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ABSTRACT

Identification of new circumterrestrial space objects is es-
sential for building up and maintaining a catalogue of
resident space objects (RSO). It is a recurrent task that
we have to deal with in a day-to-day catalogue mainte-
nance and that will become more intensive with the in-
creasing awareness on space debris risks as more sensors
get dedicated to the space surveillance effort. Robust al-
gorithms are therefore needed in order to envisage au-
tomatic measurements associations that enable us to pro-
cess large quantities of sensors data. This paper addresses
this problem combining a method for optical tracklets as-
sociation [8] with a clustering method [10] used in big
data problems. Performance of this approach is assessed
in real scenarios using measurements taken by a ground
based robotic telescope located at Chile that belongs to
the TAROT (Rapid Response Telescopes for Transient
Objects) network.
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1. INTRODUCTION

One of the main missions of Space Surveillance is the
detection and cataloguing of space objects. Maintenance
of this catalogue is fundamental in order to enable the
database to be used for, among others, collision risk as-
sessment and reentry analysis. This maintenance com-
prises a twofold task. On one hand, it is necessary to
keep track of known objects and reduce the uncertainty
on their state vector. On the other hand, catalogue is ex-
pected to be enriched with objects that either were not
identified up to then or coming from already catalogued
object that have endure a fragmentation event (collisions
or explosions). Tackling the latter problem is the scope of
this paper. Of special interest is the case concerning close
objects (originated from a recent fragmentation, or be-
longing to a cluster of satellites), for which identification
can be messy and robust methods are therefore needed.

Association of uncorrelated tracks and initial orbit deter-
mination is essential in the cataloguing task and, for this
reason, it has been the object of intense research in re-
cent years. Siminski et al [8] have developed a method
based on a boundary value formulation. It uses the so-
lution of the Lambert’s problem to calculate orbit can-
didates which are then discriminated comparing angular
rates by means of the Mahalanobis distance. One of the
advantages of this Optimized Boundary Value Initial Or-
bit Determination (OBVIOD) method compared to others
is a less sensitivity in orbit accuracy with respect to mea-
surements noise. We can then apply this method to the
identification of new objects [11], processing each pos-
sible combination of two uncorrelated tracklets in order
to give a likelihood score based on the loss function (the
Mahalanobis distance), and those pairs with a score be-
low a predefined threshold are filtered out as a true associ-
ation. However, we cannot guarantee the absence of false
associations among the filtered pairs. These false associa-
tions, usually coming from observations of close objects,
will prevent the correct distinction between objects and,
in this way, a synthetic object generated from observa-
tions of several real objects will come up from computa-
tions with a high risk of not being able to correlate to fu-
ture observations. Novelty of the present work consists in
introducing the notion of graph to store the correlation re-
lationships and applying to this graph the Markov cluster-
ing algorithm to tackle the problem of false associations.
This approach leads to a more robust distinction between
different objects observed, specially the clustered ones.

Performance of this approach is investigated by means of
simulated observations concerning three objects in geo-
stationary orbit (GEO). This work includes analysis on
the accuracy of the estimated orbit, observation residuals
and association goodness-of-fit. Moreover, an analysis is
presented processing a real set of optical measurements
taken by French TAROT telescope located at Chile [9]
that comprises a sky region where a cluster of three co-
located GEO satellites are orbiting. All the analysis and
results presented in this paper have been performed using
BAS3E, the CNES tool which simulates a whole space
surveillance system.
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2. OPTIMIZED BOUNDARY VALUE INITIAL
ORBIT DETERMINATION (OBVIOD)

The Boundary Value method developed in [8] is used in
this study to compute an association probability between
two tracklets, as well as to have an initial estimate of the
orbit that best fits these two tracklets. Hereafter, a brief
description of the method is presented along with some
results concerning the precision of the method and con-
siderations on the way it is used.

