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ABSTRACT

The amount of space debris is increasing faster than ex-
pected. This growth represents a serious hazard for op-
erational spacecraft and human activities in space, espe-
cially in the Low-Earth Orbit (LEO) . In order to guaran-
tee the safety of outer space activities, space object cat-
alogues must be created and maintained. In this paper,
an approach for estimating the geometrical and motion
parameters of Resident Space Objects (RSOs) located
in the LEO region is proposed by using a radar system.
Time-frequency based signal processing is developed to
estimate RSO’s parameters and therefore support RSOs’
classification and data association in Initial Orbit Deter-
mination (IOD).

Keywords: feature extraction; resident space object
(RSO); inverse Radon transform (IRT); radar; short time
Fourier transform (STFT); SSA; SST; space debris.

1. INTRODUCTION

Resident Space Objects (RSOs) are represented by both
active satellites and space debris in orbit around the Earth.
Space debris are all man-made objects in Earth orbit or
re-entering the atmosphere that are non-functional. Sci-
entists have estimated that there are about 20,000 parti-
cles of space debris measuring more than 10 cm in diam-
eter hurtling around the Earth at an average velocity of
25,000 km/h (∼ 7 Km/s), not counting the 700,000 or so
particles with a diameter between 1 and 10 cm. LEO is
the region of space in which the risk of collisions is at its
greatest – especially at an altitude of 800 km above Earth
[1, 2]. Although small, these items of space debris travel
so fast that they could easily damage or destroy an opera-
tional satellite. Space collisions can have a closing speed
up to 15 km/s and even small particles are a serious safety
concern [3]. If a collision occurs, resulting fragments can
become an additional collision risk. A chain reaction may
occur that pulverizes everything in orbit, including func-
tioning satellites. Knowledge of the changing debris en-

vironment is necessary for both space mission design and
for the assessment of debris mitigation policies.

Space Surveillance and Tracking (SST) systems are then
required to keep track of RSOs to support collision avoid-
ance strategies. One of the main issues in SST is unique
data association from one passage to the next [4].

Both optical and radar measurements are used by SST
systems. In this paper, we will focus on the latter and
provide an object parameter estimation algorithm that is
able to improve the object unique identification and con-
sequently the data association, which is one of the key
points recommended in [5].

The echo signals generated by rotating objects have spec-
tral contents that change with time (non-stationary sig-
nals). The same characteristics are shown in signals gen-
erated by micro-Doppler (µD) modulations, as widely
demonstrated in the radar literature [6] . Due to lack of lo-
calized time information, the widely used Fourier Trans-
form (FT) cannot provide time-varying frequency mod-
ulation information. A Joint Time-Frequency Analysis
(JTFA) that provides localized time-dependent frequency
information is needed for extracting time-varying motion
dynamic features. Time-frequency Distributions (TFDs)
include linear and bilinear transforms, such as the Short
Time Fourier Transform (STFT) and Wigner-Ville distri-
bution (WVD), respectively.

According to the literature several methods have been
proposed to extract information about spinning RSO
characteristics.

In [7] T. Sato introduced Single-Range Doppler Interfer-
ometry (SRDI) to obtain the two-dimensional image of a
space debris and thus estimate its shape by using spectro-
gram characteristics of target’s echoes. In [8] and [9] J. Li
et al. proposed the Coherent Single-Range Doppler Inter-
fermetry (CSRDI) which could be regarded as a modified
method of the SRDI, which utilizes both the magnitude
and phase of the time-frequency spectrogram to recon-
struct the target’s geometry.

In this paper, the STFT is taken into consideration as a
tool for the time-frequency localization of such signals.
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The proposed method is based on the fact that the TFD of
a rotating rigid-body is a sinusoidal signature from which
it is possible to extract some geometrical and motion pa-
rameters.

