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ABSTRACT

Active debris removal mission concepts seek to directly
alleviate the growing on-orbit congestion as more sus-
tainable space mission practices are introduced. Further,
servicing missions may reduce the number of space as-
sets that become debris. The most challenging aspect of
active debris removal and servicing missions is the debris
capture, or mechanical interface, with the target object.
Observed targets range in tumble rates from fractions of
a degree per second to tens of degrees per second. Many
debris capture techniques, such as robotic manipulators,
require or benefit from low tumble rates and pose an in-
creased collision risk. Methods such as nets or harpoons
have traded the complexity of capturing a tumbling ob-
ject with the complexity of controlling a tethered pair of
orbital objects. Electrostatic detumble is a touchless ser-
vicer concept that amplifies the natural on-orbit charg-
ing of spacecraft to reduce the target’s tumble rate. This
work extends the electrostatic detumble approach to a
more generic spacecraft geometry. This work develops
the electrostatic detumble control law and demonstrates
the performance through numerical simulations of a box-
and-panel spacecraft analogue.

Keywords: Touchless detumble, active debris removal,
contactless, electrostatic actuation, satellite servicing,
formation flying.

1. INTRODUCTION

The large asset values of Geostationary orbit (GEO) satel-
lites and the significant demand for GEO orbit slots are
prime motivations for developing on-orbit servicing and
active debris removal (ADR) strategies for this region. In
a recent report, the collection of GEO satellites was in-
sured for over 13 Billion US dollars.11 Furthermore, the
small magnitude of clearing perturbations, such as atmo-
spheric drag in low-Earth orbits (LEO), leads to natural
decay times on the order of centuries. The strict satellite

Figure 1. GEO debris population as seen in the Earth-
fixed frame.1

end-of-life practices ensure that uncontrolled satellites
and objects are relocated; forestalling a disintegration of
currently viable orbits.1 However, without active debris
or defunct satellite removal strategies, it is predicted cur-
rently viable orbits will become too congested to be used
in the near future.1 The congestion in GEO, visible in
Figure 1, is growing where over 700 objects meter-sized
or larger are uncontrolled. The extreme scenario of this
trend is best captured by the Kessler Syndrome where
the on-orbit population is sufficiently dense that a sin-
gle conjunction event will trigger a domino effect disin-
tegration of orbit objects in similar orbits. In addition, re-
moving a few key debris objects could drastically reduce
the collision risks, reduce fuel expenditure for collision
avoidance, and extend the operational life for satellites
in the prized GEO belt.1 Active debris removal and on-
orbit servicing space mission concepts that require an ac-
tive servicing vehicle to approach and mechanically inter-
face with a defunct satellite or target object.12, 40 Estab-
lishing a mechanical interface provides the opportunity
for robotic interaction, such as refueling operations, and
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more-simple servicer control during the larger debris re-
moval and re-orbiting ∆V maneuvers. For example, the
Defense Advanced Research Projects Agency (DARPA)
Phoenix approach extends the value of on-orbit assets by
harvesting satellite components to re-build the target or
transfer to another spacecraft.25 A currently unavailable
yet required critical capability is the ability to efficiently
grapple large tumbling orbital objects. Electrostatic de-
tumble is a touchless method of reducing the tumble rate
of target object prior to any further proximity operations
or mechanical capture.

Electrostatic actuation of spacecraft has been explored
as early as the 1960s since developing both the under-
standing of charging dynamics and electrostatic control
for Earth-orbiting satellites.20, 3, 34, 38, 39, 26, 33 In addition,
electrostatic actuation with a passive object is being con-
sidered for both large GEO debris mitigation31, 24, 23, 15

as well as touchless asteroid spin control.22, 21 Specif-
ically, Reference10 shows that the Geosynchronous Or-
bit environment is a favorable candidate region where
space plasma conditions enable electrostatic interaction
across 10’s to 100’s of meters requiring only Watt-levels
of power. Electrostatic interaction performs best with
lower density and higher electron and ion temperatures
as seen in GEO compared to lower Earth orbits. The
electrostatic detumble mission concept, as shown in Fig-
ure 2, requires a servicing craft to modulate charge trans-
fer via an electron or ion gun such that a differential elec-
trostatic detumble torque is generated. Reference35 first
introduced how electrostatic charging can be controlled
to apply torques on a spinning debris object without re-
quiring physical contact as shown in Figure 2. Such elec-
trostatic actuation with a passive object has been used as
an Electrostatic Tractor (ET), and is further considered
for both large GEO debris removal31, 24, 23 and orbit cor-
rections or re-orbit target objects.16, 15
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Figure 2. Electrostatic actuation technology enabling di-
verse service mission profiles

Electrostatic actuation was first applied to reducing the
one-dimensional rotation of a cylindrical target using a
spherical servicer at a fixed relative position.35 The
electrostatic forces and torques were modeled using the
Multi-Sphere Method36 (MSM) and a Lyapunov control
was developed using an analytical approximation of the
torque. This approach was numerically validated through
simulation and a 1-dimensional rotation terrestrial exper-

iment.37 This concept was expanded to account for 3-
dimensional cylinder tumbles again relying on analytical
approximations of the MSM torque.7 The 3-dimensional
analysis demonstrated that a Lyapunov control approach
was able to account for deep-space and on-orbit detumble
performance prediction for nominal, tugging, and push-
ing servicer activity.4 Furthermore, optimization of the
servicer relative position increased the detumble control-
lability and decreased detumble time.5 Note in all pre-
vious 1-dimensional and 3-dimensional electrostatic de-
tumble studies, the target is assumed to be axisymmetric
and the charge center and mass center are coincident.

