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ABSTRACT

The computation of Safety Re-entry Area (SRA) associ-
ated to a probability of 99,999% is required for a signifi-
cant number of space missions that shall be controlled to
a destructive re-entry. The dynamics of a spacecraft en-
tering the atmosphere is sensitive to a large number of pa-
rameters affected by uncertainty, which might cause risk
for the population, air and naval traffic, and ground and
sea assets. The extremely low probability of interest re-
quires the identification of events, that occur so seldom
and having consequences so catastrophic, that they may
be regarded as rare events. This work describes an inno-
vative method, called Inputs’ Statistics, efficient in esti-
mating rare events defined above a threshold. It has been
originally developed for the computation of the SRA but
it may be generalized and extended to solve other rare
events problems coming from the aerospace field but not
limited to it

Key words: Rare events estimation; Extremely low prob-
abilities; Safety assessment; Destructive re-entry; Safety
Re-entry Area; Optimization; Monte Carlo simulation.

1. INTRODUCTION

The interest on extremes and rare events has enormously
increased in the last decades because of its practical rel-
evance in many different scientific fields such as insur-
ance, finance, engineering and environmental sciences.
But how can a rare event be defined? A rare event is
an event that occurs so seldom but having consequences
so critical that may result in a catastrophic outcome of
the mission. In aerospace engineering, the term refers to
events with an occurrence probability typically on the or-
der of 10−5. A representative example is the probability
that two aircraft will get dangerously close each other in
a given airspace, or the collision probability between op-
erative satellites and space debris.

The rare event of concern in this work is the probability
that a fragment resulting from the atmospheric fragmen-
tation of a spacecraft performing a controlled destructive
re-entry falls at a so large distance with respect to the
aimed impact point that could reach inhabited areas caus-
ing thus risk for the population, air and naval traffic, and
ground and sea assets. In Europe, the safety compliance
verification measures for the re-entry of a spacecraft at its
end of life are regulated by restrictive requirements doc-
umented in Space Agencies’ instructions and guidelines
[6]. According to the French Space law: the operator re-
sponsible of a spacecraft controlled re-entry shall identify
and compute the impact zones of the spacecraft and its
fragments for all controlled re-entry on the Earth with a
probability respectively of 99% and 99,999% taking into
account the uncertainties associated to the parameters of
the re-entry trajectories [13].
Theses impact zones are usually termed safety boxes, or
sometimes safety footprint boundaries. They are contain-
ment contours on ground defined such that the probabil-
ity that a fragment falls outside is below a controlled or
known value. The Safety Re-entry Area (SRA) is the
safety box associated with the probability 99,999%. It
is used to design the re-entry trajectory such that the
SRA does not extend over inhabited regions, does not im-
pinge on state territories and territorial waters without the
agreement of the relevant authorities. The computation
of SRA is required for a significant number of space mis-
sions like spacecraft in low Earth orbits at their end of life
and last stages of launchers that shall be controlled to a
destructive re-entry. The Declared Re-entry Area (DRA)
is the safety box associated with the probability 99%; it is
used to implement the procedures of warning and alerting
the maritime and aeronautic traffic authorities.
The challenge of the SRA design is the extremely low
probability associated to its contour (10−5), which makes
quite difficult and inaccurate the use of classic statistical
techniques. The State of Art methods use Monte Carlo
(MC) analysis to estimate the SRA, where the number
of generated samples determines the accuracy and con-
fidence level (CL) achieved but is also proportional to
the computational time. Since the integration of the at-
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mospheric re-entry transfer function is computationally
expensive, usually on the order of one or two seconds
in a standard desktop computer, the typical number of
simulations is restricted to few thousands. Therefore the
quantile of interest is estimated by extrapolating the prob-
ability density much beyond the generated data. If the
number of outputs samples is smaller than required, the
result may be biased or characterized by low confidence
[10, 12].
The Inputs’ Statistics method has been developed orig-
inally with the intent of increasing the efficiency of the
computation of the safety boxes [4]. The idea which led
to its definition and subsequent implementation relies on
the consideration that the probability that a worst case
scenario occurs is in some way related to the probability
that a particular unlucky combination of initial conditions
takes place and consequently leads a fragment fall much
further than expected. Trying to follow this intuition led
to focus the attention on the input domain of the problem
rather than the output. This because the input domain col-
lects all the causes which may lead to foreseeable but also
rare catastrophic consequences. Working on the input do-
main, analyzing it and trying to characterize it with some
information coming from the output domain may provide
directly some information on the sought probability with
an extremely low computational effort. This is the main
objective of the Inputs’ Statistics method: investigating
the causes of the phenomena to get useful information
which may speed up the computational intensive over-
all solution. In addition, the input variables are usually
a priori statistically modeled exploiting physical consid-
erations and engineering judgement, assigning a specific
probability density to each of them. Once all the input do-
main is characterized, it is relatively easy to surf through
it, integrate directly and exactly the joint probability den-
sity over particular subsets and extrapolate local informa-
tion of the output by evaluating the gradient of the trans-
fer function. Therefore, the input domain is particularly
attractive because of the possibility to explore it rapidly
as well as the physical meaning which can be derived by
its analysis. Nevertheless, it is intrinsically more com-
plex than the output domain because it is always multi-
dimensional. Several uncertain variables have to be con-
sidered in a typical realistic problem as the computation
of the safety boxes and this may create some difficulties
when global rather than local information are required
to draw useful conclusions. On the other hand, the out-
put distribution is usually mono-dimensional or, at least,
some simplifying hypothesis are introduced to subdivide
the problem and study one dimension per time. This is
the reason why a possible alternative approach to solve
the problem is to built up numerically part of the dis-
tribution of the output by performing a MC simulation,
but accepting an inevitable increase of the computational
time. This strategy is exploited in the Inputs’ Statistics
method to refine an initial conservative estimation of the
result. Indeed, going more in depth of the Inputs’ Statis-
tics method, it is possible to distinguish two “versions” of
the method:

• the Single Step algorithm which provides a prelim-

inary but fast and conservative estimation of the re-
sult;

• the Multistep algorithm which gets a compromise
with the MC simulation to reduce the bias of the Sin-
gle Step’s result.