2.1. Method Description

The OBVIOD method deals with the association of op-
tical observations. Optical sensors provide a series of
close images (very short arc), each image containing, at
an epoch t, an observation composed of a pair : right as-
cension αt and declination δt of an object. A series of ob-
servations forms a tracklet if they all belong to the same
object. This correlation inside a tracklet is performed by
simple linear correlation algorithms. Hence the impor-
tance that the series of images are close enough, so that
they can be unambiguously fit. In the case of TAROT
telescopes, a tracklet is made of three observations sepa-
rated 20 s, each observation subject to a noise of 1 arcsec
in both angular coordinates. The advantage of leading
with tracklets instead of with individual observations lies
in the fact that we can make use of angular rates. Within
this study, angular rates are always computed by fitting
a linear regression from a series of three observations.
Equivalently, angular coordinates are taken directly from
the linear fit as the value at the central epoch of the track-
let. Raw values of any particular observation are, there-
fore, not used. The information contained in a tracklet is
compressed into an attributable vector [6] at epoch t in
the following form:

Āt = (α, α̇, δ, δ̇)Tt , (1)

Following [2], measurement noise associated to this at-
tributable can be approximated to:

σ2
θ =

1

N
σ2
θraw

, (2)

σ2
θ̇

=
12

∆t2N
σ2
θraw

, (3)

where θ is either the right ascension or the declination, N
is the number of measurements contained in the tracklet
and ∆t the separation between observations.

The boundary value problem formulation is built up from
the angular coordinates of the tracklets at both observa-
tion epochs:

z̄ = (α1, δ1, α2, δ2)T , (4)

Orbital state is completely defined with hypotheses on the
range at t1 and t2. We form then a hypothesis variable
denoted as p̄ = (ρ1, ρ2), that permits us to define the po-
sition vectors and, therefore, a Lambert’s problem. Lam-
bert’s problem refers to the orbital boundary value prob-
lem constrained by two position vectors and the elapsed

time (dt = t2 − t1, in this case). We also need to spec-
ify the number of complete revolutions made during the
transfer, k. In this work, solution of the Lambert’s prob-
lem is obtained by the method developed in [5], which
considers non-perturbed two-body dynamics. The orbit
solution permit us to obtain computed angular rates :

ˆ̇̄z = (ˆ̇α1,
ˆ̇
δ1, ˆ̇α2,

ˆ̇
δ2)T . (5)

Notice that the hat variables refer to computed values in
contrast to non-hat variables (z̄ and ˙̄z) that refer to ob-
served values. Each possible hypothesis p̄ leads to a dif-
ferent Lambert’s problem and, consequently, to a differ-
ent candidate orbit. The quality of a candidate orbit is
evaluated by assessing the agreement between computed
and observed angle rates. An optimization scheme is then
followed to obtain the best candidate orbit, p̄∗ , based on
the minimization of a loss function defined as follows:

L(p̄, k) = ( ˙̄z − ˆ̇̄z)T C̄−1( ˙̄z − ˆ̇̄z), (6)

where C̄ is a covariance matrix that accounts for the un-
certainties on both the observed and the computed angu-
lar rates. This loss function represents the Mahalanobis
distance between ˙̄z and ˆ̇̄z. A characteristic of this dis-
tance is that it is distributed according to a χ2 distribu-
tion. Tracklet information is used in a twofold way:

1. Angular coordinates are used to define candidate or-
bits. Each candidate orbit is the solution of a Lam-
bert’s problem considering range hypotheses.

2. Angular rates are used to discriminate the most suit-
able orbit among all candidate orbits.

The (p̄, k)-space is not considered unbounded for the op-
timization search, but, on the contrary, some constraints
are imposed in the orbital elements depending on the type
of object we can encounter. This entails the definition of a
compact subset, also known as admissible region [6]. We
follow [8] and define the admissible region in terms of al-
lowed semi-major axis interval (amin, amax) and great-
est allowed eccentricity, emax . This leads to the follow-
ing allowed range interval:

ρmin,i = −ci +
√
c2i + r2min − r2s,i, (7)

ρmax,i = −ci +
√
c2i + r2max − r2s,i, (8)

where i is an index that stands for the first or second
tracklet, rs is the norm of the sensor position, c is the dot
product between sensor position and line-of-sight, and
the allowed radius interval is defined as follows:

rmin = amin(1− emax), (9)
rmax = amax(1 + emax). (10)