The focus of this work is to apply the electrostatic detum-
ble concept to more generic spacecraft geometries by re-
moving the charge center and axisymmetric assumptions.
Reference 17 demonstrated that an offset between the
mass center and charge center for the cylindrical target
produces significant variations in the electrostatic torque.
These variations are not well captured by the analyti-
cal expressions used in the detumbling Lyapunov control
developments to date rendering the previous approaches
insufficient for variations in mass center location. This
motivates a control approach that can account for non-
coincident mass and charge centers. In addition, recent
advances in attaining the MSM model for generic space-
craft geometries allows for study of geometries beyond
the previously used cylindrical, or axisymmetric, target.18

More generic spacecraft geometries are characterized by
three distinct principal inertias. A new electrostatic de-
tumble control is required that does not rely on the sym-
metry arguments and analytical torque approximations
used by the axisymmetric studies. Proposed is the use
of a Lyapunov optimal control that leverages the MSM
model to not make assumptions on the target geometry
nor require analytical torque expressions. Of interest is
how reduced the MSM model can be to reduce to compu-
tational effort of an on-board control implementation.

The recently launched GOES-R spacecraft provides a
suitable spacecraft geometry to inform a generic space-
craft analogue. The generic spacecraft considered in this
work is a box-and-panel spacecraft that concentrates most
of the satellite mass in a central cubic bus with a large
solar array connected to a top edge of the bus. This
manuscript introduces the Multi-Sphere Method (MSM)
used to model generic spacecraft geometries. Also de-
scribed are the Linearized Relative Orbit Elements that
are used for relative motion guidance and control. This
work develops a Lyapunov optimal detumble control us-
ing the MSM model of the spacecraft and demonstrates
the performance through numerical simulations.

2. ELECTROSTATIC MODELING

The electrostatic interaction between two craft is ac-
curately approximated for faster than real time control
and simulation applications by the The Multi-Sphere
Method (MSM). MSM represents the spacecraft electro-
static charging model as a collection of spherical conduc-



tors carefully dispersed through the body.36 Consider the
well-studied cylinder object shown in Figure 3 which is
electrostatically manipulated by the collection of electro-
static forces induced by the presence of a charged spher-
ical servicer spacecraft. The particular MSM configura-
tion is generated by matching the force, torque, and ca-
pacitance outputs36 or by electric field matching18 of the
commercial software package Maxwell for a variety of
attitudes and ranges.
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Figure 3. 3 sphere MSM cylinder and spherical space-
craft configuration.7

2.1. Forces and Torques from the Multi-Sphere
Method

The MSM model is used in faster-than-real-time simu-
lations and control developments where the sphere-to-
sphere electrostatic forces are determined by the charges
residing on each sphere shown in Figure 3. The time-
varying charges are computed from the prescribed elec-
tric potentials,φi , according to the self and mutual ca-
pacitance relationships in (1), where kc = 8.99 × 109

N·m2/C2 and qi is the charge of each sphere.32, 29

φi = kc
qi
Ri

+

m∑
j=1,j 6=i

kc
qj
ri,j

(1)

The term Ri denotes the radius of the ith conducting
sphere and ri,j denotes the vector between the ith and jth

conducting spheres. These relations can be collected in
matrix form where a, b, c are the cylinder spheres’ cen-
ters. 

φ1
φ2
...
φ2
φ2

 = kc[E]


q1
q2,1

...
q2,n−1
q2,n

 (2)

[E] =
1/R1 1/r1,1 1/r1,2 · · · 1/r1,n
1/r1,1 1/R2,1 1/l1,2 · · · 1/l2,n

...
...

. . .
...

1/rn−1,1 1/ln−1,1 · · · 1/R2,n−1 1/ln−1,n
1/rn,1 1/ln,1 · · · 1/ln,n−1 1/R2,n


︸ ︷︷ ︸

Elastance
(3)

The sphere charges, qi for a particular configuration, or
time step, are achieved by solving (2) with known elec-
trostatic potentials, φi. The forces and torques on the
cylinder are computed by inserting the resulting sphere
charges, qi, and separation to the target mass center, ri,
into the summations

F2 = kcq1

n∑
i=1

q2,i
r31,i

r1,i (4a)

L2 = kcq1

n∑
i=1

q2,i
r31,i

r1,i × ri (4b)

(4b) provides the full MSM torque expression. However,
the square matrix used to compute the charge has size
equivalent to the number of MSM spheres and introduces
a position-dependent coupling of the control potential φ
to the sphere charges qi. The numerical simulations use a
full MSM model where an analytic approximation of the
MSM torque was formerly utilized in the control devel-
opments.35, 4

2.2. Modeling the Generic Box and Panel Geometry

Consider a more generic spacecraft design with similar-
ities to the GOES-R Earth-observing satellite. Similar
to the cylindrical target case, the box-and-panel space-
craft is electrostatically manipulated by a spherical ser-
vicer spacecraft. The box-and-panel spacecraft geomet-
ric properties in Table 1 dictates a center-to-center sepa-
ration distance of 17.5 meters for the servicer to remain at
3-4 target craft radii. The box-and-panel spacecraft with

Table 1. Geometric parameters for box and panel detum-
ble system.

