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ABSTRACT 

Motivated by the dramatic worsening and uncertainty of 

orbital debris situation, the present paper is focused on 

the structural integrity of the spacecraft pressurized 

modules/pressure vessels. The objective is to develop a 

methodology of numerical simulation of the spacecraft 

pressurized structure behaviour under hypervelocity 

impact, including simulation of the following processes: 

a) formation of the impact damage of the pressure wall; 

b) loading and failure of structure. The analysis was 

performed by the method of singular integral equations 

1. INTRODUCTION 

The series of incidents happened in last six years 

demonstrated that only one or two collisions can 

drastically change the orbital debris population. With 

space activity continuously running and expanding, the 

rate of collisions in space also increases, leading in turn 

to a new reality for the orbital debris environment where 

all functioning spacecraft are under higher risk than they 

were designed for. This is a particular concern for the 

case of both shield and pressurized wall perforation 

which presents a potential for the pressure wall failure 

in an abrupt fashion [1-4]. The answer to the question 

whether the spacecraft pressurized structure would 

XQGHUJR�³XQ]LSSLQJ´�GXH� WR� WKH� LPSDFW�RI�XQGHWHFWDEOH�

debris is crucial for the mission success or failure. 

Essentially, it quantifies not only the spacecraft 

survivability but on the first place the compliance with 

the applicable post mission disposal requirements.  

Nowadays, the pressurized modules and high pressure 

tanks of the most heavily shielded spacecrafts are able 

to withstand the impact of debris up to one centimeter in 

diameter. The orbital debris between 1 and 5-10 cm in 

size which is too small to be tracked but large enough to 

cause the shielded pressure wall perforation, poses the 

highest risk for the spacecraft mission. The 5 cm 

dimension represents the lowest border for the ground-

base instrumentation sensitivity currently available for 

the  objects tracking. 

Fig. 1 illustrates the survivability-driven design logic 

where it is assumed that impact of undetectable debris 

between 1 and 5-10 cm in size has occurred and the 

pressure wall is damaged. This design concept requires 

that when developing spacecraft, all attempts be made to 

prevent the accidental spacecraft breakups. The 

mitigation and protection measures are assessed for 

effectiveness through the fracture analysis (Fig. 1, 

module 5). In the event that a pressure wall is predicted 

WR� ³XQ]LS´�� WKH� VXUYLYDELOLW\� LPSURYHPHQWV� FDQ� EH�

achieved by adding more effective shielding or/and by 

varying the design parameters of the pressurized 

module. New protection measures will be evaluated by 

repeating the steps in the above design procedure (Fig. 

���XQWLO�WKH�³QR�UXSWXUH´�FRQGLWLRQV�ZLOO�EH�YHULILHG��7KH�

analysis of interaction of penetrative particles with 

equipment inside a spacecraft is out of scope of the 

current paper. 

This methodology is viewed as a key element in the 

survivability-driven spacecraft design procedure 

providing that under no circumstances will the 

³XQ]LSSLQJ´� RFFXU if the particle dimension does not 

exceed the specified value, e. g. 10 mm. Addressing this 

problem will not only improve the survivability of 

spacecraft itself but also will provide the mitigation 

effect since each satellite break-up causes not only the 

loss of space assets but the considerable addition to the 

orbital debris population. 

2. MODELING OF IMPACT DAMAGE 

Experimental studies have shown that the impact 

damage has the form of a hole surrounded by a zone of  

_____________________________________ 

Proc. ‘6th European Conference on Space Debris’ 

Darmstadt, Germany, 22–25 April 2013 (ESA SP-723, August 2013) 

 



 

Figure 1. Design procedure of spacecraft with enhanced survivability 

the crack-like defects (Fig. 2a, b, c). For the case of both 

shield and pressure wall perforation the impact damage 

varies from the petal hole (Fig. 2a) WR�WKH�³cookie-cutter 

hole´ (Fig. 2b). The perforation of the unshielded wall is 

accompanied by a zone of spall cracks adjacent to the 

impact hole as shown in Fig. 2c. For further analysis it 

suggested to model the cracked area around the 

penetrated hole by two radial cracks emanating from the  
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Figure 2. Modeling the impact holes: a) petal hole; b) ³cookie-cutter hole´� 

c) hole with adjacent spall cracks; d) model of impact hole 

rim of the hole perpendicularly to the applied load. The 

diameter of the model hole is equal to the diameter of 

the impact hole (Dhole), while the length of the fictitious 

radial cracks is bounded by a damage zone (Dcrack). In 

cylindrical pressurized structure these two radial cracks 

are set to be normal to the hoop stress, i.e. along the 

expected fracture path (Fig. 2d). 