More specifically, with the Single Step algorithm, the
probability of interest is computed integrating the known
joint multivariate density function of the input variables
and, then, an optimization process is used to find the min-
imum and maximum (worst) cases within a reduced set
of inputs corresponding to a conservative underestima-
tion of the probability. Thus, a large amount of compu-
tational time is saved since the MC simulations are not
required. The main drawback of the Single Step algo-
rithm is related to the simplification that is introduced in
the identification of the input domain associated to the
aimed probability. This simplification leads to a bias on
the probability estimate but it provides always a conser-
vative solution to the problem. Indeed, when the problem
under analysis concerns safety assessment, if a certain er-
ror exists, it must be guaranteed that its sign is in accor-
dance with the requirement. Therefore, considering that
there is no worst case for the statistical distribution, this
assessment can be also retained as a conservative enve-
lope of the optimal solution.
The Multistep algorithm, originally presented in this pa-
per, starts from this preliminary result and corrects it by
applying iteratively the Single Step algorithm alternated
with “smart” MC simulations over input subsets charac-
terized by low probability density. The number of sam-
ples that have to be propagated into the output through
the transfer function is thus minimized.
The case study considered in this paper is the compu-
tation of the SRA of the Shallow Re-entry of the fifth
(and last) Automated Transfer Vehicle (ATV): Georges
Lamaı̂tre [5]. The results are performed using the clas-
sical MC approach and the Inputs’ Statistics method.
They compared highlighting advantages and drawbacks
in terms of accuracy, level of conservatism and computa-
tional time. An exhaustive and plenty of examples trea-
tise on the method can be found in [11].

2. PROBLEM STATEMENT

Let X be a d-dimensional random vector with probabil-
ity density function (pdf) f and mean value vector µ,
and φ be a continuous and deterministic scalar function:
φ : Rd → R such that:

X = {X1, ...Xd}T → Y = φ(X) (1)

The vector X is here called “input” of the problem and
the scalar variable Y “output” of the problem. φ is the
transfer function that transforms the input X into the out-
put Y . Without loss of generality, the function φ satisfies
the property:

φ(µ) = 0 (2)



indeed, if a priori this property is not satisfied by a generic
transfer function φ′, then φ is simply defined as

φ(X) = φ′(X)− φ′(µ) (3)

The problem under investigation formally requires to
compute two thresholds T1 and T2, with T1 < 0 and
T2 > 0, such that the probability that the output Y falls
outside the interval [T1, T2] is lower or equal to a given
prefixed value, that is indicated with α:

1− P(T1 ≤ Y ≤ T2) ≤ α (4)

where α is a rare event probability, that is α = 10−5 or
less.
The classic State of the Art (SoA) techniques based on
MC methods put a large computational effort in building
up numerically the distribution of Y , which is unknown
a priori. Calling its density fY , the SoA approach can be
formulated as looking for T1 < 0 and T2 > 0 such that:

1−
T2∫
T1

fY (y)dy ≤ α (5)

The main issue of this approach is the computational
time. Indeed, building numerically the output distribu-
tion fY causes a sharp increase of the computational time
with the decrease of the required probability α in order to
keep an acceptable bounded confidence interval.
The problem can be re-formulated in an equivalent way
if the attention is focused on the input instead of on the
output domain. The input uncertainties are statistically
modeled using physical considerations and engineering
judgment. Once the pdf f is defined, the input domain is
fully characterized. Let us introduce:

Definition 2.1. Let X ∈ Rd be a continuous random vec-
tor and φ be a transfer function: φ : Rd → R, the failure
domain Ωf of f relative to the two thresholds T1, T2 ∈ R
with T1 < T2 is:

Ωf = {x ∈ Rd : φ(x) < T1 ∨ φ(x) > T2} (6)

Its complementary is:

cΩf = {x ∈ Rd : T1 ≤ φ(x) ≤ T2} (7)

The probability can be exactly computed integrating f
over the region Ωf of the input domain, once identified.
Accordingly, the problem can be alternatively formulated
as defining the region Ωf such that it satisfies:∫

Ωf

f(x)dx ≤ α (8)

where dx = dx1...dxd. This is an intrinsically differ-
ent approach and it is the basis of the Inputs’ Statistics
method.
Nevertheless, Ωf is not unique because two unknowns
must be selected: T1 and T2 and only one inequality is

available from the condition of the required probability
level α. There exists an entire family of admissible fail-
ure domains. Among all the possible choices of Ωf , the
engineering design has as objective to identify that par-
ticular Ωf which minimizes the distance between the two
values T1 and T2. Since this distance increases with the
decrease of the required probability level, to compute this
optimal region it is imposed the less restrictive as possible
constraint, i.e. equality instead of inequality:

Definition 2.2. Let X ∈ Rd be a continuous random vec-
tor and φ be a transfer function: φ : Rd → R, the optimal
failure domain:

ΩOpt
f = {x ∈ Rd : φ(x) < TOpt1 ∨ φ(x) > TOpt2 }

with TOpt1 , TOpt2 ∈ R and TOpt1 < TOpt2 , is defined such
that ∫

Ω
Opt
f

f(x)dx = α (9)

and the difference TOpt2 − TOpt1 is the minimum, that is:

TOpt2 − TOpt1 ≤ T2 − T1 (10)

for any possible choice of T1 and T2 that satisfy eq.8.