Parameter Value Description
r 17.5 m Servicer-target separation
s 3 m Bus/Panel Side Length
l 8.5 m Length of the Panel
h 0.2 m Thickness of Panel

two and three sphere MSM distributions is shown in Fig-
ure 4(a) and 4(b), respectively.18



(a) Three sphere (b) Two sphere

Figure 4. Distributions of MSM spheres for the box and
panel.

The box-and-panel uses 3000 kg for the dry mass of the
spacecraft which is an analogue for the GEOS-R space-
craft. The panel thickness selected by Reference 18 is
assumed to have the maximum solar panel density of 100
grams per cubic centimeter.14 The mass of the spacecraft
bus is computed from the dry mass less the solar panel
mass. The center of mass is computed relative to the cen-
ter of the cubic spacecraft bus where the z-axis is aligned
with the long axis of the panel, the x-axis is normal to
the top face of the solar panel, and the y-axis completes
a right-handed system. The most conservative electro-

Table 2. Mass parameters for box and panel detumble
system.

Description Value Units
Solar panel density 100 g/cm3

Mass of solar panel 510 kg
Mass of bus 1490 kg
Offset mass 1000 kg

Spacecraft CM [0, 0.238, 0.9775] m
Offset mass shift [1.5, 0.0, 0.0] m

Alt. Spacecraft CM [0.5, 0.238, 0.9775] m

static detumble performance demonstration occurs with a
maximum spacecraft inertia computed using the highest
density solar panel. Decreased solar panel density ill im-
prove detumble performance because an equivalent elec-
trostatic torque drives a greater reduction in the tumble
rate. This work explores the sensitivity to mass and in-
ertia by allowing a 1000 kilogram mass to assume differ-
ent static positions within the spacecraft bus. Using the
properties in Table 2, the computed inertia matrix for the
box-and-panel spacecraft with the offset mass centered in
the spacecraft bus is

IBaP =

[
21632.3 0 0

0 21183.5 −3407.57
0 −3407.57 4948.87

]
(5)

Allowing the spacecraft offset mass to reside at the posi-
tive x-axis edge of the bus shifts the center-of-mass along
the positive x-axis by 0.5 meters and drives the alterna-

tive spacecraft inertia to be

IBaP =

[
20132.3 357.0 1466.25
357.0 21183.5 −3407.57

1466.25 −3407.57 4948.87

]
(6)

Several MSM configurations of the box-and-panel space-
craft are considered. Of interest is the electrostatic de-
tumble sensitivity to MSM model complexity for generic
target objects. This research question is addressed by re-
ducing the complexity, and thereby fidelity, of the target
MSM model. Three configurations are selected: three-
sphere, two-sphere, and a single effective sphere.18 Ta-
ble 3 details the location of each sphere measured from
the spacecraft bus center.

Table 3. Center of mass location with respect to MSM
locations.

Sphere Radius, [m] Location
Rc 2.039490 [0, -0.008373, -0.166258]
Rs 1.323119 [0, 1.318888, 4.583897]
Rp 1.120085 [0, 1.554560, 8.971854]
Rc 2.202207 [0, 0.134982, 0.209640]
Rp 1.467764 [0, 1.596384, 8.182859]
Rc 3.021 [0, 0.626, 2.914]

3. MORE GENERAL DETUMBLE TARGET
CONSIDERATIONS

Several considerations are required for more generic ge-
ometries to avoid errors in torque modeling, such as in-
correct sign, which drive growth in the target tumble rate.
The center of mass location may not coincide with the
electrostatic charge center. Knowing the target mass cen-
ter offset is critical to modeling the electrostatic detumble
torque. Also of interest is the viability of the analytical
torque approximation approach for generic target geome-
tries which is employed for axisymmetric targets. These
considerations are central to formulating a generic geom-
etry electrostatic detumble control scheme.