RSO’s parameters that can be estimated using radar data
are: the rotation period (TΩ), the maximum Doppler fre-
quency (fDmax ) and the maximum size of the object pro-
jected onto the radar Line Of Sight (LOS) (D⊥). Those
parameters are useful to discriminate among RSOs. In
fact, it is likely that two RSOs would be characterized by
different values of TΩ, fDmax and D⊥.

In order to extract those parameters from the STFT of
the received signal, the inverse Radon Transform (IRT) is
considered. In fact, such transform allows for 2-D sinu-
soidal patterns to be mapped onto a single point (SP) in
the IRT domain. When considering rigid bodies, each SP
has the same period, therefore, each of such point can be
used to estimate the rotation period (TΩ). Further anal-
ysis on each extracted SP can also provide information
about fDmax and D⊥.

In order to test the proposed method, simulated radar sig-
nal returns generated from a data set of objects with dif-
ferent shapes, sizes and angular rates have been used. The
simulated data used in this paper is obtained by generat-
ing the backscattered signal from 8 different point-like
scatterer models. The proposed method has shown good
performances for all types of objects considered both in
terms of accuracy and robustness against noise.

The organization of this paper is as follows. The received
signal model is discussed in Section 2. The object pa-
rameters are defined in Section 3. The feature estimation
technique is defined in Section 4. The performance anal-
ysis of the proposed algorithm is shown in Section 5.

2. RECEIVED SIGNAL MODEL

The received signal model is described in this section,
according to the acquisition system geometry.

2.1. Geometry

Let us consider a simple geometry, as shown in Figure 1.
The monostatic radar consists of a colocated transmitter
and receiver (TX/RX), it is located in the origin of the
reference system (X,Y,Z). The Y axis is aligned with the
radar LOS.

The radar is stationary and located at the origin Q of the
radar-fixed coordinate system (X, Y, Z) as shown in Fig-
ure 1. The local reference system (x, y, z) is fixed on the
target, which is moving with linear and rotational mo-
tions with respect to the radar coordinates. The origin O
of the reference system is assumed to be at a distance R0

from the radar. By considering the target as a rigid body,

Figure 1: Geometry of the radar and a target with trans-
lational and rotational motions

the relative radar target motion can be considered as the
superimposition of two contributions: a translational mo-
tion and an angular motion, which are applied to the cen-
ter O of the target. The translational motion is denoted
by the translational rotation vector v (t). The angular
motions are represented by the angular rotation vector
ω (t). The sum of these two rotation vectors yields the
total angular rotation vector ωT (t). The projection of
ωT (t) onto the plane orthogonal to the LOS is the effec-
tive rotation vector ωeff (t) and it determines the target
aspect angle variation .

In particular, ωeff (t) can be expressed as:

ωeff (t) = îLOS ×
(
ωT (t)× îLOS

)
(1)

where îLOS is the LOS unit vector in the (X, Y, Z) refer-
ence system.

The range from the radar to the scatterer can be defined
as RP(t) = R0 + r(t) where R0 = R0̂iLOS denotes the
distance between the radar and the center of rotation O
on the target and r(t) is the distance from a scatterer on
the target with respect to O.

2.2. Signal model

Space debris may rotate rapidly around an axis, usually
its major axis, such motion is known as spin. In order to
introduce a radar signal model for such objects, some as-
sumptions can be made: a) the spinning rate remains con-
stant within the acquisition interval; b) the translational
motion is completely compensated ; c) the far-field con-
dition is satisfied. The target can be considered as com-
posed of point-like scatterers corresponding to primary
reflecting scatterers. The point scattering model simpli-
fies the analysis while preserving the object geometrical
features. In the simplified model, scatterers are assumed
to be isotropic reflectors.



When a radar transmits an electromagnetic (EM) wave at
a carrier frequency f0, the received radar signal can be
expressed as follows:

sR(t) = sT(t) e−j4πf0RP(t) =

= sT(t) e−jΦ(t)
(2)

where Φ(t) = −j4πf0RP(t) is the phase function at
time t. The modulation induced by rotation structure can
be regarded as a unique signature of the target.