3. SINGLE STEP INPUTS’ STATISTICS

Since φ is generally a multidimensional dynamic propa-
gator, as for instance in the case of the safety boxes, and
its contour surfaces are not identified in fast enough com-
putational sequence (e.g. there is not an analytic explicit
formulation), the direct computation of the Ωf family,
and especially of ΩOpt

f , is not practically feasible due to
computational time limitations.
Therefore, the Inputs’ Statistics method aims at defining
a domain Ω̃f that belongs to the Ωf family and approxi-
mates ΩOpt

f :

Ω̃f ≈ ΩOpt
f (11)

Consequently, the probability estimated by the Inputs’
Statistics method PIS is:

PIS =

∫
Ω̃f

f(x)dx (12)

and the corresponding values of the thresholds are T̃1 and
T̃2. The idea behind the Inputs’ Statistic method is the
limitation of the input domain using the d-dimensional
contour surfaces of the pdf rather than the computation of
the contour surfaces of the transfer function φ. Since the
mathematical formulation of the pdf is known, its contour
surfaces are easily identified.
So accordingly to the Single Step algorithm: being ε̃
the d-dimensional contour surface of the pdf enclosing



a probability equal to 1−α, then Ω̃f is the region identi-
fied by contour surfaces of the transfer function φ corre-
sponding to the thresholds T̃1 and T̃2 being the minimum
and maximum cases which may occur inside ε̃. T̃1 and
T̃2 are thus the outcome of the method.
In ref.[4] it is explained, under the hypothesis of having
only normal distributed input variables, how to perform
the integral of the pdf over the volume enveloped by the
pdf contour surfaces. Note indeed that if all the variables
in the input vector X are normally distributed random
variables: N (µ,Σ), the associated pdf is the Multivari-
ate Normal (MVN) distribution and the contour surfaces
of the MVN are d-dimensional ellipsoids, centred on µ
and oriented accordingly to Σ. It can be extended to the
general case as long as a transformation τ : Rd → Rd
exists that maps the random input vector Z, which may
have non normal distributed variables, into a full normal
distributed vector X. In reference [10], some transfor-
mations have been proposed depending on the available
information on the pdf of Z.
Three advantages given by the Single Step algorithm can
be recognized:

• the probability estimate is directly derived by the
causes of the problem (initial conditions and model
dispersions) highlighting its physical explanation;

• a large amount of computational time is saved since
the MC simulations are not required and the compu-
tational time is not sensitive to the probability level
to be achieved which can be set arbitrarily small;

• the outcome of the method provides always a con-
servative solution of the problem.

The main drawback is related to the simplification that
is introduced in the identification of the failure domain.
This simplification leads to a bias on the probability esti-
mate: the result is always conservative but it is necessary
to assure that it is not too far from the optimal one. When
this is not the case, often a better accuracy is required.
This is why the Multistep algorithm has been introduced,
looking for a compromise between the speed of the In-
puts’ Statistics and the accuracy of the MC approach.

4. MULTISTEP INPUTS’ STATISTICS

The idea behind the Multistep Inputs’ Statistics is to con-
sider progressively a smaller and smaller d-dimensional
contour surface of the pdf (d-dimensional ellipsoid of the
MVN) in order to get a smaller T2 − T1 interval closer
to the optimal one TOpt2 − TOpt1 . Thus, performing a
MC simulation at each step of the algorithm, it is possi-
ble to estimate the error that the Inputs’ Statistics method
gives at the current iteration, which is then subtracted at
the following iteration. Since it is required to integrate at
each step only the samples that fall outside the current el-
lipsoid which is a low density region, the algorithm may

show good performances especially when compared with
the Crude Monte Carlo (CMC) method.

4.1. Algorithm for monotone functions

Let us suppose firstly that the transfer function φ is a
monotone function with respect to all its variables. This
is just a way to illustrate a simplified version of the al-
gorithm which will be generalized in sec.4.5 to generic
transfer functions. When the transfer function is mono-
tone, both minimum and maximum belong always to the
border of the feasible domain, that is ε̃. In this way, the
contours of φ, i.e. Ω̃f , are tangent to ε̃ and consequently
reducing progressively ε̃, Ω̃f enlarges until a given toler-
ance with respect to the probability estimate or the output
interval is met.
The increase of Ω̃f is accomplished iteratively, checking
at each step k the error due to the approximation of ΩOpt

f

with Ω̃k
f . The error at a generic k-th iteration, indicated

with ek, can be expressed as:

ek =

∫
Ω̃
Opt
f

f(x)dx−
∫
Ω̃k
f

f(x)dx (13)

or equivalently, recalling the definition 2.2:∫
Ω̃
Opt
f

f(x)dx = α, as:

ek = α− PIS
k

(14)

where PISk is the probability estimate given by the In-
puts’ Statistics at the k-th step.
Then, the ellipsoid ε̃k is reduced at the successive step
simply subtracting the error from the previous step:∫

ε̃k+1
(t̃k+1)

f(x)dx =

∫
ε̃k(t̃k)

f(x)dx− ek (15)

and thus the updating relation is got:

αk+1 = αk + ek (16)

An estimation of the probability PISk is given here
through a CMC method. By definition, PISk is the proba-
bility that a sample is outside the contours of φ associated
to T̃ k1 and T̃ k2 . But since T̃ k1 and T̃ k2 are tangent to the bor-
der of ε̃k then ε̃k ⊆ cΩ̃k

f , that is ε̃k ∩ Ω̃k
f = ∅. There-

fore there is not any interest in the distribution inside the
current ellipsoid ε̃k and it is necessary to integrate only
the samples that fall outside it. Since it is a low density
region, under some hypothesis, the computational burden
keeps limited. Counting how many of these samples have
an output which is lower than T̃ k1 or larger than T̃ k2 and
dividing by N , the probability PISk is estimated.



In addition, it is important to note that the samples outside
the previous ellipsoid have already been computed at the
previous step, so storing them, at the next step it is neces-
sary to characterize only the region included between the
previous and the current ellipsoid. To describe mathemat-
ically these operations, two sets are introduced, the first
containing the indexes of the samples included between
two ellipsoids and the second containing the correspond-
ing output values of the transfer function φ:

I(t1, t2) = {i ∈ N : t1 ≤ (Xi−µ)TΣ−1(Xi−µ) < t2,

i = 1, ..., N} (17)

and

Θ(t1, t2) = {Yi = φ(Xi) ∈ R : i ∈ I(t1, t2)} (18)

where X1, ...,XN are N iid samples as N (µ,Σ) and t1
and t2 are the square radius of two generic ellipsoids such
that t1 < t2. Note in particular that using this nomen-
clature, the indexes of the samples outside an ellipsoid
having square radius t can be indicated as:

I(t,+∞) = {i ∈ N : (Xi − µ)TΣ−1(Xi − µ) > t,

i = 1, ..., N} (19)

Thus, PISk can be expressed as

PIS
k

=
1

N

∑
i∈I(t̃k,+∞)

1φ(Xi)<T̃k1 ∨φ(Xi)>T̃k2
(20)

where 1φ(Xi)<T̃k1 ∨φ(Xi)>T̃k2
is a function that assumes the

value 1 if φ(Xi) < T̃ k1 or φ(Xi) > T̃ k2 and 0 otherwise.
Algorithm 4.1 gives a schematic and concise description
of the Multistep Inputs’ Statistics method for monotone
functions.