Additionally, the constraint on the semi-major axis also
defines bounds on the allowed interval of orbital revolu-
tions:

kmin = bdt/P (amax)c, (11)
kmax = bdt/P (amin)c, (12)

where P = 2π
√

(a3/µ) is the orbital period from Ke-
pler’s third law.
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Figure 1: Loss function for a GEO object in the case of
tracklets separated by 8 hours

2.2. Loss Function Topography

The topography of the loss function in the p-hypotheses
space should be sufficiently smooth in order to succeed in
the function minimization and, in consequence, in finding
the hypothesis that better fits the observations. This min-
imization is performed verifying some inequality con-
straints that defines the admissibility region. Techniques
of convex optimization [1] are used, requiring twice con-
tinuously differentiable multivariate real functions. We
have performed extensive simulations for a GEO object
to assess the sensibility of the loss function topography
against separation between tracklets. Tracklets are com-
posed of three consecutive images separated 20 s con-
taining angular measurements of 1 arcsec centered Gaus-
sian noise. The admissible region is defined under the
following constraints : 40000 < a[km] < 50000 and
emax = 0.2. This admissible region is used all along this
work in the case we look for near-geostationary objects.
In general, the loss function is smooth enough as we can
see in Figure 1. Nevertheless, we have encounter two sit-
uations where topography deformation complicates the
problem:

1. Exact number of orbital periods separation. In the
vicinity of exact number of revolutions the loss func-
tion begins to become deformed (see Figure 2a), un-
til it gets completely stretched (see Figure 2b) and,
in consequence, no optimization can be performed.
This singularity is not specific to GEO orbits, but
we have found the same behaviour in other orbital
regimes (highly elliptical and medium earth orbits).
We claim that this feature shall be taken into account
as a constraint in the definition of surveillance strate-
gies. If, for example, we are intended to survey the
geostationary ring, employing this method implies,
in consequence, to prevent looking at the same lon-
gitude bands at the same hour every night.

2. Regions with no solution of Lambert’s problem.
There is a maximum number of revolutions for
transfer between two tracklets given a hypothesis p̄.
In the optimization scheme, we look for a minimum
of the loss function for each k ∈ (kmin, kmax).

In that way, we apply optimization techniques to a
problem with a fixed k. For a given k, it is pos-
sible that a solution to the Lambert’s problem ex-
ists, within the admissible region, for a set of p̄-
hypotheses but not for others. This is the case of
Figure 2c where a chaotic region can be seen. This
region corresponds to the set of p̄-hypotheses for
which no solution exists for k = 1 and, conse-
quently, the Lambert solver does not converge. In
those cases where no convergence is found, we jump
to the solution for k−1. This prevents the optimizer
to fail, and, in doing so in our example, the loss func-
tion topography passes from Figure 2c to Figure 2d
enabling the global minimum to be found.

2.3. Orbit precision

One of the reasons of having selected the OBVIOD
method for linkage is the precision in the initial orbit ob-
tained and, in particular, the stability against measure-
ment noise. Figure 3 (left) shows the accuracy of the or-
bit depending on the separation of the two tracklets. It is
worth noting the increase of accuracy on the semi-major
axis for longer intervals, and the typical concave shape
for the eccentricity with a minimum around half an or-
bital period. This indicates that we should favor tracklets
separated as much as possible within one night or belong-
ing to two consecutive nights. Figure 3 (right) presents
the sensitivity of the solution against measurement noise,
it is worth noting the nearly linear relation between accu-
racy and noise, which is evidence of the robustness of the
OBVIOD method.

3. MARKOV CLUSTERING ALGORITHM

The OBVIOD method states that a pair of tracklets is
correlated if the minimum of the loss function, Lmin =
L(p̄∗, k∗), lies below a predefined threshold. Passing
the threshold gate, then, means correlation. For object
identification, we only consider those pairs that pass the
threshold gate. By doing so, we can handle pairs that
are actually correlated but we can also face the case of a
false positive correlation (see Table 1). Definition of this
threshold stays somehow subjective and conditioned on
two opposite types of reasoning : either we take a quite
low threshold to try to process only true positive corre-
lations with the drawback of considering few tracklets of
the total, or we take a higher threshold to process more
pairs, increasing, at the same time, the number of false
positives. In a real case, especially when objects are too
close (for example, with co-located geostationary satel-
lites, or few time after a fragmentation event) we cannot
guarantee the absence of false positives. The reason why
true and false positives can have similar values of the loss
function is mainly due to, both, the measurement noise,
and the dynamical model simplification in the Lambert’s
problem solution.

