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ABSTRACT

We present a numerical integration technique based on
the Hermite scheme, a self-starting, implicite predictor-
corrector method originally developed and widely used
for gravitational N-body systems. The Hermite scheme
takes the acceleration and its first time derivative to pre-
dict future position and velocity vectors from previous
values. The beauty of the method relies on the fact that
the second and third derivatives can be explicitely calcu-
lated from the acceleration and its first derivative alone.
These are then used iteratively to correct the object’s state
vector, yielding an integration method with fourth-order
global error. The method can be used with constant or
variable timesteps. For constant timesteps the Hermite
integrator is time-symmetric, and shows no secular error
in the semi-major axis and eccentricity. The code can in-
tegrate a large number of objects in parallel, with either
shared or individual timesteps. This can be applied for
predicting future states of a catalogue of space objects, or
to propagate an object’s state uncertainty (covariance) in
a realistic manner.

Key words: space debris; astrodynamics; numerical inte-
gration method.

1. INTRODUCTION

DLR’s Institute of Technical Physics is actively develop-
ing laser-based optical tracking methods to determine 3D
positions of LEO space debris objects to within a few
metres. For Space Situational Awareness applications
like collision avoidance or re-entry analyses, any initial
high-precision orbit needs to be propagated, taking into
account the various gravitational and non-gravitational
forces perturbing the object’s orbit. A key prerequisite for
that is an accurate, fast, and versatile integration method
allowing the prediction of trajectories from initial condi-
tions.

The integrator can be envisaged as the ”beating heart of a
dynamical simulation” [7]. Several numerical integration
methods for the computation of satellite orbits have been
developed, see [11] for an overview and a discussion on

the advantages and disadvantages of the various methods.
A special class of integrators are time-symmetric. They
preserve first integrals (e.g. energy, angular momentum)
for a conservative system [7]. Therefore, they are very
useful for long-term simulations of dynamical systems.
For a Keplerian orbit these integrators show no secular
error in the semi-major axis and eccentricity when using
constant timesteps.

Section 2 describes the Hermite integration scheme and
the timestep selection. In Section 3 we assess the accu-
racy and performance of the Hermite scheme by compar-
ing our results with the semi-analytical solution of the
Kepler problem for various eccentricities. In Section 4
the applicablity of using the Hermite integrator for short-
term propagation for ∼100 orbits is discussed. Finally,
in Section 5 we show results from a long-term simula-
tion covering 3 million orbits, corresponding to several
hundreds years for LEO orbits.

2. HERMITE INTEGRATION SCHEME

The Hermite scheme is a direct integration method with
predictor-corrector algorithm to solve the N -body prob-
lem. The method has found widespread applications for
the numerical simulation of the dynamical evolution of
many-body systems [8, 9, 5, 14, 2].

For an object the momentary acceleration a0 and the first
derivative with respect to time ȧ0 are used to compute the
future position r(t) and velocity v(t) at a desired time t
from the corresponding instantaneous values r0 and v0 at
time t0 < t. In the first step, new position and velocity
vectors are predicted for the next time step t by expanding
r0 and v0 into Taylor series. The positive time difference
t− t0 is written as ∆t.

rp(t) = r0 + v0∆t+
1

2
a0∆t2 +

1

6
ȧ0∆t3 (1)

vp(t) = v0 + a0∆t+
1

2
ȧ0∆t2 (2)

Higher-order derivatives of the acceleration have to be
considered to improve the accuracy of the force polyno-

Proc. 7th European Conference on Space Debris, Darmstadt, Germany, 18–21 April 2017, published by the ESA Space Debris Office

Ed. T. Flohrer & F. Schmitz, (http://spacedebris2017.sdo.esoc.esa.int, June 2017)



mial. Making a Taylor series ansatz, one writes

a(t) = a0 + ȧ0∆t+
1

2
a
(2)
0 ∆t2 +

1

6
a
(3)
0 ∆t3 (3)