4.2. Convergence analysis

Let us start with a qualitative discussion of an ideal situ-
ation in which two ideal hypotheses hold:

1. the probability PISk at each step is computed ex-
actly, that is we are using an infinite number of sam-
ples in the MC simulations;

2. the optimization process used to locate the T̃ k1 and
T̃ k2 is ideal: it converges always to the global min-
imum/maximum inside the current feasible region
ε̃k.

Under these hypotheses, it is possible to prove (see [11])
the following three results:

1. positiveness of the error, which is the necessary con-
dition for the convergence of the error;

Algorithm 4.1: Multistep Inputs’ Statistics for monotone
functions

Input: Probability α Output: Thresholds T k1 and T k2 ;
1 choose
2 Maximum number of iterations kMax;
3 Tolerances ξT and ξα;
4 Number of input samples N through eq.22;
5 initialize
6 Step: k = 1;
7 Probability outside ellipsoid: α1 = α;

8 Ell. ε̃1
: find t̃1 such that 1−

∫
ε̃1

(t̃1)
f(x)dx = α1;

9 Samples outside ε̃1
: I(t̃1,+∞) = {i ∈ N :

(Xi − µ)TΣ−1(Xi − µ) > t̃1, i = 1, ..., N};
10 MC simulation outside ε̃1

:
Θ(t̃1,+∞) = {Yi = φ(Xi) ∈ R : i ∈ I(t̃1,+∞)};

11 Set ε̃0 ≡ ε̃1
, that is t̃0 = t̃1;

12 repeat for k ≥ 1
13 compute
14 T̃ k1 and T̃ k2 as min/max inside ε̃k ;

15 Samples between ε̃k and ε̃k−1:
I(t̃k, t̃k−1) = {i ∈ N : t̃k ≤
(Xi −µ)TΣ−1(Xi −µ) < t̃k−1, i = 1, ..., N};

16 MC simulation between ε̃k and ε̃k−1:
Θ(t̃k, t̃k−1) = {Yi = φ(Xi) ∈ R : i ∈
I(t̃k, t̃k−1)};

17 update
18 Samples outside ε̃k:

I(t̃k,+∞) = {i ∈ N : i ∈ I(t̃k, t̃k−1) ∨ i ∈
I(t̃k−1,+∞)};

19 Set of outputs outside ε̃k as:
Θ(t̃k,+∞) = {Yi ∈ R : i ∈
I(t̃k, t̃k−1) ∨ i ∈ I(t̃k−1,+∞)};

20 Probability estimate:
PISk = 1

N

∑
i∈I(t̃k,+∞)

1φ(Xi)<T̃k1 ∨φ(Xi)>T̃k2
;

21 Error: ek = α− PISk ;
22 update
23 Probability outside ellipsoid: αk+1 = αk + ek;

24 Ell. ε̃k+1
: find t̃k+1 such that

1−
∫
ε̃k+1

(t̃k+1)
f(x)dx = αk+1;

25 Step: k = k + 1

26 until k > kMax ∨ T̃k+1
2 −T̃k+1

1

T̃k2 −T̃k1
< ξT ∨ ek/α < ξα

2. convergence of the error, that is ek → 0 for
k → +∞;

3. convergence of the probability, that is PISk → α
for k → +∞, and from a conservative direction:
PISk ≤ α for any k > 0.



All these convergence theorems are extremely interest-
ing because they allow to justify the consistency of the
method: the elimination of the probability bias in the re-
sult of the Single Step algorithm. For clarification pur-
poses, we applied the Multistep algorithm to the simple
analytical bi-dimensional function, initially introduced in
[4]:

φ(X) = φ(X1, X2) =
(
eX1 − 1

) (
eX2/2 − 1

)
(21)

where X1 and X2 are uncorrelated normally distributed
random variables: X1 ∼ N (0, 0.292) and X2 ∼
N (0, 0.172), looking for a probability α = 10−5. Com-
paring fig.1 with the Single Step counterpart reported
in [4] gives a greater insight into the convergence pro-
cess. The ellipsoidal domain is decreased step by step
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Figure 1: Application of the Multistep algorithm to the
exponential analytic function in eq.21.

accordingly to the probability imposed by eq.16, plotted
in fig.2a versus the step number. In fig.2b the positiveness
and the convergence of the error are reported (theorems 1
and 2) and fig.2c shows the convergence of the probabil-
ity PISk to α (theorem 3). In fig.2d we see how the output
interval T̃ k2 − T̃ k1 reduces and gets closer to the optimal
one T̃Opt2 − T̃Opt1 . However, note that it is not correct to
state T̃ k1 tends to T̃Opt1 and T̃ k2 tends to T̃Opt2 . Indeed a
priori it is not guaranteed that the input points giving the
optimal interval are equally probable which is instead a
constraint imposed by construction by the Inputs’ Statis-
tics method.
Nevertheless, the convergence cannot be a priori guaran-
teed in the real case and some problems may arise. First
of all, the error may become negative because of a large
overestimation of PISk . This is typically the case when
the used number of samples is too small. To avoid this sit-
uation it is suggested to use a number of samples which
is big enough to get a significant statistical estimation of
a probability on the order of α. The smaller is α, that is,
the higher is the rarity to be estimated, the larger is the
number of required samples. Glynn, Rubino and Tuffin
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Figure 2: Application of the Multistep algorithm to the
exponential analytic function in eq.21. Convergence
analysis in ideal condition.

