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ABSTRACT 

Two critical problems are encountered in the space-based 

LEO-to-LEO optical tracking of new space debris. The 

first is the initial orbit determination (IOD) from angles 

of a very short-arc (VSA). The second problem is the 

association between the IOD results. To the first problem, 

a range-search method is applied to tackle the LEO-to-

LEO VSA angles-only IOD problem. The method 

assumes ranges at two chosen epochs and then the 

Lambert problem is solved where a residual control 

process is employed to control the IOD solutions. Then, 

a geometrical approach, which only uses an analytical 

orbital propagator, to associating the LEO-to-LEO 

uncorrelated tracks (UCTs), is developed. The procedure 

are experimented with simulation data and very 

encouraging results are obtained. 

1 INTRODUCTION 

The orbital arc length from the optical observation of low 

Earth orbiting (LEO) objects from a LEO spacecraft 

would usually be about 10~20s when the tracking 

telescope operates in the scan (satellite-body fixed) mode. 

In case that a new object is detected from the very short-

arc (VSA) angles, the obtained angles will be processed 

using an initial orbit determination (IOD) algorithm to 

determine a set of orbital elements, but the errors of the 

determined elements are usually very large. A single 

track from this process is essentially of little value if it 

cannot be associated to another track from the same 

object. 

The traditional Gauss, Laplace IOD methods or their 

variants[1], suffer from the poor geometrical strength 

provided by the VSA angles and thus have problem to 

achieve a converged solution. The more recent Gooding 

method[2] would need appropriate initial values of the 

ranges between the observing and observed objects for 

the convergence. Even a convergence is achieved with 

these methods, the solutions usually have very large 

errors. An imminent first step is to find an algorithm of 

high success rate to obtain an IOD solution when only the 

LEO-to-LEO VBA angles are available. Such a single 

IOD solution for a new object is the so-called 

uncorrelated track (UCT). 

Given a UCT, one has to associate it to other UCTs to 

make them useful for the object cataloguing. Various 

association methods have been proposed [e.g., 3-6]. In all 

these methods, a distance-like metric is computed from 

the propagated IOD orbits of two UCTs and their 

uncertainties to measure the closeness between them. 

There are two challenges in the process: the availability 

of the uncertainties and the propagation of the 

uncertainties. The existing track association methods are 

theoretically sound, but may be difficult to use in the case 

of the LEO-to-LEO VSA UCT association, simply due to 

the unavailability of, or large errors in, the covariance of 

the IOD tracks. An alternative approach using only the 

IOD orbital elements would be practically more 

attractive, and in some cases demanding. 

The space-based VSA angles-only IOD and UCT 

association are two of the most critical steps in building 

a space object catalogue. This paper presents the main 

ideas on the two subjects being proposed in the 

development of a comprehensive software of building 

and maintaining a space object catalogue using the space-

based optical tracking, as well as some simulation results. 

2 RANGE-SEARCH BASED IOD 

2.1 Method basics 

Given a set of right ascensions and declinations of an 

observed object (𝑅𝐴1, 𝐷𝑒𝑐1 , 𝑡1; … ; 𝑅𝐴𝑛, 𝐷𝑒𝑐𝑛 , 𝑡𝑛)  at n 

epochs at which the locations of the observer are known. 

The unit vector at 𝑡𝑖 from the observer to the object is 

 

 𝑳𝑖 = [

𝐿𝑥𝑖 = cos(𝐷𝑒𝑐𝑖)cos(𝑅𝐴𝑖)

𝐿𝑦𝑖 = cos(𝐷𝑒𝑐𝑖)sin(𝑅𝐴𝑖)

𝐿𝑧𝑖 = sin(𝐷𝑒𝑐𝑖)                  

] 

 

(1) 

The whole arc is now divided into an IOD arc from 𝑡1 to 

𝑡𝑘  and a control arc from 𝑡𝑘+1  to 𝑡𝑛 . Assume that the 

ranges at 𝑡1  and 𝑡𝑘  are 𝜌1  and 𝜌𝑘 , respectively, and the 

Proc. 7th European Conference on Space Debris, Darmstadt, Germany, 18–21 April 2017, published by the ESA Space Debris Office