3.1. Cylindrical Target Center of Mass Offsets

Consider the case where the center of mass is does not
coincide with the center of the geometry as has been
assumed for the cylinder target shown in Figure 3 to
this point.4 This reasonable scenario, exemplified by
an empty upper stage and mass concentrations around
the rocket nozzle bell, introduces the possibility that the
Multi-Sphere Model or analytical torque approximation
used for the particular target may have asymmetric torque
characteristics as a function of rotation rate. Reference 4
demonstrated how a g(Φ) = γ sin(2Φ) was sufficient for
correctly capturing torque sign and magnitude of the 3-
sphere model cylinder. Furthermore, the g(Φ) invoked



symmetry in the Lyapunov control proof to guarantee
detumble stability. In the presence of a mass offset, a
new g(Φ) is computed by empirically matching the out-
put torque of a 3-sphere model with mass offset to the
terms in Eq. (7).

f(θ) = a0+a1 cos(Φ)+b1 sin(Φ)+a2 cos(2Φ)+b2 sin(2Φ)
(7)

The resulting fit in Eq. (8) is for the 3-sphere cylinder
with a mass offset of x along the slender axis and projec-
tion angle Φ.

f(Φ) = (p1x) cos(Φ) + (p2x
2 + p3) sin(2Φ) (8)

The terms pi are specifically fit for a servicer spacecraft
effective sphere radius. This form agrees closely with the
Appropriate Fidelity Models (AFMs) derived by Refer-
ence 17. The AFMs derive an analytical approximation
of the torque using a “charge tensor” and parameteriza-
tion of the target center of mass location. The AFMs and
the empirical approach in Eq. (8) agree that the torque
representation throughout a single-axis revolution, θ, is
that in Figure 5 for a cylinder length of 3 meters. Clearly
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Figure 5. 3 sphere MSM cylinder torque variations for
mass center offsets.17

visible in Figure 5 is the torque changes sign at different
rotation angle values. This suggests that center-of-mass
offset uncertainty may drive the detumble controller to
inject momentum rather than reduce momentum for par-
ticular attitudes. This requires either strict a priori knowl-
edge or an estimation scheme to obtain the true mass cen-
ter to ensure constructive control. The presented analyt-
ical model in Eq. 8 is obtained by assuming an MSM
distribution. The AFM formulation also includes sev-
eral reducing assumptions to allow for a tractable form.17

Therefore, modeling torque analytically is not necessarily
an appealing choice for all target geometries. Required is
an alternative approach to obtaining the expected torque
for a commanded potential. Conveniently, the MSM dis-
tribution for a target maps the electrostatic potential to an
output torque.

3.2. Lyapunov Optimal Detumble Control for
Generic Geometries

The generic target detumble scheme employs an MSM
distribution to compute the expected torque rather than

an analytical approximation. The volume MSM distri-
bution is most attractive for this application as it re-
quires the fewest number of spheres to capture the elec-
trostatic force and torque behavior. The reduced number
of spheres translates to reduced computational load on a
flight software system. Consider the more generic target
Lyapuov function in Eq. (9) where ω is the body angular
velocity vector and I is the body-fixed inertia.

V =
1

2
ωT Iω (9)

Taking one time derivative of Eq. 9 and inserting Eu-
ler’s rotational equations of motion produces the result
in Eq. 10.

V̇ = ωTL (10)

The simplicity of the Lyapunov derivative in Eq. (10) is
made possible by neglecting the relative orbit motion thus
assuming that the relative tumble is equal to body angular
velocities. This is a reasonable assumption for significant
portions of the detumble mission as is seen for the on-
orbit detumble of the cylindrical target. To achieve Lya-
punov optimal control, the commanded servicer potential
assumes the value

φcmd = Cφ × {sign(φ) : ωTL(φ) ≤ 0}
where Cφ > 0

(11)

The control law in Eq. (11) is Lyapunov optimal and
guarantees, with perfect knowledge, that the servicer will
detumble the target. Setting the coefficient Cφ to φmax
provides a bang-bang type control. The leading coeffi-
cient may be scaled based on the angular velocity to em-
ulate the tangent saturation controller so long as the coef-
ficient is always non-zero positive.

The Lyapunov optimal control for generic geometries
does rely on the center-of-mass and inertia matrix proper-
ties. Although not as clear, the deep-space axisymmetric
control also assumes perfect knowledge of these parame-
ters. However, formulating the generic detumble control
law as Lyapunov optimal using the MSM distribution al-
lows for more clever inertia-free, or less mass-sensitive,
Lyapunov functions to be applied. The formulation in
Eq. (11) is a deep-space control law as it neglects the ef-
fect of relative motion on relative attitude rates. The fol-
lowing section applies this deep-space control law to on-
orbit simulations. Additional research opportunities ex-
ist in incorporating the relative motion into the detumble
Lyapunov function, however the return is minimal given
that a tumble rate on the order of the orbital mean mo-
tion is sufficiently low to enable other servicer interface
approaches.

3.3. Generic Target Detumble with Relative Orbit
Improvements

The Lyapunov optimal control is applied to two on-orbit
detumble numerical simulations to illustrate the effective-
ness of the approach and improvements achieved through
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Figure 6. Angular momentum and velocities with initial
conditions: ω = [−1.374, 0.5, 1.374]◦/sec, comparing
optimized (top row) and lead-follower (bottom row).

relative orbit design. The GOES-R analogue is used
as the generic target electrostatic detumble demonstra-
tor. Similar to the axisymmetric target detumble numeri-
cal simulations, two initial conditions sets are used to il-
lustrate the advantages of leader-follower and optimized
relative orbits for shallow and steep momentum cones.5
Choosing either the lead-follower or circularly-projected
relative orbit is based on the initial momentum, applying
to generic geometries as is done with axisymmetric tar-
gets.