The spectrogram (S(t, f)) of sR(t) is defined as the
squared modulus of its Short-Time Fourier Transform
(STFT)

S(t, f) = |STFT(t, f)|2 (3)

where

STFT(t, f) =

∫
sR(τ)h(t− τ) e−j2πfτdτ (4)

and h(t) is the analysis window. In the discrete domain
it becomes

S(n, k) = |STFT(n, k)|2 (5)

where

STFT(n, k) =

Nh−1∑
m=0

h(m) sR(n+m) e
−j 2π

Nh
mk (6)

and h(n) is the discrete analysis window of length Nh.

3. OBJECT DYNAMICAL AND GEOMETRICAL
PARAMETERS

As already pointed out, the radar back-scattering from ro-
tating objects is subject to Doppler modulations that en-
able the determination of dynamic properties of objects
and provides useful information about them. By observ-
ing RSOs using a radar, useful parameters for their dis-
crimination can be identified as TΩ, fDmax and D⊥. In
particular, such parameters can split into two categories:

• geometry dependent parameters (fDmax , D⊥)

• geometry independent parameters (TΩ)

The former depends on the acquisition geometry whereas
the latter does not.

If the target moves with a constant rotational motion, then
ω = Ω ω̂ where Ω is the amplitude and ω̂ is the unit
vector of the vector ω. The instantaneous frequency of
the received signal can described as fi(t) = 2f0/c [ω ×
r(t)] · îLOS .

The amplitude of fi(t) depends on the LOS direction: in
fact, if îLOS and ω̂ are parallel, fi(t) would be zero de-
spite the target’s rotation. The optimal case is when the
two vectors are perpendicular to each other since the fi(t)
is maximum and therefore its measurement is facilitated.
The spectrogram (S(t, f)) of a rotating rigid-body con-
tains a sinusoid for each scatterer with:

• the same TΩ and Ω =| ω | (because of the rigidity
property)

• different amplitudes fD depending on their distance
from the center of rotation (O)

• different phases according to their position with re-
spect to the radar

Thus, if we estimate one of these sinusoids we can ex-
tract the information about TΩ (and so Ω) of the observed
RSO. It is self-evident that the furthest scatterer from O
is associated to the signature with the highest amplitude
in S(t, f). By estimating such sinusoid, we obtain also
the information about fDmax . Moreover, if we select the
edge signatures, no matter if O is a center of symmetry, it
is possible to estimate the maximum projected size of the
Object Under Test (OUT). It should be pointed out that
with the term “maximum projected size” we do not re-
fer to the object maximum size, but only to its projection
onto the LOS during the Observation Time (Tob). The
worst scenario occurs if îLOS and ω̂ are parallel, in this
case the radar can not measure the rotation of the RSO
and it would not be possible to estimate its size. It is
important to note that by observing the same object with
different acquisition geometries, the actual object maxi-
mum size could be inferred.

4. PARAMETER ESTIMATION

The feature extraction algorithm is summarized in Figure
2:

Figure 2: Feature Extraction Algorithm Workflow

More details on the steps for the Peak Selection (PS) are
depicted in Figure 3.

The Radon transform of a two-dimensional signal con-
taining a two-dimensional Dirac function is a sinusoidal
pattern with amplitude corresponding to the distance of
the point from the origin and the initial angle correspond-
ing to the phase of the point position. Therefore, a si-
nusoidal pattern in the time-frequency plane (produced
by a time-frequency representation of sinusoidally mod-
ulated signal) is projected onto a two-dimensional point