Ed. T. Flohrer & F. Schmitz, (http://spacedebris2017.sdo.esoc.esa.int, June 2017)

mailto:jzhsang@sgg.whu.edu.cn
mailto:xxlei@whu.edu.cn
mailto:panteng@cast.cn


 

positions of the observer at 𝑡1  and 𝑡𝑘  are 𝒓1  and 𝒓𝑘 , 

respectively. The positions of the object at  𝑡1 and 𝑡𝑘 are 

then 𝑹1 = 𝒓1 + 𝜌1𝑳1 and 𝑹𝑘 = 𝒓𝑘 + 𝜌𝑘𝑳𝑘 , respectively. 

In this way, it is now the Lambert problem of IOD, and a 

set of Kepler orbital elements could be computed. By 

stepping through the sufficiently large search ranges for 

𝜌1 and 𝜌𝑘, it is possible to obtain some solutions close to 

the truth.   

2.2 Quality control 

For each converged solution from the Lambert problem, 

a quality control process is performed to decide whether 

the solution is an acceptable one. The first check is on the 

eccentricity which has to be greater than 0 to ensure the 

orbit is of an Earth orbiting object. Then, the perigee 

altitude of the orbit should be at least 0.  

Next, the angles in the control arc are used in the solution 

quality control. The IOD elements are propagated to an 

observing epoch 𝑡𝑖  (𝑘 + 1 ≤ 𝑖 ≤ 𝑛), and the position of 

the object is computed. Together with the known position 

of the observer at 𝑡𝑖, the right ascension and declination, 

(𝑅�̃�𝑖, 𝐷𝑒�̃�𝑖) are computed. They are differenced with the 

observed ones, resulting in the residuals of the computed 

(𝑅�̃�𝑖, 𝐷𝑒�̃�𝑖): 

∆𝑅𝐴𝑖 = (𝑅�̃�𝑖 − 𝑅𝐴𝑖) cos 𝐷𝑒𝑐𝑖  (2) 

∆𝐷𝑒𝑐𝑖 = 𝐷𝑒�̃�𝑖 − 𝐷𝑒𝑐𝑖  (3) 

It is clear that, if the estimated IOD orbit is close to the 

truth orbit, the residuals will be small. The magnitudes 

and the variation trend of the residuals will be good 

indicators of the closeness between the IOD orbit and its 

truth. Three metrics can be determined from the residuals 

of either the right ascension or the declination: the mean, 

the RMS and the slope of the residuals. A set of IOD 

elements is accepted as a candidate solution to the VSA 

angles-only IOD problem if the three metrics of both the 

right ascension and declination are less than pre-set 

thresholds.   

2.3 Determination of final solution 

There are could be multiple, and many in some cases, 

candidate solutions, depending on the values of the 

thresholds. It is necessary to find a set of elements as the 

final solution to the VSA IOD problem. For the near-

circular orbits, the procedure is described below, 

assuming there are 𝑙  solutions {𝑎𝑗 , 𝑒𝑗, 𝑖𝑗 , 𝛺𝑗 , 𝜔𝑗 , 𝑀𝑗; 𝑗 =

1,2, … , 𝑙}.  

1. Determination of the eccentricity. Choose the 

solutions whose eccentricities are among the 

smallest 10% of all eccentricities. The average of 

these 10% eccentricities is then regarded as the final 

eccentricity, e. 

2. Determination of the SMA. Find all 𝑎𝑗 from l SMAs 

each of which satisfies |𝑒𝑗 − 𝑒| < 𝐷𝑒 = 10−5 , and 

then regard the average of all these 𝑎𝑗  as the final 

SMA, 𝑎. 

3. Determination of perigee argument and mean 

anomaly. Find all 𝜔𝑗 from l perigee arguments each 

of which satisfies |𝑎𝑗 − 𝑎| < 𝐷𝑎 = 10000𝑚 , and 

then regard the average of all these 𝜔𝑗 as the final 

perigee arguments, 𝜔 ; and the average of the 

corresponding 𝑀𝑗 as the final mean anomaly, M. 