The first example in Figure 6 is a moderate momentum
cone where the tumble about the body axes is given by
ω = [−1.374, 0.5, 1.374]◦/sec. This represents the
transition point where the momentum cone is between the
optimized shallow cone and the lead-follower steep cone.
Recall that the box-and-panel spacecraft body frame has
the z-axis aligned with the long axis of the panel, the x-
axis normal to the top face of the solar panel, and the
y-axis completing a right-handed system.

As can be seen in both the optimized relative trajectory
and the lead-follower trajectory in Figure 6 is a rapid
reduction of the angular velocity coupling between the
body-fixed axes. After the 120-hour mark where the an-
gular velocity of the first body axis is removed, the elec-
trostatic detumble control is much less effective in re-
moving angular momentum. Coupling between the body-
fixed axes is present when all body-axis angular velocities
are instantaneously non-zero. With the x-axis angular ve-
locity as zero following the 120-hour mark, the torques
perpendicular to the current angular momentum vector
do not couple into detumble torques. Instead, the damped
cyclic behavior that is exhibited in the post-coupling de-
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Figure 7. Rotational kinetic energy with initial condi-
tions: ω = [0.9, 1.7, − 0.6]◦/sec, comparing optimized
(top row) and lead-follower (bottom row).

tumble demonstrates that most of the control effort is
driving a re-orientation rather than reduction of the an-
gular momentum vector. The coupling benefit is more
dramatic the spherical servicer is only able to exert torque
along an axis perpendicular to the relative position vector
and perpendicular to the center of mass to MSM sphere
vector. The limited control authority is therefore best ap-
plied against a coupled tumble where a greater percent-
age of the actuation torque reduces angular momentum.
Comparison of the two relative orbits, Figure 6, and the
change in rotational kinetic energy, Figure 7, reveals that
there is no distinct advantage between these two options.

The angular velocity continues to reduce in Figures 6(a)
and 6(c) as expected with the continuous Lyapunov op-
timal control. The dramatic change after the angular ve-
locity coupling is eliminated is more clearly seen in the
rotational kinetic energy time histories in Figure 7. The
clear transition point shows that the control is less effec-
tive without the coupling. Additionally, as the angular
velocity is further reduced, there are increasing sign er-
rors due to relative motion where injection of rotational
kinetic energy occurs. A second example in Figure 8 is
a flat momentum cone where the tumble about the body
axes is given by ω = [0.9, 1.7, − 0.6]◦/sec. Here, the
optimized relative orbit is much more suited to removing
angular momentum and thus does not experience much
of the cyclic behavior seen in Figure 6

The detumble benefits of coupled angular velocities are
apparent when comparing the simulated cases, Figure 6
and 8. As is the case with the ω1 coupling for the ax-
isymmetric target, the detumble while coupled is much
more effective. A point of interest with the more generic
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Figure 8. Angular momentum and velocities with initial
conditions: ω = [0.9, 1.7, − 0.6]◦/sec, comparing op-
timized (top row) and lead-follower (bottom row).

geometry is the angular velocity change following when
ω2 first achieves zero. The improved relative geometry
of the optimized orbit provides sufficient control author-
ity to rapidly collapse the angular velocity during the en-
tire primary detumble phase. However, the lead-follower
trajectory suffers from an attitude inversion that flips the
sign of ω3. However, both cases sufficiently reduce the
angular velocity. The rotational kinetic energy for the two
trajectories is compared in Figure 9.

The two simulated cases provide insight into implement-
ing on-orbit electrostatic detumble of the more generic
box-and-panel spacecraft. The simulated cases clearly
demonstrate the value of angular velocity coupling for
electrostatic detumble. As is the case with the axisym-
metric target, the best performing relative orbit is selected
based on the momentum cone angle.

3.4. Minimum Multi-Sphere Model Distributions
for Control

A well tuned Multi-Sphere Method target model effec-
tively predicts control forces and torques on the target.
In the interest of reducing control computational effort,
this work explores reducing the target sphere distribution
target models. Prior work in Reference 9 shows that a re-
duced 2-sphere cylinder target appropriately captures the
force and torque magnitude and sign. This work extends
this concept to more generic spacecraft geometries by ad-
dressing whether a reduced number of spheres used in
the control formulation is sufficient for the control imple-
mentation in Eq. (11). The numerical simulation retains
the full MSM model for propagating the dynamics and
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Figure 9. Rotational kinetic energy with initial condi-
tions: ω = [0.9, 1.7, − 0.6]◦/sec, comparing optimized
(top row) and lead-follower (bottom row).

the output control and detumble performance are com-
pared to the results presented in Figure 8.