Only one false positive would lead to grouping tracklets
from two different objects into one identified object with



30 40 50
ρ1 (103 km)

30

40

50

ρ
2

(1
03
k
m

)

2.02.5
3.0

3.5

4.0

4.
0

Loss function log10L(p̄) for GEO (dt = 23h)

(a) Minimization is still possible
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(b) Stretched topography preventing minimization
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(c) Solution k = 1. The upper right triangle of the figure
(chaotic regions) has no Lambert solution for one complete
revolution.
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(d) Solution k = 1, except for the previous chaotic region
where a value k = 0 is taken.

Figure 2: Loss function topography difficulties.
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Test says Test says
”Correlation” ”Not correlation”

Correlation True positive False negative
Not correlation False positive True negative

Table 1: Possibilities in gating association
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Figure 4: Top: A graph representing one only cluster.
Circles are nodes (tracklets) and lines are edges (corre-
lation relationships). Bottom: Same graph split into two
clusters with the Markov Clustering algorithm using an
inflation parameter ∈ (1.5, 3.5)

the clear risk of not being able to recover it in subsequent
observations. Dealing with this problem is therefore es-
sential in object identification.

3.1. Graph construction

A graph is a mathematical structure formed by a set of
objects, usually called nodes or vertices, that can be re-
lated in one-to-one relationship via edges. In this work,
nodes correspond to the tracklets and edges correspond
to the correlation gating test (1 if the pair passes the test
or 0 otherwise). Order of tracklet in the pair has no inci-
dence in the correlation relationship. Thus, we speak of
undirected graphs, in contrast to directed graphs where
the sense of the relationship does play a role. Graphs can
be represented as a matrix, where columns and rows re-
fer to tracklets and the element (i, j) of the matrix to the
relationship between tracklets i and j. Such a matrix is
symmetric in the case of undirected graphs.

3.2. Graph clustering

Graph clustering is a field of intense research, especially
with the advent of big data, that aims to recognize com-

munities from a large amount of data [7]. These commu-
nities or clusters are characterized by having many edges
within their nodes, and few edges with nodes of other
clusters. In our case of study, these clusters correspond to
the set of tracklets defining one object and the few edges
between clusters correspond to the false positives. Rep-
resenting our problem is such a way assumes implicitly
the following:

• A sufficiently great amount of observations are pro-
cessed in order to big data techniques apply.

• A relative low threshold of the loss function is set
and, in that way, false positives are scarce compared
to true positives.

One popular graph clustering method is the Markov Clus-
tering (MCL) algorithm developed in [10], that have been
successfully used in different domains as protein fami-
lies identification in biology [4] or lexical acquisition and
word sense discrimination [3]. Markov Clustering parti-
tions a graph via simulation of random walks. The idea
is that random walks on a graph are likely to get stuck
within dense subgraphs rather than shuttle between dense
subgraphs via sparse connections. This approach results
in a sequence of algebraic matrix operations (normaliza-
tion, expansion in powers and inflation) that converges in
such a way that inter-cluster interactions are eliminated
and only intra-cluster parts stay. Three parameters have
to be specified in the MCL algorithm : self-loop, power
and inflation parameters. Self-loop parameter indicates
if there is a relationship of each node with itself. In this
study, self-loops are considered, meaning that in the ma-
trix representation of the graph all the diagonal elements
are set to 1. Also, the power parameter is set to 2, that is to
say, in the expansion step we always take the square of the
matrix. The only parameter which is not fixed within this
study is the inflation parameter. This parameter affects
the granularity of the solutions (see [10]). The higher this
parameter is, the denser and smaller are the clusters of the
solution.

3.3. Use of clustering in object identification

Our approach can be summarized in the following steps:

1. Application of the OBVIOD method to all possible
combinations of two tracklets (except those at the
same epoch) with a correlation gating test defined
by a threshold L∗ for Lmin.

2. Building up the associated matrix representing the
graph where nodes are tracklets and edges are set to
1 if it relates nodes that have passed the gating test
(correlated) or 0 otherwise (not correlated).