4. Determination of the inclination and right ascension 

of the node. Take the median of all the inclinations 

as the final inclination, 𝑖 ; and similarly, take the 

median of all the right ascensions of the node as the 

final right ascension of the node, Ω. 

3 IOD UCT ASSOCIATION BY 

ADJUSTMENT OF SEMI MAJOR AXIS 

3.1 Basic theory 

The proposed method only uses the position difference, 

expressed in the along-track, cross-track and radial (ACR) 

directions, between two tracks. By examining the 

relationship between the ACR difference and the 

variation of the semi major axis (SMA), it would be 

possible to find some insights into the proposed method. 

Since the SMA is the most difficult and important 

element to be estimated from VSA angles, and its error 

has accumulating effect on the along-track bias, the 

discussion is focused on the effect of the SMA error on 

the ACR difference,  

Assume there are two sets of Keplerian orbit elements at 

two epochs, each representing an initial orbit track. If the 

elements are exact, then the ACR difference between the 

two tracks is zero. When there are errors in the elements, 

the ACR differences will vary as a function of time and 

the error magnitudes. Figure 1 demonstrates the ACR 

differences against the orbit element errors, where the 

two sets of reference orbit elements are given in Table 1. 

Figures 1(1) to 1(3) show the ACR differences over one 

day due to errors of 0.005, 0.3 degrees and 0.5 degrees, 

respectively, in the eccentricity, inclination and perigee 

argument of Track 1. When the SMA of Track 1 has an 

error of 10 km, the resulting differences are shown in 

Figure 1(4). The combined differences are shown in 

Figure 1(5). It is clearly seen that, over the time period of 

one day, the differences in Figures 1(1) to 1(3) are mainly 

periodic and remain bounded, while the along-track and 

radial differences in Figure 1(4) grow with the time from 

the reference epoch of Track 1.  

When the elements of both tracks have errors, the 

behaviour of the differences caused by the errors in the 

non-SMA elements are generally unchanged, as shown in 

Figure 2. In Figure 2(1), the ACR differences are 



 

generated by adding 0.005 and -0.002, respectively, to 

the reference eccentricities of Track 1 and Track 2. 

Figure 2(2) are for the ACR differences due to the errors 

of 0.3 and -0.1 degrees, respectively, in the reference 

inclinations. Figure 2(3) shows the ACR differences 

caused by the errors of 0.5 and -0.5 degrees, respectively, 

in the reference perigee arguments.  

However, the differences between the two tracks due to 

the SMA errors have various variation patterns. Assume 

the SMA of Track 1 has an error of 10km, and the SMA 

of Track 2 has errors of 30km, 10km, -10km and -30km, 

respectively, the ACR differences are shown in Figures 

2(4) to 2(7). It can be seen that when the SMA errors of 

the similar magnitude but opposite sign, the position 

differences will have a near-zero value, such as in Figure 

2(6). 

A further investigation into the variation pattern reveals 

that, when the SMAs of the tracks have errors of the same 

magnitude but opposite sign, the along-track biases 

approach zero near the middle of the two reference 

epochs, as shown in Figure 3, where the SMA errors of 

the two tracks vary from -150km to 150km.  

 

Figure 1: ACR Differences with different errors of 

Track 1 

 

Figure 2: ACR differences when elements of both track 

have errors 

 

Figure 3: ACR differences with different SMA 

errors of Track 1 and Track 2 

 

Table 1: Reference Keplerian elements 

  Track 1 Track 2 

Reference time 2017.01.01 

0h0m0s 

2017.01.02 

0h0m0s 

Semi-major axis (km) 7000 7012.8 

Eccentricity 0.01 0.011 

Inclination (deg) 60.0 60.0 

Right asc. of the node (deg) 120 116.4 

Perigee argument (deg) 70 66.3 

Mean anomaly (deg) 0 -66.3 

 

The theory behind this property can be explained as 

follows. The accumulative along-track bias is 

predominantly caused by the errors in the mean motion, 

𝑛, which is related to the SMA, 𝑎, through the following 

equations:  

𝑛2𝑎3 = 𝜇 (4) 

∆𝑛 = −3𝑛 ∙  ∆𝑎/2𝑎 (5) 

where 𝜇 is the gravitational constant of the Earth, ∆𝑎 and 

∆𝑛 are the errors of the SMA and mean motion. 