in [7] chapter 4 express the minimum number of required
samples as:

N >

(
z1−β/2

)2
RE2

1− α
α

(22)

where z1−β/2 is the (1 − β/2)-quantile of the standard
normal distribution N (0, 1): z1−β/2 = Φ−10,1(1 − β/2),
α is the sought probability and RE is the relative error if
α is estimated by a CMC method. Rubino and Tuffin in
[7] chapter 1 suggest z = 1.96, to have 95% CL and a



RE lower than 10% to get a significant reduction of the
probability bias.
Another unexpected situation may occur when initially
the Single Step algorithm is not so accurate and the first
estimation of the output interval is much larger than the
optimal one. In this case PISk � α and so PISk is highly
underestimated using the number of samples suggested in
eq.22. Actually, this is not a big issue because it does not
affect the progress of the algorithm and the estimation of
PISk improves as long as it approaches α. Yet, in this
situation the algorithm shows an undesired slowness in
the convergence because it proceeds with a step length of
the order of α which may require a large number of itera-
tions. It is possible to speed it up through some strategies
presented in a sec.4.4.
Finally, a rough convergence may come up when the op-
timization algorithm is not adapted for the problem un-
der investigation. This produces a non monotone reduc-
tion of the output interval along the iterations and con-
sequently an inaccurate estimation of PISk , because the
contours lines of φ are not correctly identified. Unfor-
tunately, there is not a general solution to this issue and
a case by case analysis must be carried on. Generally
speaking, it is suggested here a predictor corrector strat-
egy, which seems quite efficient specifically for the prob-
lem of the safety boxes. As predictor, the Particle Swarm
Optimization (PSO) [3] is used, which is a swarm algo-
rithm and helps in exploring properly the feasible region.
The optimal value given by the PSO is then improved by
few iterations of the Barrier method [2], a gradient-based
method, to converge directly to the solution. In this way, a
compromise between exploration of the domain and rapid
convergence to a solution is got.

4.3. Computational time discussion

In this section, an analysis of the order of magnitude of
the computational time is provided following the same
approach used in [4] for the Single Step algorithm ex-
pressing it as function of number of transfer function
evaluations (t.f.e.). The computational time increases be-
cause in the Multistep algorithm the Single Step is ap-
plied recursively alternating it with MC simulations. So
let’s divide the analysis in two parts: MC simulations and
optimization processes.
To get a result which is statistically acceptable, the num-
ber of input samplesN has to be high enough. How much
high is prescribed by eq.22. Nevertheless, the Multistep
algorithm does not require to propagate all the N sam-
ples, but only those that are outside the k-th ellipsoid. In
the average, the number of samples that fall outside the
first ellipsoid is αN . Going on with the iterations, since
αk increases, more and more points have to be included
in the set I(t̃k,+∞) and so integrated. In the average,
after k iterations, it is required the integration of αkN
samples. If αk is not so far from α, the Multistep In-
puts’ Statistics shows good performances, but this is not
always true. Let’s call NMISMC the number of t.f.e. re-
quired by the MC simulations at step k of the Multistep

Inputs’ Statistics method. Using eq.22, it is possible to
express it as

NMISMC >
αk

α

(
z1−β/2

)2
RE2 (23)

where the term (1 − α) has been neglected because for
rare event probabilities α � 1. Now the issue is the es-
timation of the ratio αk

α because the other two parameter
are usually imposed as: 10% RE and 95% CL, which cor-
responds to z1−β/2 = 1.96. Quantify the ratio αk

α is not
straightforward and the analysis showed that it depends
mainly on three factors:

1. the number of dimensions of the input domain d;

2. the required probability α;

3. the characteristics of the transfer function φ.

The three factors are listed in order of importance, that
is the ratio increases fast especially when the problem
has many uncertain variables. If this ratio is too high,
too many samples are required and the Multistep Inputs’
Statistics is no more efficient. At this stage of the anal-
ysis, it is not available a general analytic formula that is
able to estimate a priori the ratio αk

α . So it has been de-
cided to study the problem numerically to provide a para-
metric estimation of this ratio. Several transfer functions
have been evaluated, with different behavior, changing
both the required probability and the number of input di-
mensions. The outcome of this analysis are some look-up
tables whose tab.1 is here reported as example. It is sug-

Table 1: αk

α ratio as function of probability level α and
number of input variables d for an exponential transfer
function φ

αk

α d = 2 d = 4 d = 6 d = 8 d = 10

α = 10−2 1.9 6 13 24 37

α = 10−3 2.3 10 28 65 126

α = 10−4 2.7 14 51 145 340

α = 10−5 2.9 18 80 270 710

α = 10−6 3.2 25 121 430 1460

gested to study previously the particular transfer function
under investigation, trying to understand its degree of non
linearity in the neighbourhood of the optimal condition
of the first ellipsoid, and then enter the look-up tables to
have an approximate estimation of the ratio αk

α . For ex-
ample, let us suppose that the transfer function of interest
has an exponential behavior with 10 uncertain input vari-
ables and that the sought probability is α = 10−5. Tab.1
gives that, at convergence, αk

α should be approximately
710 which implies through eq.23 thatNMISMC is around



2.7e5. Thus, it is on the order of O(105), which is 100
times faster than the CMC method.
For what concerns the optimization processes, the dis-
cussion is not so different with respect to the Single Step
algorithm [4]. The number of t.f.e. for a single optimiza-
tion process can be estimated asO(102). Hence, the total
number of t.f.e. required by the optimizer, labeled with
NMISOpt , after k iterations of the algorithm is kO(102).
Therefore, the total number of t.f.e. required by the Mul-
tistep Inputs’ Statistics method NMIS may be expresses
as sum of the two contributions: NMIS = NMISMC +
NMISOpt , that is:

NMIS >
αk

α

(
z1−β/2

)2
RE2 + kO(102) (24)

Considering the atmospheric dynamics of a re-entry vehi-
cle, the needed time for the single evaluation of the trans-
fer function φ is about one second in a standard desktop
computer. Let us assume to have for instance 10 uncer-
tain input variables and to be interested in a probability
of 10−5. Then, approximately the ratio αk

α is on the or-
der of 1000 within some tens of iterations. Therefore,
TTotMIS = O(106s) = O(days) which is comparable
with the other methods that can be found in the literature
(see for instance Haya in [8]) and 10 times faster than the
simple CMC.