Figure 3: Peak Selection (PS) Workflow

in an Inverse Radon Transform (IRT) [10]. By calcu-
lating the IRT on a multi-component sinusoidal signal,
the energy of each sinusoid is concentrated into a point.
The IRT of S(t, f) is evaluated for each vector of angles
α(i) = θsetn(i). The vector θset is a vector of L equally
spaced values between 0 and 2π and IR(p, q) is the IRT
of the OUT and contains a point for every signature. L
represents the column size of S(t, f). The vector n con-
tains the possible number of periods of the RSO in Tob,
i.e., n = [n1, n2, ..., ni, ..., nI]. Among all the computed
IRT, we pick the one with the highest concentration ac-
cording to the Concentration Measure (M) [11] as de-
fined in Equation 7. This is done because the points in
IRT have the highest concentration when the IRT is cal-
culated using the right number of periods contained in the
spectrogram .

M =

∑
p

∑
q [IR(p, q) + |IR(p, q)|]4{∑

p

∑
q [IR(p, q) + |IR(p, q)|]2

}2 (7)

The Concentration Measure (M) calculated in correspon-
dence of the i-th index is as follows:

Mi =

∑
p

∑
q [IRi(p, q) + |IRi(p, q)|]4{∑

p

∑
q [IRi(p, q) + |IRi(p, q)|]2

}2 (8)

where,

IRi(p, q) = IRT (S(t, f),θsetn(i)) (9)

High values of M indicate that the representation is
highly concentrated, and vice versa. The optimum value
nopt is the one that maximizes M according to the con-
centration criterion:

nopt = n(iopt) (10)

iopt = arg max
i∈[1,2,...,I]

M (11)

Thus,

IR(p, q) = IRT(S(t, f),θsetn
opt) = IRT(S(t, f),αopt)

(12)

TheD⊥ can be inferred by identifying two points (P1;P2)
in the IRT domain.

Doing this operation we will refer to an index j that can
assume two values, i.e., j=1,2. With j=1 we identify the

point P1 having maximum distance from O, (k1,m1) are
the coordinates of the selected point.

The second point to be selected is the one that lays in the
subset of the IRT domain delimited by a line l orthogonal
to OP1. In order to estimate the maximum size of the
OUT we need to find the point of the target that is diag-
onally opposite to P1 . Our algorithm searches for the
peak at maximum euclidean distance from O. Thus, in
case of asymmetrical objects we need to exclude the side
of the object where the first detection is located. Other-
wise we would estimate the RSO size incorrectly. The
segment OP1 can be regarded as the principal diagonal
of the object (See Figure 4). This is achieved in practice
by exploiting a geometrical mask, defined as follow:

MASK(p, q) =

{
0 (p, q) ≥ l
1 (p, q) ≤ l (13)

where l is a line defined as follow

l : l ⊥ OP1 (14)

As it can be noticed from Figure 3, this mask is used

Figure 4: Geometry of reference for the mask definition

to define a subset of peaks over the IRT domain. This
prevents the peak located in P̃2 from being selected in
place of the one located in P2.

Once the selection is done, from the coordinates (kj ,mj)
of the selected points (SPs) we can estimate:

• The modulation amplitude as:

Aj =
[√

k2
j +m2

j

]
(15)

• The modulation phase as:

φj = arctan(mj/kj) (16)



• The modulation frequency as:

f̂m =
nopt

L
(17)

Then, it is possible to write the corresponding sinusoid as
follows:

a(j)(t) = Aj cos(2πf̂mt+ φj) (18)

After a scaling transformation, we obtain the correspond-
ing sinusoid in the spectrogram domain:

ŝ(j)(t) = f̂
(j)
Dmax

cos

(
Ω̂

fs
t+ φj

)
(19)

As mentioned above, from one Doppler signature we
want to extract three characteristic parameters (fDmax ,
D⊥, TΩ). In the following sections the relationships used
to accomplish this task are given.

4.1. Estimation of TΩ

Given the modulation frequency estimated from the
Doppler signatures as in Equation 17, the rotation period
can be expressed as:

T̂Ω =
2π

Ω̂
, Ω̂ =

2πf̂m
fs

(20)

with fs = N/Tob and N corresponding to the number of
pulses.