3. MODELING OF FRACTURE 

3.1 Solution of Singular Integral Equation 

The problem of potential fracture and bursting of 

aerospace pressurized structures was extensively 

examined by the NASA Advanced Fracture Mechanics 

Group [1-3]. The fracture propagation analysis was 

conducted analytically using the linear elastic fracture 

mechanics approach and numerically employing the 

finite element method and non-linear fracture mechanics 

technique. Comparison to the experimental data showed 

that the linear elastic fracture mechanics methods are 

too conservative and non-linear fracture mechanics 

approach is required for a more realistic treatment of the 

problem [1]. 

We assumed that a single hole with two radial cracks is 

located in the infinite plate made of an isotropic elastic 

perfectly plastic material, the zones of plasticity are 

localized along the crack prolongations and the 

compressive stresses within the plastic zones Vpz are 

equal to the tensile yield limit Vy. The evolution of the 

stress field near the perforated hole can be evaluated 

explicitly using the Autodyn® code (Fig. 3). 

 

 

 

 

 

 

 

Fig. 3. Snapshot of the evolution of the stress field after 

the hole was instantly formed in the loaded plate 

The problem can be formulated in terms of a singular 

integral equation (SIE). The singular integral equation 

technique is a powerful alternative to the finite element 

method in the non-linear  
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Figure 4. 5-link crack (a, b) and &KHE\VKHY¶V�QRGHV on the crack face(c, d) 

analysis of crack propagation which provides very rapid 

convergence of the numerical results [5]. The solution 

of the singular integral equation (1) includes the 

following basic steps.  

Steps 1: The analysis starts with specifying the design 

and material characteristics of the pressure wall and 

determining the impact hole parameters. 

Step 2: The piecewise traction distribution is applied to 

the crack surface as it shown in Fig. 4a, b. It divides the 

contour into 5 portions (links) where each piece of the 

traction function is differentiable throughout each 

individual link. The traction-free link L0 corresponds to 

the hole, links L1 and L3 are radial cracks and links L2 

and L4 represent the plastic zones. The solution of the 

singular integral equation must satisfy the condition of 

single-valuedness of displacements for the crack 

contour. Also, the symmetry of the problem and link 

angular positions are taken into account. 

Step 3: Unlike the finite element method the method of 

singular integral equations is free of mesh generation 

and only nodes are needed. The &KHE\VKHY¶V�QRGHV with 

normalized coordinates [ and K changing from -1 to 

1are generated on each link of the contour (Fig. 4 c, d). 

The open circles indicate the points �1,.., �N on the crack 

faces where displacements are calculated. The closed 

circles correspond to the traction nodes �1�� �����N-1. The 

normalized coordinates [ and K change from -1 to 1. 

Step 4: An efficient approach to account for the jump 

discontinuities of traction applied to the crack faces was 

proposed by Savruk [5]. Following [5] the single SIE 

for the case of 5-link crack is replaced by the system of 

singular integral equations. Also, the symmetry of the 

problem and link angular positions are taken into 

account.  

Step 5: The numerical solution of the system of singular 

integral equations is obtained by the method of 

mechanical quadratures [5]. By applying the Gauss-

Chebyshev quadrature expressions the system of 

singular integral equations is transformed to the closed 

system of linear algebraic equations with 3N unknowns 

where N is number of the Chebyshev nodes.  

Step 6: Once a solution of such system of equations is 

obtained, the stress intensity factor (SIF) at the end of 

the plastic strip can be evaluated. 

Step 7: The unknown length of the plastic zones is 

determined from the condition that the stress intensity 

factor is equal to zero at the end of the plastic strip. The 

search is performed by golden section method.  