For a near circular orbit, the change in the along-track 

difference from one epoch to another due to the mean 

motion error can be approximated by 

∆𝑙 ≈ ∆𝑛 ∙ (𝑡2 − 𝑡1) ∙ 𝑎,    𝑡2 ≥ 𝑡1 (6) 

Now, it is assumed that the mean motions of two tracks 

at reference epochs 𝑇1  and 𝑇2  have errors ∆𝑛1 and ∆𝑛2 , 

respectively, and the SMAs of both tracks are regarded 

as the same, it is easy to have the following equations for 



 

the changes in the along-track differences due to ∆𝑛1 and 

∆𝑛2: 

∆𝑙1 ≈ ∆𝑛1 ∙ (𝑡 − 𝑇1) ∙ 𝑟 

∆𝑙2 ≈ ∆𝑛2 ∙ (𝑡 − 𝑇2) ∙ 𝑟 

where 𝑟 is the geocentric distance of the space object at 

time 𝑡 . The combined change in the along-track 

difference at epoch 𝑡, ∆𝑙𝑡 , is the sum of ∆𝑙1 and −∆𝑙2, 

where the minus sign is needed for ∆𝑙2 to account for the 

direction of the along-track difference. 

Let 𝑡𝑚 be the middle of 𝑇1 and 𝑇2, 

𝑡𝑚 = (𝑇1 + 𝑇2)/2 

then,  

∆𝑙𝑡𝑚
= (∆𝑛1 + ∆𝑛2)(𝑡𝑚 − 𝑇1) ∙ 𝑎 (7) 

From Eq. (7), the condition for the zero value of the 

combined effect in the along-track difference at the 

middle epoch is obtained as 

∆𝑛1 = −∆𝑛2 (8) 

The equivalent condition is therefore: 

∆𝑎1 = −∆𝑎2 (9) 

Eq. (9) says, when the errors of the SMAs in the two 

tracks have the same magnitude but opposite sign, the 

combined change in the along-track difference at the 

middle epoch is zero. This agrees with the findings from 

Figure 2.  

In practice, the errors of the SMAs of the two tracks are 

unknown. ∆𝑙𝑡𝑚
 is computed from the propagated 

positions of the two tracks. Let the estimated SMAs of 

the two tracks be 𝑎1 and 𝑎2, respectively, an approximate 

expression for ∆𝑙𝑡𝑚
 would be obtained as 

∆𝑙𝑡𝑚
≈ ∆𝑛(𝑡𝑚 − 𝑇1) ∙ 𝑟𝑚 (10) 

where 

∆𝑛 ≈ −
3𝑛𝑚

2𝑎𝑚

(𝑎1 − 𝑎𝑡 + 𝑎2 − 𝑎𝑡)

= −
3𝑛𝑚

2𝑎𝑚

(∆𝑎1 + ∆𝑎2) 

𝑎𝑚 = (𝑎1 + 𝑎2)/2 

𝑛𝑚 = √𝜇/𝑎𝑚
3  

where 𝑎𝑡 is the true SMA of the track, which is unknown. 

From Eqs. (7) and (9), one can see that, when ∆𝑎1 =
−∆𝑎2, ∆𝑙𝑡𝑚

 becomes zero. More importantly, ∆𝑙𝑡𝑚
= 0 

means ∆𝑎1 + ∆𝑎2 = 0, and an estimate of the true SMA 

of the track can be obtained as 

𝑎𝑡 = (𝑎1 + 𝑎2)/2 

If ∆𝑙𝑡𝑚
≠ 0, it is possible to adjust one of the two SMAs 

to make ∆𝑙𝑡𝑚
= 0. The adjusted value in the SMA, 𝛿𝑎, is 

determined as 

𝛿𝑛 =
∆𝑙𝑡𝑚

(𝑡𝑚 − 𝑇1) ∙ 𝑟𝑚

 
(11) 

δ𝑎 = −
2

3

𝑎𝑚

𝑛𝑚

𝛿𝑛 
(12) 