ȧ(t) = ȧ0 + a
(2)
0 ∆t+

1

2
a
(3)
0 ∆t2 , (4)

where a
(n)
0 denotes the n-th derivative of a with respect

to time evaluated at t = t0. The quantities a0, ȧ0 are al-
ready known, while a(t) and ȧ(t) are evaluated using the
predicted values for the particle’s position rp and velocity
vp. We therefore designate the left-hand sides of Equa-
tions 3 and 4 with ap and ȧp, respectively. Solving the
latter equation for a(2)

0 and substituting it in Equation 3,
we obtain [9]:

a
(3)
0 = 12

a0 − ap

∆t3
+ 6

ȧ0 + ȧp

∆t2
;

re-inserting this expression in Equation 3 yields

a
(2)
0 = −6

a0 − ap

∆t2
− 2

2ȧ0 + ȧp

∆t
.

That means the higher-order derivatives of the accelera-
tion can be explicitly calculated in terms of ap and ȧp.

The predicted position and velocity of particle i can now
be refined by expanding Equations 1 and 2 up to fourth
order to corrected position and velocity:

rc(t) = rp(t) +
1

24
a
(2)
0 ∆t4

= rp(t)− 1

4
(a0 − ap)∆t2 − 1

12
(2ȧ0 + ȧp)∆t3

vc(t) = vp(t) +
1

6
a
(2)
0 ∆t3 +

1

24
a
(3)
0 ∆t4

= vp(t)− 1

2
(a0 − ap)∆t− 1

12
(5ȧ0 + ȧp)∆t2,

where a
(2)
0 and a

(3)
0 have been substituted with the com-

posite expressions derived previously. The remainder of
the Taylor series is proportional to O(∆t5). Taking the
time derivative, we see that the error in the force calcula-
tion is ofO(∆t4). After re-grouping, the corrector reads:

vc(t) = v0 +
1

2
(a0 + ap)∆t+

1

12
(ȧ0 − ȧp)∆t2

rc(t) = r0 +
1

2
(vc + v0)∆t+

1

12
(a0 − ap)∆t2.

The sequence of, first, evaluation of the acceleration and
its first derivative and, second, correction of the position
and velocity can be iterated to increase the accuracy of the
orbit integration. We typically use three (3) iterations.

The code can integrate an ensemble of objects in paral-
lel, with either shared or individual timesteps. We use
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Figure 1. Performance diagram for the Hermite integra-
tion scheme, showing two test cases from [4].

quantized so-called block timesteps, where the timestep
lengths can only be negative powers of two ∆tk = 2−k

[10]. This ensures that objects with the same timestep
share the same simulation time. In this way, predic-
tions and computations of forces and first derivatives
can be done in parallel. Furthermore, this approach en-
sures co-eval output times, which is useful for generating
ephemerides for a large sample of objects, e.g. a cata-
logue.

Hermite schemes with order sixth or eighth order have
been developed for even higher precision [12].

3. TEST CASES

A set of test problems for (unperturbed) Kepler orbits
have been defined in [4], with eccentricities ranging from
0.1 to 0.9 in steps of 0.2 (tests D1 to D5). All orbits are in-
tegrated for 20/2π ≈ 3.18 revolutions and the final state
(two-dimensional position and velocity vectors) are com-
pared to the analytical result found by iteratively solving
Kepler’s equations.

The numerical accuracy achieved at the end of an integra-
tion is defined as

ε = − log

√√√√ 4∑
k=1

(xk − x̂k)2,

where xk are the components of the state vector deter-
mined by numerical integration, and x̂k the analytical ref-
erence orbit.

In Figure 1 we plot the numerical accuracy achieved with
the fourth-order Hermite scheme for two test cases with
eccentricities of e = 0.1 (D1) and e = 0.7 (D4). For the
low-eccentricity case (nearly-circular orbit), an accuracy
of∼9 is obtained after about 2500 function calls, compa-
rable to the RKF7 method of [3]. About 10 times more
function calls are needed for the high-eccentricity orbit to
reach the same accuracy.