The box-and-panel spacecraft provides an excellent case
study because it is not axisymmetric and the center of
mass and center of geometry are not coincident. The fol-
lowing simulations initialize the box-and-panel tumbling
with angular velocities of ω = [0.9, 1.7, − 0.6]◦/sec
and the optimized servicer LROE trajectory. This analy-
sis seeks to address the limitations on reducing the num-
ber of spheres in the control formulation. Two additional
box-and-panel MSM distributions are considered: the 2-
sphere and the single sphere, or effective sphere. The
center-of-mass and MSM distributions are tabulated in
Table 3 where the z-axis aligned with the long axis of
the panel, the x-axis normal to the top face of the solar
panel, and the y-axis completing a right-handed system.
Table 3 highlights some key aspects of each distribution.
Inspection of the center-of-mass relative to the sphere dis-
tributions reveals that the 3-sphere and 2-sphere distribu-
tions have spheres on either side of the mass center. This
is not the case with the single sphere distribution that has
only one sphere on the panel-side of the mass center. The
effects of these distributions are evident in the following
simulations. Consider first a comparison between the 3-
sphere and 2-sphere box-and-panel control formulation
where the truth MSM model is 3-spheres. The resulting
electrostatic detumble angular velocities and angular mo-
mentum reductions are shown in Figure 10.

The time histories in Figure 10 do not display significant
differences in detumble performance during the primary
detumble phase. To more clearly highlight the differences
between these two control formulations, presented in Fig-
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Figure 10. Angular momentum and velocities with initial
conditions: ω = [0.9, 1.7, −0.6]◦/sec, comparing both
three sphere (top row) and two sphere (bottom row).

R
ot

at
io

n
al

K
E

[k
g
∗m

2
/s

2
]

Time [Hours]

0 100 200 300
10−2

10−1

100

101

102

(a) Rotational Kinetic Energy,
Optimal

S
ig

n
of

∆
R

ot
at

io
n
al

K
E

Time [Hours]

0 100 200 300

−1

−0.5

0

0.5

1

(b) Change in Rot. Kin. Energy,
Optimal

R
ot

at
io

n
al

K
E

[k
g
∗m

2
/s

2
]

Time [Hours]

0 100 200 300
10−2

10−1

100

101

102

(c) Rotational Kinetic Energy,
Lead-Follower

S
ig

n
of

∆
R

ot
at

io
n
al

K
E

Time [Hours]

0 100 200 300

−1

−0.5

0

0.5

1

(d) Change in Rot. Kin. Energy,
Lead-Follower

Figure 11. Rotational kinetic energy with initial condi-
tions: ω = [0.9, 1.7, − 0.6]◦/sec, comparing 3-sphere
(top row) and 2-sphere (bottom row) targets.

ure 11 are the semi-logarithmic rotational kinetic energy
time histories paired with the sign of the change in rota-
tional kinetic energy from the previous time step.

The immediately noticeable difference between the two
formulations is the continual detumble of the 3-sphere
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Figure 12. Angular momentum and velocities with ini-
tial conditions: ω = [0.9, 1.7, − 0.6]◦/sec, one sphere
target.
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Figure 13. Rotational kinetic energy with initial condi-
tions: ω = [0.9, 1.7, − 0.6]◦/sec, one sphere target.

distribution. Both the 3-sphere and 2-sphere models are
plagued by neglecting the relative orbit contribution to
relative attitude rate; however, the 3-sphere model has
the same truth and control formulation and is therefore
able to more accurately capture the torque. This reason-
able agreement between the 3-sphere and 2-sphere con-
trol formulations motivates further reduction to a single,
or effective, sphere model. The detumble results of the
single sphere control implementation are shown in Fig-
ure 12.

The angular momentum behavior in Figure 12(b) appears
to be cyclic in nature where the electrostatic actuation is
merely precessing the inertial angular momentum vector
rather than imparting any significant increase or decrease
in magnitude. The single sphere case does not properly
capture the simple switching because it is biased to one
side of the center of mass. That is, the control predicts the
incorrect torque direction for particular attitudes. This is
further supported by the continual insertion and extrac-
tion of rotational kinetic energy: Figure 13. Clearly in
Figure 13(b), the kinetic energy contribution is depen-
dent on the particular attitude as the target rotates and
thus switches signs on the order of half a rotation period.

These results suggest that a suitable MSM model used for
control torque evaluations must have at least on sphere
on opposing sides of the center of mass (center of ro-
tation) for each axis with an offset dictating that two is
the minimum number of spheres for any detumble con-
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Figure 14. Rotational kinetic energy with initial condi-
tions ω = [0.9, 1.7, − 0.6]◦/sec when the offset mass is
moved along the positive x-axis.

trol MSM formulation. Inspection of the 2-sphere box-
and-panel distribution reveals that the spheres straddle
the mass center in both the y and z axes. This suggests
that the 2-sphere, and even 3-sphere,36 cylinder model
in Reference 9 where the spheres are along the slender
axis would only be valid for mass center offsets along the
slender axis and no other axis. Therefore, a valid control
MSM model requires a sphere pair to straddle the mass
center for every axis where a mass offset exists.