Finally, an estimate of the true SMA of the track can be 

obtained as 

�̃�𝑡 = (𝑎1 − δ𝑎 + 𝑎2)/2 (13) 

3.2 Case studies 

Two examples are presented here to demonstrate the 

effect of adjusting the SMA of Track 1 on the ACR 

difference at the middle epoch. The first example is about 

two tracks from a same LEO object, which is observed 

twice, apart by 28h 35m, by a LEO-based optical system 

in scanning mode. The estimated IOD elements and their 

true elements are given in Table 2. It is seen that the IOD 

elements have very large errors. The along-track, cross-

track and radial differences after each adjustment of the 

SMA are shown in Table 3. 

After the propagations of the two IOD element sets to the 

middle epoch, the ACR differences between the two 

tracks are computed from the 3-dimensional position and 

velocity vectors. The initial differences are -854.6km, -

6.0km and -108.5km, respectively. Then, the adjusted 

value in the SMA is computed from Eqs. (11) and (12). 

And the use of Eq. (13) gives a SMA estimate of 7794.9 

km, which differs with the true values at the reference 

epochs of Track 1 and Track 2 by only 2.5 km and 0.9 

km, respectively, while the initial errors are about 18 km 

and 27 km, respectively, as Table 3 shows.  

The newly estimated SMA is used to replace the SMA of 

Track 1, and the above computation is repeated, which 

results in new ACR values shown in the row of “Second 

adjustment” in Table 3, and they are significantly smaller 

than those in the “First adjustment” row. A new SMA 

estimate of 7994.8 km is obtained, and the third 

adjustment is performed, which results in a new set of 

ACR values, where the along-track difference is close to 

zero. These results show that the along-track difference 

decreases gradually with the SMA adjustment of Track 1 

while the radial and cross-track differences may vary 

inconsistently. 

The second example is about the ACR difference 

variations between two tracks from different LEO objects, 

with the orbit elements listed in Table 4. The ACR values 

after each SMA adjustment are shown in Table 5.  

From Table 5, it is seen that the along-track differences 



 

gradually decrease after each SMA adjustment, but it 

does not approach to zero after the third adjustment. The 

SMA estimates are not close to either the true SMA 

values of the two tracks or their average. In addition, the 

cross-track and radial differences in the “First adjustment” 

row are much larger than those in the first example, and 

their changes are inconsistent. This example 

demonstrates that, when the SMAs are adjusted, the 

properties of ACR values between two tracks from 

different LEO objects are quite different from the 

properties when the tracks are from a same object. 

 

Table 2: Elements of two IOD tracks of a same LEO object 

 Track 1 Track 2 

 True IOD estimate True IOD estimate 

Reference time 2014.11.15 

14h5m6s 

2014.11.15 

14h5m6s 

2014.11.16 

18h40m57s 

2014.11.16 

18h40m57s 

SMA (km) 7792.4 7810.7 7794.0 7767.1 

Eccentricity 0.0006 0.0027 0.0009 0.0029 

Inclination (deg) 82.57 81.97 82.57 82.15 

RAAN (deg) 131.78 131.97 131.02 131.02 

Perigee (deg) 30.39 332.35 34.54 257.82 

Mean Anomaly (deg) 312.47 10.39 314.97 99.14 

 

Table 3: Orbit biases at middle epoch after SMA adjustments of two tracks from a same object 

 A (km) C (km) R (km) Estimated 

SMA (km) 

True SMA1 (km) True SMA2 (km) 

First adjustment -854.6 -6.0 -108.5 7794.9 7792.4 7794.0 

Second adjustment 14.3 -13.4 -22.8 7794.8 7792.4 7794.0 

Third adjustment 0.06 -13.3 -22.8 7794.8 7792.4 7794.0 

 

Table 4: Elements of two IOD tracks from two different LEO objects 

 Track 1 Track 2 

 True IOD estimate True IOD estimate 

Reference time 2014.11.17 

5h55m33.1s 

2014.11.17 

5h55m33.1s 

2014.11.17 

17h44m30.2s 

2014.11.17 

17h44m30.2s 

SMA (km) 7489.8 7448.6 7501.3 7451.0 

Eccentricity 0.0065 0.0015 0.0077 0.0017 

Inclination (deg) 100.5 100.50 100.54 100.93 

RAAN (deg) 59.25 59.24 57.68 57.25 

Perigee (deg) 142.41 232.97 176.60 222.49 

Mean Anomaly (deg) 348.82 259.20 313.48 267.20 

 