4.4. Speed-up strategy

It should be clear that the MC contribution in eq.24 is to-
tally independent by the number of iterations necessary
for the convergence. Indeed, once N is fixed, the number
of samples between the first ellipsoid ε̃1

and last ellip-
soid ε̃k is established and it does not matter if they are
integrated all at once or step by step. At this stage of the
analysis, it is not available yet a method to speed up this
contribution of the computational time. If αk is much
larger than α, the Multistep may not be efficient when
compared with other methods in literature. It has been
noted that this is the case when the number of dimensions
is large. This problem is usually termed Curse of Di-
mensionality (CoD) [1] and can be found in several other
methods, especially in the reliability based. Neverthe-
less, the Multistep Inputs’ Statistics is still far from being
mature and a future development of the work may intro-
duce a more clever method, instead of the simple CMC,
to characterize the domain outside ε̃k.
The second contribution to the computational time in
eq.24 is given by NMISOpt . Differently with respect to
before, it is directly proportional to the number of itera-
tions, because at each step two optimization processes are
required. Using eq.16 to compute the successive ellip-
soid, the algorithm progresses with maximum step length
on the order of α. If the initial approximation is not accu-
rate, that is αk >> α, then too many steps are required
to converge to αk and it may happen that NMISOpt is
even larger than NMISMC strongly spoiling the perfor-
mances of the algorithm. The proposed solution to cope

with this problem consists in multiply the error in eq.16
by a suitable coefficient, which increases at the beginning
to accelerate the algorithm and reduces to one with the
error in order to slow down the algorithm when the con-
vergence is reached. For instance the following empirical
formulations have been proved to be efficient in several
situations:

αk+1 = αk + max

[
αk

α

(
ek

α

)p
, 1

]
ek (25)

or also

αk+1 = αk + max

(αk
α

)( ek
α

)p
, 1

 ek (26)

where the parameter p has to be chosen for the specific
case, but usually p = 1 or p = 2 gives good convergence
speed. The formulation in eq.25 is suggested for very
low probabilities (e.g. 10−5 or 10−6) whereas eq.26 is
efficient for relatively low probabilities as 10−2. The
analysis showed that using this empirical but efficient
approach usually no more than 30 iterations of the
algorithm are required, even with very unlucky problems
having αk >> α.

4.5. Algorithm for generic functions

The objective of this section is to extend the algorithm to
general transfer functions φ which do not enjoy any more
the property of monotonicity. φ can be characterized by
several local maxima and minima.
Since φ is not monotone, it is no more guaranteed that
the global maximum and minimum belong to the border
of the current ellipsoid ε̃k. They may be also inside it. If
this happens, it is necessary to decrease ε̃k such that it is
tangent to the furthest between the minimum and maxi-
mum with respect to the origin. In this way, the problem
is transformed as if φ was monotone and the algorithm
works exactly in the same manner. It reduces again and
again ε̃k such to get two thresholds, T̃ k1 and T̃ k2 , that indi-
viduate contours of φ including a volume corresponding
to the sought probability α.
This is true as long as another point inside ε̃k becomes
possibly the current global minimum/maximum. This
means that ε̃k is still too conservative and has to be
decreased to be tangent again to the new global mini-
mum/maximum to re-transform the problem in the mono-
tone one. This is repeated again and again until the con-
tours of φ associated to T̃ k1 and T̃ k2 include the required
probability α.
Note that to guarantee the correct convergence of the al-
gorithm, it is important to keep as tangent either the min-
imum or the maximum as function of their distance with
respect to the origin. The furthest between the two must
be selected. This because otherwise there is the risk from
the other side to exclude from ε̃k a volume including a



probability which could be higher than α and the error
becomes thus negative.
The generalization is computationally inexpensive and it
is performed as indicated in algorithm 4.2, intended to be
added just below line 14 of algorithm 4.1. Note, in par-

Algorithm 4.2: Add-on to algorithm 4.1 for the gen-
eralization of the Multistep Inputs’ Statistics method to
generic transfer functions

1 get input points corresponding to T̃ k1 and T̃ k2 : XT̃k1
and XT̃k2 ;

2 compute
3 ellipsoids ε̃T̃k1 and ε̃T̃k2 tangent to T̃ k1 and T̃ k2 ,

respectively, defined by the square radius t̃T̃k1
and t̃T̃k2 as:

t̃T̃k1
=
(

XT̃k1 − µ
)T

Σ−1
(

XT̃k1 − µ
)

t̃T̃k2
=
(

XT̃k2 − µ
)T

Σ−1
(

XT̃k2 − µ
)

4 update ε̃k as given by: t̃k = max
[
t̃T̃k1

, t̃T̃k2

]
;

ticular, that performing the steps in algorithm 4.2 when
φ is monotone does not have any effect. This is clearly
because if the transfer function is monotone, both T̃ k1 and
T̃ k2 belong already to the border of ε̃k and so algorithm
4.2 just returns the same ε̃k. Therefore, algorithm 4.1
plus algorithm 4.2 can be applied to a generic transfer
function whether or not it is monotone. This is extremely
useful because generally the characteristics of φ are not
known a priori.