3. Application of Markov clustering algorithm to the
previous graph. Identified clusters correspond to
tracklets belonging to a same object.



Object 1 Object 2 Object 3
Semi-major axis [km] 42164.2 42165.4 42164.6
Eccentricity [-] 0.00024 0.02030 0.00009
Inclination [deg] 0.01 0.11 2.02
Ω + ω + M [deg] 0.035 0.031 0.023

Table 2: Keplerian elements of the three GEO objects
considered in simulations

4. Orbit determination and refinement. For each clus-
ter, we select one pair of tracklets sufficiently sepa-
rated (see Section 2.3) and its associated initial orbit
is considered the initial guess in a least-squares (LS)
filter where all tracklets of the cluster are taken into
account. Aberrant tracklets are rejected and the orbit
is refined solving another LS problem. The criterion
of aberrant tracklets is defined with an Euclidian dis-
tance to the corresponding simulated tracklet (com-
puted from the determined orbit) weighted with the
telescope noise; if this distance is abnormally long
(higher than 20, for example), tracklet is rejected.

4. METHOD ASSESSMENT

In this section we present results of the application of this
method to simulated objects first and then to real data
extracted from observations of TAROT telescope.

4.1. Application to simulated objects

Simulations have been carried out considering three ob-
jects in the geostationary ring (see Table 2). These ob-
jects are observed in three consecutive nights within an
observation interval duration of 3 hours each night. The
two last intervals starts 22 and 51 hours after first interval,
respectively. Inside these intervals, we have 50% chance
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Figure 5: Minimum of loss function for all combinations
of tracklets pairs coming from 3 geostationary objects

of having one tracklet every 10 minutes which is assigned
to one of the three objects randomly. This procedure
along with the measurement noise considered (1 arcsec
in both angular coordinates) make each simulation dif-
ferent. Two of these simulations are hereafter presented,
called GEO3 1 and GEO3 2. Observations characteris-
tics are those of a typical TAROT working scheme.

A test is performed beforehand in order to characterize
the shape of the minimum loss function when an all-vs-
all approach is considered for building up the tracklets
pairs (see Figure 5). There is in total 30 observations (13
corresponding to object 1, 10 to object 2 and 7 to object
3). Thus, there are 435 possible tracklet pairs (n · (n −
1)/2 where n is the number of tracklets), of which 144
pairs correspond to tracklet of the same object. In view
of Figure 5, we draw up the following considerations:

• Clouds of pairs of the same or different object are
well separated when tracklets are taken in the same
night, whereas these clouds are partly mixed when
tracklets are 1 or 2 nights separated. This fact is
an evidence of a recurrent paradox when we tackle
jointly the correlation and initial orbit determina-
tion: we can confidently correlate two close obser-
vations but the issued orbit is not very precise and,
on the contrary, it is hard to correlate two distant ob-
servations but the computed orbit is, in general, of
better precision.

• Singularity for a number exact of revolutions is
present. We see the divergence of minimum loss
function values around 1 and 2 sidereal days. This is
related to the distorted topography of the loss func-
tion (see Section 2.2).

• Definition of the threshold L∗ is not straightforward.
If we set L∗ = 1, we would consider 200 asso-
ciations, including 63 false associations (31.5%).
Whereas for L∗ = 0.1, 48 associations are consid-
ered, of which 8 are false (16.7%). We decide to
set the former value as threshold for the upcoming
simulations.
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Figure 7: Correlation of real optical observations. Circles correspond to real observations, empty if they are not correlated
to any object, full if they are correlated to the object of the same colour. Solid lines correspond to simulated observations
of the identified objects.

In GEO3 1 simulation, the telescope takes 31 tracklets
distributed 14, 7 and 10 for objects 1, 2 and 3, respec-
tively. There are 60 associations (7 false) that passes the
threshold criterion concerning 27 of those 31 tracklets.
A graph is then built up represented by a symmetric ma-
trix of dimension 31 × 31. Markov clustering algorithm
is then applied and three objects (clusters) are identified
using 24 tracklets (distributed 11/6/7). There are two rea-
sons for the 7 discarded tracklets in the clustering: 4 of
them have no correlation relationship to any other, and
3 of them belonging to object 1 and taking within an in-
terval of 30 minutes are densely associated to each other
forming a separated cluster which is not considered be-

cause of its small size. These clustering results are stable
for an inflation parameter in the range (1.6, 3.0).