4.2. Estimation of fDmax

Using the modulation amplitude estimated as in Equation
15, the maximum Doppler frequency is calculated using
the following relation:

f̂
(j)
Dmax

= F(Aj) (21)

where −1/(2Tr) ≤ F(Aj) ≤ 1/(2Tr) and Tr is the
Pulse Repetition Interval.

4.3. Estimation of D⊥

Using Equations 21 and 20, the distance from O to the
j-th SP can be written as

D̂
(j)
⊥ =

c

2f0

f̂
(j)
Dmax

Ω̂
(22)

Thus, the estimation of the maximum size of the object is
given by:

D̂⊥ = D̂
(1)
⊥ + D̂

(2)
⊥ (23)

5. PERFORMANCE ANALYSIS

5.1. Performance parameters

In this section, the performance indicators that have been
used for the performance analysis are described.

1. Mean Percentage Error
The Mean Percentage Error (%Err) is the mean
value among the number of several realizations of
noise (Nr). The %Err is defined as the magnitude
of the difference between the exact value a and the
estimation fr divided by the magnitude of the exact
value times 100 to express it in percent.

%Err =

Nr∑
r=1

∣∣∣∣a− fra

∣∣∣∣ · 100 (24)

2. Normalized Root Mean Square Percentual Error
The Root Mean Square Error (RMSE) is frequently
used as a measure of the difference between values
(sample and population values) predicted by a model
or an estimator and the values actually observed.

RMSE =

√√√√ 1

Nr

Nr∑
r=1

(a− fr)2 (25)

Normalizing the RMSD facilitates the comparison
between datasets or models with different scales.

NRMSE =
RMSE

a
(26)

The NRMSE expressed in percentual form gives
the Normalized Root Mean Square Percentual Error
(%NRMSE):

%NRMSE = NRMSE · 100 (27)

5.2. Simulations set up

The parameters used to generate the simulated radar sig-
nal are shown in Table 1.

Simulated radar system
Symbol Description Value
f0 Carrier frequency 5 GHz
Tob Observation Time 1.4 s
fs Sampling frequency 13.2 kHz
Tr Pulse Repetition Interval 75.7 µ s
Ti Pulse Width 1.25 ns

Table 1: Simulated radar system parameters

To simplify the problem we modelled targets as a series
of point scatterers. The point scatterer model is used un-
der the assumption to observe objects having multiple-
structures with size smaller than the sensor resolution.



This model, called the point scatterer model, is widely
used in many radar application. In fact, the electromag-
netic backscattered signal from a complex object can be
thought as backscattering from a set of scattering centres
on the object. As a result, the high resolution allows for
such points to be mapped as point-scatterers. The point-
scatterer model can be related to the electromagnetic scat-
tering theory through high frequency ray optics where a
set of highly localized ray phenomena can be related to a
reflection or diffraction point on the object. These points
can include specular reflections from smooth surfaces,
edge diffractions from edge and tips, as well as multiple
scattering from dihedral and trihedral corner reflections.
An 8-objects database has been built as shown in Figure
5.

(a) (b)

(c)

(d)

(e) (f)

(g) (h)

Figure 5: RSO Database.
(a) RSO 1: Satellite; (b) RSO 2: Sphere;
(c) RSO 3: Cylinder; (d) RSO 4: Cube;
(e) RSO 5: Parallelepiped; (f) RSO 6: Cone;
(g) RSO 7: Disk; (h) RSO 8: Asymmetric

Satellite.

The geometrical and dynamic properties used to create
the RSO dataset are outlined in table 2 .