 

 



 

Table 5: Orbit biases at the middle epoch after SMA adjustments of two tracks from different tracks 

 A (km) C (km) R (km) Estimated 

SMA (km) 

True SMA1 

(km) 

True SMA2 

(km) 

First adjustment -7286.0 53.163 -6388.5 7356.1 7489.8 7501.3 

Second adjustment -3033.6 -107.6 -676.3 7242.2 7489.8 7501.3 

Third adjustment -89.4 -168.6 -5.5 7195.8 7489.8 7501.3 

3.3 Algorithm implementation 

Following the above method developments and case 

studies, the procedure to implement the UCT association 

algorithm can be described. Given a pair of IOD UCTs, 

IOD𝑖  and IOD𝑘, the task is to determine whether they are 

of a same object. The association will result in one of four 

solutions: 

(1) true positive (TP), the two IOD UCTs are of a same 

object, and the solution says they are of a same object;  

(2) true negative (TN), the two IOD UCTs are of a same 

object, but the solution says they are of two objects;  

(3) false positive (FP), the two IOD UCTs are of two 

objects, but the solution says they are of a same object;  

(4) false negative (FN), the two IOD UCTs are of two 

objects, and the solution says they are of two objects.  

A good algorithm should have high TP and FN rates.  

The algorithm to determine whether two IOD UCTs are 

associated is implemented as:  

1. If the reference epochs of IOD𝑖  and IOD𝑘  are 

apart by more than 3 days, no association decision 

is made. 

2. Propagate IOD𝑖  and IOD𝑘  to the middle epoch 

with the analytical orbit propagator [7] and the 

resulting orbit elements (IOD𝑖𝑚  and IOD𝑘𝑚) are 

obtained. 

3. Compare the SMAs of IOD𝑖𝑚  and IOD𝑘𝑚, if they 

differ by more than 300km, IOD𝑖  and IOD𝑘  are 

judged not from a same object. 

4. Compute the angle between the normal vectors of 

the two orbital planes at the middle epoch, if the 

angle is larger than 3 degrees, IOD𝑖  and IOD𝑘 are 

judged not from a same object.    

5. Compute the ACR differences at the middle epoch 

between IOD𝑖𝑚  and IOD𝑘𝑚. 

6. Compute the mean motions 𝑛i and 𝑛𝑘  from 

IOD𝑖  and IOD𝑘 to obtain 𝑛𝑚 = (𝑛𝑖 + 𝑛𝑘)/2. 

7. Compute 𝑟i and 𝑟𝑘  at the middle epoch to obtain 

𝑟𝑚 = (𝑟𝑖 + 𝑟𝑘)/2. 

8. Compute δ𝑎 using Eqs. (11) and (12). 

9. Compute a SMA estimate using Eq. (13). 

10. Replace the SMAs of IOD𝑖  and IOD𝑘  with the 

estimated SMA in Step 9, and repeat Steps 2 to 9 

for two more times. 

11. Compare the last ACR differences with the preset 

thresholds to determine whether the two IOD 

UCTs are associated. If the three ACR biases are 

all less than the corresponding thresholds, a true 

positive decision is made. Tentative thresholds for 

the simulation experiments in this paper are 

200km, 600km and 600km for the along-track, 

cross-track and radial differences, respectively. 

4 SIMULATION RESULTS 

4.1 Generation of tracks 

About 2000 LEO objects are selected from the NORAD 

catalogue for the generation of simulated tracking angles. 

The tracking spacecraft is at an orbit of altitude 808.6km 

and inclination 99.82 degree. The orbit determination and 

analysis software for Earth-orbiting objects [8] is used to 

generate the “truth” orbits of the 2000 objects and the 

tracking spacecraft, and angles data of the 2000 objects 

observed by the tracking spacecraft. The software has the 

following main functions: orbit determination using 

various tracking data and considering various perturbing 

forces, orbit and tracking data simulations, atmospheric 

mass density calibration, and space conjunction analysis. 