3.5. Additional Investigation of Mass Offset for
MSM Distributions

The assertion that the mass center must be bounded by
electrostatic spheres is further investigated using the 3-
sphere box-and-panel distribution. Recall that in Ta-
ble 2 that an offset mass of 1000 kg could be moved
to an offset location of [1.5, 0.0, 0.0] meters from
the bus center yielding a new mass center location of
[0.5, 0.238, 0.9775] meters. The current 3-sphere distri-
bution only places spheres in the y-z geometrical symme-
try plane and therefore does not bound the new mass cen-
ter location. The detumble results of the box-and-panel
with a mass center offset are shown in Figure 14.

The addition of mass offset along the body x-axis does
develop into a fully populated inertia matrix. However,
the x-axis is the intermediate axis of inertia and the x and
y axes have inertias 5 times that of the z-axis where the
spheres are located in the y4-z plane of the spacecraft.
The coupling present from an x mass offset provides in-
correct torque sign about this axis because the spheres

do not bound the mass center. Current results suggest
that the elongated sphere distribution used for the box-
and-panel spacecraft does not amplify the errors in an x
offset center-of-mass location. The torque does have the
incorrect sign about either the y or zaxes with an x axis
mass offset, however the dominant torque is about the x
and z axes recalling z has the smallest inertia. The pre-
sented box-and-panel geometry and admissible offsets in
the body x-axis does not clearly challenge nor support the
assertion that spheres must bound the mass center.

Consistent with previous analysis, the body axis rotation
rate coupling introduced by a a full inertia matrix pro-
duces more complete detumble. Comparison of Figure ??
to Figure 9(a) shows that the mass offset contribution en-
ables half an order of magnitude more complete detum-
ble. This is in part due to the fixed relative orbit of the
servicer. The body axis coupling supplants some degra-
dation in controllability for reduced tumble rates. The
primary detumble phase for the mass offset and other ex-
amples are made more complete if the servicer reconfig-
ures the relative orbit throughout the detumble or at key
opportunities. However, the full body axis coupling may
render relative orbit reconfiguration less necessary.

4. CONCLUSIONS

Numerical simulations demonstrate that a Lyapunov opti-
mal control approach is viable for generic target geome-
tries. The most effective detumble control for a spher-
ical servicer is present when angular velocity coupling
is present on the target craft. Also of importance is the
demonstration that the Multi-Sphere model of the target
craft does not need to be the highest-fidelity model to ac-
curately control the commanded servicer potential. The
requirement that sphere pairs straddle the center-of-mass
on any mass offset axis remains the only known limita-
tion on a reduced MSM distribution. This supports that
the on-board system may be able to use small-number
Multi-Sphere models in control formulations.

This work further investigates the axisymmetric cylinder
electrostatic detumble performance with a time-varying
relative position controlled by the developed Linearized
Relative Orbit Elements (LROEs) formulation. Given
the optimization sweep over the angular momentum cone
space, the lead-follower is used for any formation that
has an angular momentum cone angle less than about
30-40 degrees where the optimized LROE state is used
otherwise. As shown by the numerical simulations, the
use of relative motion enables near-complete detumble of
2◦/sec target tumble in as little as 5 operation days. The
lead-follower relative orbit provides sufficient detumble
performance for limited relative orbit complexity where
the optimized relative orbit provides a reduction of days
in detumble operation time for some cases. The on-orbit
relative motion optimization is valid for any spacecraft
geometry and only requires knowledge of the initial, or
current, angular momentum vector.
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A. GUIDANCE AND CONTROL USING LIN-
EARIZED RELATIVE ORBIT ELEMENTS

Motivated are relative orbits that capitalize on the natu-
ral relative motion of orbiting formations to improve the
detumble performance. Considered by this study are de-
tumble targets in the Geostationary (GEO) orbit regime
which is a prime candidate for applying the Clohessy-
Wiltshire (CW) relative orbit equations.13 The relative
motion of the considered ROEs are derived in the Hill
frame defined in Figure 15. The Hill frame is defined by
H = {ôr, ôθ, ôh} where ôr is aligned with the reference
craft orbit radius, ôh is aligned with the reference craft
orbit angular momentum, and ôθ completes the orthonor-
mal reference frame. The deputy spacecraft motion is
described relative to a chief reference craft. The focus
of this work is the reduction of the relative orbit problem
to the Clohessy-Wiltshire (CW) equations that describe
the motion of the deputy about a circular reference or-
bit. While the CW equations provide a suitable relative
position description, the newly developed guidance and
control methodology using the CW integration constants
is utilized.6 A slight modification to the CW equations
removes the ambiguity when α and β are zero through
trigonometric expansion and largely preserves the inher-
ent insight. The modified non-singular CW equations are



x(t) = A1 cos(nt)−A2 sin(nt) + xoff (12a)

y(t) = −2A1 sin(nt)− 2A2 cos(nt)− 3

2
ntxoff + yoff

(12b)
z(t) = B1 cos(nt)−B2 sin(nt) (12c)

The state vector for Linearized Relative Orbit Element
(LROE) guidance is the collection of the CW equations’
integration constants not the Cartesian state. The LROE
form provides the relative motion geometry in the ab-
sence of perturbations where these parameters remain
constant. The nominally invariant nonsingular LROE
state vector XNS, defined as