 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0  20  40  60  80  100

Po
si

tio
n 

er
ro

r a
t 1

00
0 

km
 [m

]

Number of orbits

Figure 2. Errors in position due to the numerical method
for an integration covering 100 orbits.
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Figure 3. Errors in velocity due to the numerical method
for an integration covering 100 orbits.

4. SHORT-TERM INTEGRATIONS

Propagation times of a few days and up to a week are
relevant for SSA use cases like conjunction analysis, sen-
sor tasking, etc. Here we demonstrate the applicability of
the Hermite integration method for forecasting LEO or-
bits for these timescales. We chose a stop time of 200π,
i.e. 100 orbits. For a typical RSO in LEO with∼100 min
orbital period the simulation covers ∼7 days.

The great majority of RSOs is on nearly circular or-
bits, with 90% of the objects having eccentricities < 0.1.
Therefore, we selected an orbit with an eccentricity of
e = 0.1, similar to test case D1 above. The evolution
of the errors of position and velocity vectors for an orbit
with semi-major axis a = RE + 1000 km are shown in
Figures 2 and 3.

As is expected from the secular drift in the argument of
pericentre [6], the errors in positions and velocity show a
linear trend. The error in position after 100 orbits are well
below one metre, proving that the Hermite integrator can
be used for precise orbit determination based on laser-
range measurements with metric accuracy. We found the
velocity error to be∼0.03 mm/sec. Both position and ve-
locity errors oscillate with one orbital period with grow-
ing amplitude.
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Figure 4. Position vectors in the orbital plane for the
complete 3.2 million revolutions. Test orbits with initial
eccentricities of 0.1, 0.3, 0.5, 0.7, and 0.9 are shown.

5. LONG-TERM INTEGRATIONS

Long-term integrations are required for analysing the or-
bital decay due to atmospheric drag, investigating reso-
nant effects or chaotic motion, or studying space-debris
populations. Here the superior properties of the Hermite
integration scheme, that is conserving integral of motions
as well as semimajor axis and eccentricity, will become
apparent. We integrated the Kepler orbits D1 to D5 for
3.2 million revolutions, corresponding to ∼600 years for
a LEO orbit.

Figure 4 displays the position vectors, illustrating that the
overall orbital geometry is not changing over more than
3 million revolutions. Semimajor axes and eccentricities
show no secular drift, and can be considered constant for
all practical purposes. This can also be seen in the plot
of the relative energy error ∆E/E0, see Figure 5. While
the relative energy error undergoes periodic changes, no
secular drift is present.

As discussed above the argument of pericentre ω under-
goes a slow linear drift, cf. Figure 6. This is in con-
trast to high-order multistep integrators which generally
have quadratic errors in the angle variables [6]. The error
grows with eccentricity.
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Figure 5. Change of the relative energy error over the
integration time for a set of 5 objects on D1 to D5 orbits.
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Figure 6. Relative error of the y-component of the
Laplace-Runge-Lenz vector.

6. SUMMARY

We have demonstrated that the Hermite integration
scheme is a very useful numerical method for orbit propa-
gation. Especially due to its time-symmetry the integrator
has several desirable properties that make it highly useful
for long-term simulation of orbital dynamics up to sev-
eral millions of revolutions. For a conservative system,
energy and angular momentum show no secular errors.
As a consequence, both semimajor axis and eccentricity
of an object are not drifting away from their initial values.

The Hermite scheme provides excellent accuracy on
the propagated state vectors for short-term integrations,
which are important for several applications and use cases
in the domain of Space Situational Awareness (uncer-
tainty propagation, conjunction analysis, or re-entry pre-
dictions). For example, a 7-day propagation of a typical
LEO orbit results in a numerical position error below 1
metre.

The code can integrate an ensemble of objects in par-
allel, with either shared or individual timesteps. It can
therefore be applied to propagate a catalogue of space ob-
jects and/or to perform realistic uncertainty propagation
via Monte-Carlo or sigma-point methods.
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