During November 15-18, 2014, 3077 very-short arcs 

with duration between 10s and 60s are generated. Most 

of the durations range from 10s to 20s. The angles data is 

corrupted by random errors of zero mean and 2" standard 

deviation. 

The corrupted angles data of each of the 3077 arcs is 

processed through the IOD method presented in Section 

2, and 2515 IOD tracks are obtained. A summary of the 

IOD SMA errors is given in Table 6. It is seen that only 

19.6% of the estimated IOD SMAs have errors less than 

10 km and 38.6% of them have errors less than 25 km. 

 

Table 6: Statistics of the estimated SMA errors 

<10km 10-25km 25-50km 50-100km >100km 

19.6% 19.0% 17.3% 18.4% 25.7% 

 



 

4.2 UCT association results 

Using the method described in Section 3, an all-to-all 

track associations are performed, and the results are given 

in Table 7. Only when two IOD tracks are less than 3 days 

apart, their association is judged. The association results 

when the track separation is less than two days and one 

day are also listed to assess the dependence of the 

algorithm effectiveness on the track separations. In the 

table, all the rates of true positive, true negative, false 

positive and false negative are presented to give a 

complete picture of the algorithm effectiveness.  

The proposed method is implemented using C++ in the 

Microsoft VS2013 environment running on an ASUS 

laptop computer (Intel (R) Core (TM) i7-4710HQ CPU 

@ 2.50GHz). The computation time to complete the 

associations of 2515 IOD tracks is about 206s. 

It is found that, when the track separation is less than 3 

days, there are 3204 IOD pairs from a same object. 3004 

pairs are successfully associated to a same object, 

representing a true positive rate of 93.8%. On the other 

hand, 2775026 IOD pairs from two objects can be formed, 

and 10309 pairs are falsely associated to a same object, 

representing a false negative rate of 0.4%. From the table, 

it is also found that the true positive rate increases with 

the decrease of the track separation, suggesting the 

algorithm is more effective for associating the IOD tracks 

with shorter separation.  

An analysis is made on the relation between the true 

positive rate and the magnitude of the IOD SMA error. It 

would reveal whether the algorithm is able to cope with 

the situation of large SMA errors. The true positive rates 

for various IOD SMA error ranges are given in Table 8. 

It can be seen that, when the SMA errors of two same-

object originated IOD tracks are both less than 50 km, 

they can be successfully associated with a true positive 

rate of 100%. When the SMA errors of two same-object 

originated IOD tracks are both less than 100 km, the true 

positive rate is higher than 92%. When the SMA error of 

one IOD is larger than 100 km and other is between 25-

100 km, the true positive rate is between 74% and 85%. 

Generally, this table demonstrates that the true positive 

rate increases with the decrease of the SMA error of IOD, 

suggesting the algorithm is more effective for associating 

the tracks with lesser SMA error. 

In addition to the track association capability, the 

algorithm is also able to generate a new estimate of the 

SMA if the two tracks are of a same object. Table 9 

presents the statistics of the estimated SMA errors after 

the true positive association of tracks with separation less 

than 3 days. It shows that the estimated SMA error is 

much smaller than the initial ones. In particular, 68.5% 

and 82.5% of the estimated SMAs have errors less than 

5km and 10 km, respectively, a significant improvement 

on the initial 8.8% and 19.6%.  

 

Table 7: Track association results 

Track separation <3 day < 2 day < 1 day 

IOD pairs from a same object 3204  2392  1118  

True positive 3004 93.8% 2309 96.5% 1114 99.6% 

True negative 200 6.2% 83 3.5% 4 0.4% 

IOD pairs from two objects 2775026  1994513  806429  

False positive 10309 0.4% 7682 0.4% 3374 0.4% 

False negative 2764717 99.6% 1986831 99.6% 803055 99.6% 

 