X = [A1, A2, xoff, yoff, B1, B2] (13)

First derived in Reference,6 the dynamics of the LROE
state in the presence of perturbations can be obtained by
applying Lagrange Brackets to the non-singular LROE
equations. This approach is analogous to Lagrange’s
planetary equations in that the LROE set becomes oscu-
lating to match the perturbed relative orbit. The nonsin-
gular state vector in (13) evolves according to (14) where
ad is the disturbance acceleration in the Hill frame.6

Ẋ =
1

n


− sin(nt) −2 cos(nt) 0
− cos(nt) 2 sin(nt) 0

0 2 0
−2 3nt 0
0 0 − sin(nt)
0 0 − cos(nt)


︸ ︷︷ ︸

B(X,t)
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az

]

(14)

Given that the LROE state evolves from perturbation ac-
celerations, a Psuedo-Inverse relative motion controller is
applied to achieve the desired relative orbit by injecting a
control acceleration into (14). The LROE state error can
be defined as

∆oe = X −Xr (15a)

∆ȯe = Ẋ − Ẋr = [B](u− ur) (15b)

where the ()r denotes the reference trajectory. The time
rate of the LROE error measure also allows the reference
trajectory to be defined by a LROE rate. Shown in Refer-
ence,6 the Lyapunov asymptotically-stable feedback con-
trol law is

u = −([B]T [B])−1[B]T [K]∆oe (16)

The simple feedback form allows the implemented con-
trol to apply a corrective acceleration to maintain the de-
sired relative orbit in the presence of perturbations. Con-
sider the effect of the electrostatic force during proxim-
ity electrostatic interaction between the servicer as the
deputy object with the target cylinder at the origin of the
Hill coordinate frame. The attractive and repulsive forces
on the servicer will perturb the relative orbit of the ser-
vicer about the target object. The current study utilizes

the control form in (16) to maintain the desired relative
orbit in the presence of electrostatic forces. In addition,
the guidance control enables feed-forward of perturba-
tion accelerations. For example, the electrostatic force
acting on the servicer may be predicted using MSM and
fed forward to the controller as part of the corrective ma-
neuvering.

The gain developed for the LROE controller is set to pro-
vide a bounding box of 1% of the relative separation dis-
tance. The gain is scaled by the mean motion of the chief
orbit such that the relative motion leverages the natural
dynamics of formation flying.

[K] = (n · 104)× diag([1, 1, 30, 1, 1, 1]) (17)

The gain matrix utilized may not be optimal, however
sufficient performance is obtained. Future studies will
address the gain matrix and seek dynamical system lever-
age in precisely scaling the gain values.

The LROE orbit optimization approach leverages MAT-
LAB’s fmincon optimizer. While many optimization
toolboxes exist, fmincon provides the state bounds, sim-
plicity of implementation, and wealth of documentation
to provide a sufficient first analysis of the desired ap-
proach. The following optimization approach requires
a robustness addition because MATLAB’s fmincon op-
timizer does not guarantee a global minimum. The uti-
lized optimization cost function that minimizes both the
separation distance and minimizes the off-perpendicular
alignment of the relative position and momentum vector.
First considered is a cost function that utilizes just the
torque obtained for the particular relative position and at-
titudes about the angular momentum vector. However,
this approach introduces local minima because the cost
function relies on a sweep of attitudes and additional dis-
cretization assumptions. Therefore, a more general cost
function that does not require instantaneous attitude in-
formation is leveraged to help reduce the number of lo-
cal minima.5 The relative orbit elements are selected as
the optimization state variables because these elements
are directly sensed and controlled by the servicer space-
craft. Any optimization over the detumbling time and
fuel usage requires multi-day GEO simulations at small
time scales and thus large computational effort. How-
ever the detumbling time is directly proportional to the
relative orbit configuration and inversely proportional to
the separation distance. Thus, a cost function that max-
imizes the geometrical detumble torque opportunity and
minimizes the separation distance achieves reductions in
detumble time. The inclusion of relative position in the
cost function allows the optimizer to trade significant im-
provements in geometry for separation distance.5

J =

N∑
i=0

(−1000 ln[|ri| − r∗ + 1]

− 10 ln

[∣∣∣∣ ri ·Hi

‖ri‖‖Hi‖

∣∣∣∣+ 1

]
)

(18)

The cost in EQ. (18) is accumulated over a single dis-
cretized relative orbit with N time segments. This study



utilizes 50 uniform time segments. The relative position
and angular momentum are expressed in the Hill frame
where ri = r(ti) and Hi = H(ti) at time ti. The mini-
mum separation distance is prescribed by r∗. The relative
weights are selected to achieve the same order of magni-
tude contribution for both separation distance and angle
error. Both values are increased by an order of magnitude
to help the convergence characteristics of the fmincon op-
timizer. Only positive values of the LROE state are con-
sidered. This limits the relative orbit space to only the
positive combinations, however it captures the full space
in the cost function.
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