5.3. Results

The analysis of simulated data aims at testing the effec-
tiveness of the proposed Feature Extraction Algorithm.
To investigate the performances in low signal to noise ra-
tio, complex white Gaussian noise is added to the simu-
lated data in order to have a pre-selected SNR. In particu-
lar, the algorithm has been tested for four different values
of SNR :{ -5, 0, 10, 20} dB. The performances analy-
sis has been described in Sec. 5.1 in terms of Normal-
ized Mean Percentage Error and Normalized Root Mean
Square Percentage Error for the parameters fDmax , D⊥
and TΩ.

The results obtained with a low SNR of -5 dB for RSO
1 and RSO 2 are shown in Figures 6 and 7, respectively.
Even if the spectrograms in Figures 6b and 7b are very



RSO Dataset Geometrical and dynamic properties

RSO Shape Size (x× y× z) [m] D⊥[m] fDmax
[Hz] TΩ[s]

1 Satellite 4× 4× 22 22.0907 6614.1043 0.3500

2 Sphere 2× 2× 2 2 449.1096 0.4667

3 Cylinder 2× 2× 6 6.3246 2840.4188 0.2333

4 Cube 4× 4× 4 5.6569 1270.2739 0.4667

5 Parallelepiped 2× 16× 4 18.5536 5369.0052 0.4000

6 Cone 12× 6× 12 12 2245.5482 0.5600

7 Disk 12× 12× 0 12 4491.0965 0.2800

8 Asym Satellite 4× 4× 22 22.114 4799.8502 0.7000

Note: The distance between the radar and each RSO is R0=900 Km

Table 2: RSO Dataset Geometrical and dynamic proper-
ties

noisy. We can conclude that good results can still be ob-
tained by applying the proposed algorithm as shown in
Figures 6d-6e and Figures 7d-7e.

It should be pointed out that thresholds are not optimal
for any object in the database. Having to deal with highly
different objects in term of shape, size and spin an ab-
solutely optimal threshold cannot be found. Since, an
optimal threshold is not the matter of the proposed tech-
nique a threshold high enough to suppress the majority of
noise and low enough to retain the useful signal, has been
heuristically selected.

The performance parameters obtained for each object in
the database with SNR :{ -5, 0, 10, 20} dB are listed in
Tables 3-10.

As shown in Tables 3-10 the estimation performances
strictly depend from the value of fDmax . Objects with
higher fDmax show better performances then the others.
This quantity, and thus its estimate, is a function of TΩ,
fDmax and f0. Further study on their variation effect on
the estimation performances are interest of the authors.

RSO 1

TΩ fDmax D⊥

SNR=-5dB %Err 0,353 0,084 0,506
%NRMSE 0,382 0,084 0,527

SNR=0dB %Err 0,190 0,084 0,344
%NRMSE 0,195 0,084 0,346

SNR=10dB %Err 0,087 0,084 0,240
%NRMSE 0,088 0,084 0,241

SNR=20dB %Err 0,093 0,084 0,246
%NRMSE 0,093 0,084 0,246

Table 3: RSO 1 performance parameters
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f̂Dmax 6619.6429 Hz

D⊥ 22.0907 m

D̂⊥ 22.2146 m

(f)

Figure 6: Feature Extraction Algorithm Outputs for
RSO 1.

(a) spectrogram without noise;
(b) spectrogram with SNR= -5 dB;
(c) Inverse Radon Transform (IRT) with SNR= -5 dB;
(d) IRT with SNR= -5 dB after threshold;
(e) Reconstructed edge signatures;
(f) Estimated features.

RSO 2

TΩ fDmax D⊥

SNR=-5dB %Err 0,670 6,385 5,315
%NRMSE 0,697 8,039 6,907

SNR=0dB %Err 0,717 3,775 3,101
%NRMSE 0,724 4,335 3,747

SNR=10dB %Err 0,710 3,340 2,677
%NRMSE 0,711 3,340 2,677

SNR=20dB %Err 0,714 3,340 2,672
%NRMSE 0,714 3,340 2,672

Table 4: RSO 2 performance parameters
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Figure 7: Feature Extraction Algorithm Outputs for
RSO 2.