Table 8: True positive rates (%) for different IOD SMA errors 

 <10km 10-25km 25-50km 50-100km >100km 

<10km 100.0 100.0 100.0 100.0 100.0 

10-25km 100.0 100.0 100.0 100.0 88.5 

25-50km 100.0 100.0 100.0 100.0 77.3 

50-100km 100.0 98.3 98.8 92.0 84.9 

>100km 96.0 80.0 74.4 74.2 85.5 

 

 



 

Table 9: Statistics of the estimated SMA errors after the true positive track association 

 <1km <5km <10km <25km <50km <100km >100km 

Initial 1.4% 8.8% 19.6% 38.6% 55.9% 74.3% 25.7% 

New estimate 15.5% 68.5% 82.5% 88.6% 90.4% 92.0% 8.0% 

 

5 CONCLUSIONS 

In the case of space-based optical tracking, only very-

short arc angular observations of LEO objects will be 

collected when the telescope is operated in the scanning 

mode, and the subsequent IOD process would determine 

the orbit elements with very large errors, whose 

magnitudes are usually unknown. Therefore, it would be 

unable to use the existing orbit track association methods 

which all require orbit state and its covariance (or 

probability distribution function). On the other hand, 

thousands of LEO space-based very-short arcs could be 

observed over a few days, the computing efficiency of 

track association has to be considered.  

A purely geometrical and computationally efficient 

method would be practically very useful, and demanding 

in some cases, for the space-based VSA track association. 

In this paper, such a method is proposed for the 

association of space-based VSA tracks of near-circular 

orbits. The method uses a simple relationship between the 

along-track difference and SMA error.  

The method is experimented for the simulated space-

based VSA near-circular LEO IOD tracks. The errors of 

the determined IOD elements are typically very large, for 

example, 25% of the SMA errors are larger than 100 km. 

In general, when time interval between two IOD tracks is 

less than 3 days, this method has a true positive rate over 

93% to associate two IOD tracks belonging to a same 

object, and a false negative rate over 99% to disassociate 

two IOD tracks. Even when the SMA errors of one or 

both tracks are larger than 100 km, the true positive rate 

is still higher than 74%.  

The algorithm is very easy to implement and 

computationally efficient because only a simple 

analytical orbit propagator is used.  

The future work will be focused on expanding and testing 

the algorithm to non-circular LEO tracks. It would need 

to simultaneously adjust the semi major axis and 

eccentricity in order to minimize both the along-track and 

radial differences, and at the same time to obtain 

estimates of the semi major axis and eccentricity. A 

comparison study between the covariance-based methods 

and this method is also planned. 

6 REFERENCES 

1. Escobal, P.R. (1965). Methods of orbit determination, 

New York: Wiley. 

2. Gooding, R.H. (1996). A new procedure for the 

solution of the classical problem of minimal orbit 

determination from three lines of sight. Celes. Mech. 

Dyn. Astron. 66(4): 387 – 423. 

3. Hill, K., Alfriend, K.T., and Sabol, C. (2008). 

Covariance-based uncorrelated track association. 

AIAA 2008-7211, AIAA/AAS Astrodynamics 

Specialist Conference, Honolulu, HI. 

4. Maruskin, J.M., Scheeres, D.J., Alfriend, K.T. (2009). 

Correlation of optical observations of objects in earth 

orbit. Journal of Guidance, Control, and Dynamics, 

32(1): 194 – 209. 

5. Fujimoto, K., Alfriend, K.T. (2015), Optical Short-

Arc Association Hypothesis Gating via Angle-Rate 

Information. Journal of Guidance, Control, and 

Dynamics, 38(9): 1602 – 1613. 

6. Hussein, I.I., Roscoe, C.W.T., Schumacher, P.W. Jr., 

and Wilkins, M.P. (2016), UCT Correlation using the 

Bhattacharyya Divergence, AAS 16-319, the 26th 

AAS/AIAA Space Flight Mechanics Meeting, Napa, 

CA. 

7. Liu, L. (1992), Orbital Mechanics of Artificial Earth 

Satellite, Higher Education Publishing, Beijing. (In 

Chinese) 

8. Sang, J., Chen, L., Li, B., Du, J., Chen, J., Zhang, P. 

(2016). Development of space object orbit information 

software platform. Spacecraft Environment 

Engineering. 33(1): 1 – 6. (in Chinese) 

 

 


