for this path of solutions is lower than that 

from the most feasible one. 

Similarly, pose optimization, either for refining a 

coarsely estimated pose or for processing a sequence, 

tends to diverge in many cases, again due to the lack of 

discriminatory power of the silhouettes (considering the 

whole chain of limitations: the silhouette extraction from 

ISAR images but also the low resemblance of the 

reference images to the reality).  

Model-Less Pose Estimation 

Shape-from-Motion algorithms applied to model-less 

pose estimation are a promising alternative and are able 

to provide good results, although restricted to the 

estimation of the angular rate. They are, nevertheless, 

quite sensitive to outliers, which in the case of ISAR 

imagery, tend to occur much more often than with optical 

images. Different robust methods have been introduced 

to guarantee more consistent results during a whole 

sequence and a significant improvement was obtained, 

but still more reliable methods are desirable. 

Detected features do not correspond with points of high 

reflectivity, but typically with areas with of large 

variation. From a human point of view, the association of 

high intensity points with reflections from the satellite 

and their discrimination from noise can be done in many 

cases (even if there is no concrete knowledge of the 

target, one can interpret the reflections), but from a 

machine point of view, it is not straightforward to 

distinguish between high intensity points due to noise or 

reflections from the satellite. That is why the intensity at 

a point is not the driving procedure to extract features, 

but the texture and variations around it. For ISAR 

imagery, these areas tend to be less stable than in optical 

imagery. Manual selection of large reflections 

corresponding to the target, but an automatic tracking of 

them is a path to explore in the future. 

Angular rate is also a key factor for the algorithm, 

because at high velocities features can only be tracked for 

a small number of frames, which result in less accurate 

and stable estimates. Image size is also an important 

factor. For images where the target is between 500-1000 

pixels, the impact of the size if mostly in the accuracy 

(smaller size translate into lower accuracy), as the 

implemented feature detection methods are scale-

invariant and the same features are found. However, for 

smaller sizes, the impact is much larger, as those features 

found at larger images are no longer detected, and the 

ones found are less reliable, which makes the error grow 

(both in mean and standard deviation). 

Manual Pose estimation 

Manual pose estimation also has a large uncertainty, 

especially for small images, at least in terms of absolute 

estimation of the pose. The same operator will likely 

provide different solutions (with differences which can 

be up to 20 degrees) if he is given the same image without 

any type of initialization or guess. Nevertheless, he will 

probably be much more consistent in the estimation of 

the delta transformations. Starting from an initial pose, he 

will be able to estimate the change of orientation between 

frames if there is some temporal coherence (once he has 

adjusted a few frames, he will be able to “predict” how 

much the target will have changed in the following 

frame). 

  



Leave footer empty – The Conference footer will be added to the first page of each paper. 

 

7 REFERENCES 

1.  Belongie, S., Malik, J. and Puzicha, J. (2002). Shape 

matching and object recognition using shape 

contexts. IEEE Transactions on Pattern Analysis and 

Machine Intelligence, 24(4): 509–522. 

2. Besl, P. J. and McKay, H. D. (1992), A method for 

registration of 3-D shapes, IEEE Transactions on 

Pattern Analysis and Machine Intelligence, 14(2): 

239–256. 

3. Černý, V. (1985), Thermodynamical approach to the 

traveling salesman problem: An efficient simulation 

algorithm, Journal of Optimization Theory and 

Applications, 45: 41–51. 

4. Frey, B. J., Dueck, D. (2007), Clustering by passing 

messages between data points. Science, 315: 972–976 

5. Kirkpatrick, S., Gelatt Jr, C. D. and Vecchi, M. P. 

(1983), Optimization by Simulated Annealing, 

Science, 220 (4598): 671–680. 

6. Lemmens, S. and Krag, H. (2013), Sensitivity of 

automated attitude determination form ISAR radar 

mappings, Advanced Maui optical and space 

surveillance technologies conference: 768–779. 

7. Margarit, G., Mallorqui, J. J., Rius, J. M. and Sanz-

Marcos, J. (2006), On the usage of GRECOSAR, an 

orbital polarimetric SAR simulator of complex 

targets, for vessel classification studies, IEEE 

Transactions on. Geoscience and Remote Sensing, 

44(12): 3517–3526. 

8. Poelman, C. and Kanade, T. (1993), A 

Paraperspective Factorization Method for Shape and 

Motion Recovery, Carnegie Mellon Univ., 

Pittsburgh, PA, Tech Rep. CMU-CS-92-208. 

9. Tomasi, C. and Kanade, T. (1991), Shape and motion 

from image streams: A factorization method, 

Carnegie Mellon Univ., Pittsburgh, PA, Tech. Rep. 

CMU-CS-91-105. 

10. Tomasi, C. and Kanade, T. (1992), Shape and motion 

from image streams under orthography: A 

factorization method, Int. J. Comput. Vis., 9(2): 137–

154. 

11. Weinshall, D. and Tomasi, C. (1995). Linear and 

incremental acquisition of invariant shape models 

from image sequences. IEEE Transactions on Pattern 

Analysis and Machine Intelligence, 17(5): 512–517. 