(a) spectrogram without noise;
(b) spectrogram with SNR= -5 dB;
(c) Inverse Radon Transform (IRT) with SNR= -5 dB;
(d) IRT with SNR= -5 dB after threshold;
(e) Reconstructed edge signatures;
(f) Estimated features.

RSO 3

TΩ fDmax D⊥

SNR=-5dB %Err 0,096 41,832 48,575
%NRMSE 0,107 49,986 52,747

SNR=0dB %Err 0,039 1,104 1,018
%NRMSE 0,046 1,104 1,019

SNR=10dB %Err 0,035 1,104 1,003
%NRMSE 0,041 1,104 1,003

SNR=20dB %Err 0,038 1,104 0,998
%NRMSE 0,038 1,104 0,998

Table 5: RSO 3 performance parameters

RSO 4

TΩ fDmax D⊥

SNR=-5dB %Err 0,144 1,916 1,840
%NRMSE 0,151 1,916 1,840

SNR=0dB %Err 0,121 1,916 1,864
%NRMSE 0,122 1,916 1,864

SNR=10dB %Err 0,169 1,916 1,815
%NRMSE 0,169 1,916 1,815

SNR=20dB %Err 0,172 1,916 1,811
%NRMSE 0,172 1,916 1,811

Table 6: RSO 4 performance parameters

RSO 5

TΩ fDmax D⊥

SNR=-5dB %Err 0,055 0,364 0,422
%NRMSE 0,063 0,364 0,440

SNR=0dB %Err 0,026 0,364 0,454
%NRMSE 0,032 0,364 0,454

SNR=10dB %Err 0,036 0,364 0,464
%NRMSE 0,038 0,364 0,464

SNR=20dB %Err 0,031 0,364 0,460
%NRMSE 0,031 0,364 0,460

Table 7: RSO 5 performance parameters

RSO 6

TΩ fDmax D⊥

SNR=-5dB %Err 0,550 1,251 0,721
%NRMSE 0,562 1,322 0,769

SNR=0dB %Err 0,197 1,773 1,643
%NRMSE 0,202 2,024 1,913

SNR=10dB %Err 0,229 1,164 1,002
%NRMSE 0,230 1,164 1,002

SNR=20dB %Err 0,264 1,164 0,967
%NRMSE 0,264 1,164 0,967

Table 8: RSO 6 performance parameters



RSO 7

TΩ fDmax D⊥

SNR=-5dB %Err 0,067 20,265 26,934
%NRMSE 0,079 22,509 28,476

SNR=0dB %Err 0,107 0,535 1,004
%NRMSE 0,116 0,540 1,774

SNR=10dB %Err 0,198 0,620 0,398
%NRMSE 0,200 0,620 0,436

SNR=20dB %Err 0,251 0,620 0,437
%NRMSE 0,251 0,620 0,437

Table 9: RSO 7 performance parameters

RSO 8

TΩ fDmax D⊥

SNR=-5dB %Err 0,666 0,254 0,323
%NRMSE 0,691 0,254 0,360

SNR=0dB %Err 0,571 0,254 0,187
%NRMSE 0,578 0,254 0,231

SNR=10dB %Err 0,698 0,254 0,284
%NRMSE 0,699 0,254 0,286

SNR=20dB %Err 0,726 0,254 0,312
%NRMSE 0,726 0,254 0,313

Table 10: RSO 8 performance parameters

6. CONCLUSIONS

Radar echoes from space debris typically have highly
non-stationary Doppler due to their dynamics (spin). Ac-
cording to the derived signal model, this paper has pro-
posed a novel method for RSO feature estimation. The
proposed method is based on the use of the spectrogram
and the IRT. The influence of noise on the estimation pro-
cedure has also been considered. The proposed method
has shown good accuracy and robustness with respect to
noise.
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