5. APPLICATION TO THE ATV-GL SHALLOW
RE-ENTRY

The safety boxes geometry is approximated having a rect-
angular shape and it is usually described in terms of along
track and cross track dimensions, as shown in fig.3. The
Aimed Impact Point (AIP) is defined as a reference tar-
get for a virtual fragment with arbitrary mean character-
istics and is used to design the deorbitation manoeuvre
plan. The cross track range (C-range) is considered con-
stant for the case of ATV re-entry being much smaller
than the along track range. It is taken as a fixed devi-
ation of ±100 km (majoring value) with respect to the
ground track, independently from the probability level.
The along track range (A-range) is usually divided in up-
track range (U-range), if the fragment falls before the
AIP, and down-track range (D-range), if the fragment
falls after the AIP. They are computed as curvilinear inte-
grations along the ground track from the AIP to the pro-
jection of the impact point over the ground track. There-
fore, a generic impact point is described by the signed
along track distance with respect to the AIP, negative if
up-track and positive if down-track: this is the output
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Figure 3: Schematic representation of safety boxes ge-
ometry.

Y of the transfer function φ. Concerning the problem
of the controlled destructive atmospheric re-entry of a
spacecraft, the d-dimensional input vector X usually in-
cludes: initial conditions, manoeuvres performances, ve-
hicle characteristics, atmospheric parameters, fragmenta-
tion characteristics. All these variables have to be sta-
tistically characterized a priori. This characterization is
not univocal and has to be done case by case, usually us-
ing engineering judgement and physical considerations
as well as additional studies on the specific variable of
the problem. For the specific case of ATV, these infor-
mation have beed taken from external sources which are
the ESA Space Debris Mitigation Compliance Verifica-
tion Guidelines in [6] and the ATV-CC Flight Dynamics
work published in [12] for ATV Jules Verne (ATV-JV)
and in [9] for ATV Georges Lamaı̂tre (ATV-GL). In to-
tal, the input variables are 10: 4 normally distributed and
6 uniformly distributed. No correlation among variables
is considered. Finally, the suitable input-output formula-
tion to apply a statistical method for the computation of
the safety boxes is schematically illustrated in fig.4.

The convergence example of the Inputs’ Statistics
method here reported concerns the computation of the
Safety Re-entry Area (SRA), associated to the probabil-
ity α = 10−5 for the SEDIA ([9]) fragments #3 (short
fragment) and #2 (long fragment) for ATV-GL, whose
characteristics are collected in tab.2. Since 10 uncertain

Table 2: SEDIA fragments used in this work. From
ref.[9]

Fragment # Mass ∆VExpl Min β Max β

2 470 1 3952 5512

3 60 26 2 5

variables are considered, the Single Step Inputs’ Statis-
tics method does not give accurate results and they have
to be refined with the Multistep algorithm. The conver-
gence results are reported in the fig.5 and in fig.6.
It is really important to use the speed up strategies in-
troduced in sec.4.4 to keep a low number of iterations.
For SRA, eq.25 with p = 1 shows a good efficiency,
giving a convergence in less than 30 iterations. In ad-
dition, accordingly to eq.22, for a CL of 95% and a



Figure 4: Schematic illustration of the input-output formulation for the safety boxes computation.

Table 3: Summary of the results given by the Multistep Inputs’ Statistics method and compared with CMC and MCS+PoT.

Fragment # SRA dimension α RE CL N NMISMC NMISMC
N % Error w.r.t.

T̃ k2 − T̃ k1 MSC+PoT

2 2980 10−5 10% 95% 3.8e7 3.1e6 8% +1.17%

3 2605 10−5 10% 95% 3.8e7 2.3e6 6% +2.45%

relative error of 10%, the CMC method shall perform
the integration of 3.8e7 for SRA. For the same confi-
dence level and relative error, the Multistep algorithm
requires only 6%-8% of the samples required by CMC
method, that is NMISMC = 3.1e6 for fragment #2 and
NMISMC = 2.3e6 for fragment #3. The results in terms
of safety boxes dimensions (T̃ k2 − T̃ k1 ) are compared with
respect to those given by a MC simulation plus Peaks
over Threshold (MCS+PoT) method described in [12].
It is possible to observe a good matching of the results
with maximum discrepancy of 2.45% from the conserva-
tive direction. All the results are summarized in tab.3.
Superimposing the SRA of the single fragments accord-
ingly to the specific AIP, we get the overall safety box of
the entire spacecraft. The overall SRA is 4855 km long,
shown in fig.7.

6. CONCLUSION AND FUTURE WORK

The innovative method described in this work is interest-
ing thanks to its characteristics of conservatism, conver-
gence and speed. It has been named Inputs’ Statistics, be-
cause it was developed originally with the idea to inves-
tigate the inputs domain rather than the output domain of
the tranfer function in order to extrapolate precious and
fast information about the probability estimate without
the need to generate the cloud sampling.
In particular, the Single Step algorithm is always able to
provide a conservative result with practically negligible
computational time. Introducing some simplifications in
the identification of the failure domain, it exploits a de-
terministic optimization process to find a sub-optimal but
immediate solution of the problem. Under some hypoth-
esis, this result may be also within the target accuracy and

retained as a good solution of the problem. When it is not
the case, it can be considered as a preliminary, sizing and
inexpensive solution to be improved in subsequent phase.
Indeed, the Single Step is a biased algorithm. This bias
introduced in the probability estimate is in some cases too
large and the result has to be refined to be acceptable.
The Multistep algorithm achieves this objective finding a
compromise between the Single Step algorithm’s speed
and the sampling techniques’ accuracy. More specifi-
cally, it alternates optimization processes, used to locate
the current most probable failure point inside an ellip-
soidal domain, with MC simulations, necessary to char-
acterize the input domain outside the ellipsoid. The error
committed at each step is thus identified and subtracted
at the successive iteration to get a convergent process that
reduces to zero the probability bias.
This approach requires to sample only the least dense re-
gion of the input space with the consequent benefit from
the computational time point of view. Indeed, the total
computational budget can be divided into two contribu-
tions. Thanks to simple but effective speed up strate-
gies presented in this work, the contribution associated
to the optimization processes is small and generally neg-
ligible when compared with the contribution associated
to the MC simulations. As a consequence, it is possi-
ble to state that the Multistep algorithm is faster then the
CMC method with the same confidence level and relative
error. This is simply proved by construction and is valid
whenever the first contribution is negligible. In addition,
the established iterative process keeps the intrinsic char-
acteristic of approaching the optimal result from the con-
servative direction. This is extremely important when the
probability assessment concerns safety issues because an
error on the wrong side must be completely avoided. The
method gives also the possibility to the analyst to stop the
process when the desired tolerance is met both in terms
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Figure 5: SRA (α = 10−5) for fragment #2. Conver-
gence analysis with speed up in eq.25 with p = 1. Start-
ing with N = 3.8e7.