In GEO3 2 simulation, 30 tracklets are available dis-
tributed 8/10/12. There are 48 associations (3 false) that
passes the threshold criterion concerning 24 tracklets.
Markov clustering algorithm identifies 3 objects using 22
tracklets (distributed 7/8/7). Discarded tracklets come
from tracklets that do not have correlation relationships
(6) and tracklets that are involved in false associations
(2). These clustering results are stable for an inflation
parameter in the range (1.8, 2.6).

In both cases, clustering algorithm succeeds to filter out



false associations, improving, in consequence, the objects
identification. Similar simulations have been also per-
formed with GTO and MEO objects1showing the same
robust performance.

4.2. Application to real TAROT telescope observa-
tions

We have applied this method to observations taken by
TAROT telescope located at Chile during 9 nights, from
4th to 12th November 2014. They point towards a sky
region concerning the geostationary ring around a longi-
tude of 107.3 deg W. At this longitude, three co-located
geostationary satellites are orbiting. These satellites, part
of the ANIK series, belong to the communications com-
pany Télésat Canada (NORAD IDs 26624, 28868 and
39127).

A total of 1223 optical observations are available. As-
sociation of these raw observations into tracklets is done
with a linear correlator based on the Euclidian distance
normalized to 3-sigma value. A group of observations are
correlated only if this distance is below 0.1. We obtain a
total of 203 tracklets distributed as follows: 61 the first
three days, 63 the following 3 days and 79 the last three
days; that is to say, 609 raw observations out of 1223 are
exploitable (49.8%). We apply the method to each inter-
val of three days independently. It is worth noting that,
in this real case, we cannot differentiate clouds of pairs
in Figure 6 for those tracklets belonging to a same night.
This feature complicates the choice of the loss function
threshold, L∗. As we expect to identify at least three ob-
jects and according to results from previous section, we
set a threshold L∗ = 0.001 that cuts off around 80% of
combinations.

In the first interval, 373 out of 1830 possible pairs are se-
lected and we correlate 56 out of 61 tracklets (inflation
parameter is set to 2.25). Tracklets from first days are
only correlated to one object but in the next two days, cor-
relation clearly identifies three objects as expected (see
Figure 7). In the second interval, 548 out of 1953 combi-
nations are selected and we succeed to correlate 62 out of
63 tracklets identifying, again, three objects. Inflation pa-
rameter is kept to 2.25. Comparing the objects obtained
in first and second interval, we have differences of less
than 250 m in semi-major axis, 5 · 10−5 in eccentricity
and 3 mdeg in inclination. Last interval is somehow dif-
ferent, there are more observations that in previous ones
(+25%) and we can hardly see the presence of three ob-
jects as simultaneous three tracklets are only present in
first day of this interval. There are 1135 out of 3081 pos-
sible pairs that pass the loss function threshold gate, what
means 36.7% of the total, the highest percentage of the
three intervals. This could be simply due to the fact of
having, in principle, less objects at sight, so, more combi-
nations contain tracklets of the same object. Two objects
are only identified in this case using 64 out 79 tracklets
(inflation parameter = 1.75). For visualizing the goodness

1GTO object of study: sma' 24371 km, ecc' 0.73, inc' 4.0 deg
MEO object of study : sma' 29600 km, ecc' 0, inc' 56 deg

of the correlation, it is worth examining Figure 7 where
simulated observations of the identified objects are plot-
ted in each case, jointly with the real TAROT measure-
ments and an indication of which observations have been
correlated and used in the orbit determination.

5. CONCLUSION

A robust procedure for processing uncorrelated tracks in
the context of object identification has been presented. It
mainly combines two methods: a method that provides an
initial orbit and a correlation likelihood for a pair of opti-
cal tracklets and a clustering algorithm for object identifi-
cation. First applications of this procedure are promising,
showing good behaviour against false associations. Fur-
ther investigations are also needed to determine criteria
for setting the inflation parameter, analyzing the number
of nights which is optimal to be considered as a function
of the orbital regime and assess the case when data from
multiple telescopes is available.
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