of probability or output interval size.
The main identified limitation of the Multistep algorithm
regards the Curse of Dimensionality (CoD): the conve-
nience of the method decreases with the increase of the
number of dimensions of the problem. The CoD is a
recurrent issue also in many reliability based algorithms
which cannot cope with surrogate models when the prob-
lem has more than ten or twelve dimensions. Neverthe-
less, the Inputs’ Statistics method is far from being ma-
ture and a large room for improvement still exists. This
is due to the fact that is uses the CMC method to char-
acterize the domain outside the ellipsoidal regions. The
CMC method is simple and intuitive but many other more
sophisticated techniques have been developed in the lit-
erature which exploit smart strategies to probe the failure
domain or reduce the MC variance. This is particularly
the case of Importance sampling and Stratified sampling.
Coupling one of these techniques with the Multistep algo-
rithm may strongly enhance its performances because on
one hand the domain is sampled in a much more efficient
way and on the other the domain to be sampled is still
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Figure 6: SRA (α = 10−5) for fragment #3. Conver-
gence analysis with speed up in eq.25 with p = 1. Start-
ing with N = 3.8e7.

the least dense. This possibility has not been thoroughly
investigated in this work and it is remanded to future de-
velopments.
In addition, several other open points have been be identi-
fied. It is extremely important to characterize the method
in terms of robustness and reliability with respect to rar-
ity. An estimator is said to be robust if its quality (i.e. the
gap with respect to the true value) is not significantly af-
fected when the required probability tends to zero. A re-
liable estimator is an estimator for which the confidence
interval coverage does not deteriorate when the required
probability tends to zero. Those two notions are different:
one focuses on the error itself, the other on the quality of
the error estimation. It is possible to state that a method
is robust if it enjoys the Bounded Relative Error (BRE)
property or, in a weaker condition, if it has the Logarith-
mic Efficiency (LE). Similarly, it is said that an estimator
is reliable if it enjoys the Bounded Normal Approxima-
tion (BNA) property. Indeed, the variance is often even
more sensitive to the rarity than the estimation of the
mean itself [7]. The Inputs’ Statistics method has been
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characterized in terms of relative error and confidence in-
terval. This was relatively straightforward because those
definitions directly come from those corresponding to the
CMC method. However, in this work no information on
how these characteristics behave when the required prob-
ability tends to zero is given. This is an essential point
that shall be accurately studied in a future development
of the work in order to make the method ready for a real
case application.
Another open question concerns the possibility to exploit
the information on the location of the input points corre-
sponding to the current local minimum/maximum inside
the ellipsoid to identify the existence of privileged input
directions. In this respect, what is the impact of such
privileged directions on the convergence speed and on the
bias correction of the Multistep algorithm? We are con-
fident that answering to this question may give a greater
insight into the method and enhance its performances.
Finally, it may worth to discuss briefly about other prob-
lems which may be object of application of the Inputs’
Statistics method. It is a statistical and numerical scheme
aiming at computing two thresholds T1 < 0 and T2 > 0
such that the probability P that the output is smaller
than T1 or larger than T2 is smaller or equal to an as-
signed value. This is the case of the computation of the
safety boxes, where the probability is fixed by the inter-
national space law to guarantee ground population safety
and the two thresholds are up-track and down-track dis-
tances defining the safety box. Therefore, it may be used
whenever it is required to analyse: the destructive con-
trolled re-entry of large structures, including in particular
the International Space Station (ISS) and the ISS visiting
vehicles at their End of Life (EoL); the destructive re-
entry of large uncooperative satellites orbiting LEO and
MEO as conclusive event of the Active Debris Removal
(ADR) technology (e.deorbit); the destructive controlled
re-entry of last stages of launchers; the uncontrolled at-
mospheric impact of small asteroids or space objects and
debris; the safety compliance verification in case of fail-
ure of controlled re-entry spacecraft which are designed
to withstand the atmospheric re-entry.

The method can be also specified to the case with a single
threshold T and the probability that the output exceeds it
is sought. Consider, for instance, the scenario of a space
station orbiting in cislunar space, which would undergo
numerous rendezvous and docking/undocking activities
because the arrival/departure of visiting vehicles, even in
unmanned scenarios, from/to Earth, Moon and whichever
location in space we can reasonably conceive as a target
of interest. The first safety constraint that the mission
analyst must assure is that, within a predetermined con-
fidence bound, no collision occurs between the visiting
vehicle and the space station in case of aborted manoeu-
vres and/or off-nominal situations. Initial state vector er-
rors, navigation errors, guidance errors, manoeuvres per-
formances are some of all the dispersions that affect the
problem of rendezvous with the station. The output of
the transfer function is the scalar minimum distance from
the target (i.e. the space station) within a prefixed inter-
val of time (usually 24 hours) of safe coasting trajectory
required for any planned burn along the rendezvous tra-
jectory.
The Inputs’ Statistics method may be applied also when
the problem is reversed: it is required to compute the
probability P such that the output is smaller or larger than
a given threshold T . This is in particular the case of the
estimation of the probability that a satellite and a space
debris collide. The input vector contains the components
of the satellite and debris measurements errors on their
position and velocity vectors and the output is the min-
imum distance between the two objects during a given
time span. It is required to estimate the probability P
that the distance is smaller than a conflict distance, corre-
sponding to the threshold T of the problem.
In a very different field, we are currently investigating
how the method could be use in financial analysis, where
Monte Carlo simulations are widely used to assess the
risk of future unexpected returns (typically negative re-
turn on investment) depending on financial and economic
factors which influence the stock markets.
Formalizing the Inputs’ Statistics method in the reversed
version of the problem and studying its performance and



convergence characteristics when applied on all these
other real case applications is another main open point
which surely deserves to be analysed in the future.
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