Step 8: Using the expansion in terms of Lagrange 

interpolation polynomials over the Chebyshev nodes the 

crack opening profile for the entire crack (Fig. 5) and 

the opening displacement (CTOD) specifically at the 

crack tip can be calculated. It allows calculating the 

crack tip opening angle as well. The developed 

numerical algorithm provides the convergence for 

calculating the CTOD value up to a high level of 

loading (Fig. 6). 

Step 9: The critical crack tip opening displacement is 

used as a fracture criterion. The problem to be solved 

involves the definition of the unknown plastic zones 

size and CTOD to determine if there is a case of simple 

perforation without crack growth from the impact hole 

or crack propagation and subsequently catastrophic 

rupture. 
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Fig. 5. Crack profile     Fig. 6. Convergence of CTOD calculation 

 

 

 

Fig. 7. Forces acting on stiffeners and skin 
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3.2 Effect of the stiffening elements 

The stiffening elements in the reinforced thin-walled 

pressurized structures can be extremely effective in 

reducing the CTOD/CTOA, resulting in the crack 

arrest. The case of impact damage with completely 

broken central stiffener (Fig. 7) is considered as most 

severe scenario. 

Owing to the presence of the crack, the load will be 

transferred from the pressure wall to the stiffener. 

Meanwhile the stiffener will exert the equivalent 

reaction forces on the pressure wall. For the analysis 

purpose the continuous load distribution is replaced by 

a set of the forces Q1, Q2, etc. (Fig. 7) corresponding to 

a series of discrete segments of the skin-stiffener 

interface. These forces act in opposite directions on the 

pressure wall and stiffener.  

The effect of such forces on the crack propagation 

behaviour is implemented by the displacement 

compatibility method outlined in [7, 8]. This method is 

based on the concept that displacements in the cracked 

panel should be equal to the corresponding 

displacements in the stiffeners. To determine the 

displacements in the pressure wall and stiffener at the 

centres of the discrete segments the stiffened structure 

is split up into its components (Fig. 7).  The problem 

can be reduced to the superposition of uniformly 

loaded cracked plate, a plate without a crack, loaded 

with forces Q1, Q2, etc and a cracked plate with traction 

on the crack faces [7, 8].  

 

 

 

 

 

 

 

 

 

 

 

 

Fig.8. Convergence of Q-force calculation 

The displacement at the i-th segment center (vi) in the 

pressure wall and stiffener (vi
s
) can be expressed as 

following 

�Ü L Ã #ÜÝ3ÝÝ@5 E $Ü5  (1) 

�Ü
æ L Ã #ÜÝ

æ 3ÝÝ@5 E $Üæ5  (2) 

where Aij, Aij
s
, Bi and Bi

s
 are influence coefficients; 

indices i and j refer to the points in only one quadrant 

of the pressure wall. The coefficients Aij and Aij
s
 

represent the displacements in the cracked shell and 

stiffener at the i-th point because of unit values of Qj, 

while Bi and Bi
s
 coefficients represent the equivalent 

displacements because of unit values of 1. The 

condition of the equal displacements (vi) and (vi
s
) gives 

the equation (3): 

Ã k#ÜÝ E #ÜÝæ o3ÝÝ@5 F :$Ü F $Üæ;ê L r   (i=1, 2,..)    (3) 

The influence coefficients Bi can be determined from 

the equation of displacement of the point (x,y) of the 

cracked sheet due to the uniaxial stresses 1 (Fig 7a) [9] 

by setting the stress 1 equal to unity: 
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where E is Young's modulus of elasticity; � is Poisson's 

ratio; a is the half-crack length.  

Here   é L ¥T6 E U6;����� é5 L ¥:T F =;6 E U6; 

é6 L ¥:T E =;6 E U6;    à L ������� @ ì

ë?Ô
A,           

�à5 L ������ @ ì

ë?Ô
A;        à6 L ������ @ ì

ë>Ô
A,    

The influence coefficients Bi
s
 are determined from the 

expression for the y-component of the stiffener 

displacement v=1�( by setting 1�equal to unity. 

The displacement for a cracked plate with 

symmetrically applied point forces (Fig. 7b, c) can be 

obtained from [Ref.] as following 
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where t is the pressure wall thickness; w is the stiffener 

width. The equation (5) will be used for calculation of 

the influence coefficients Aij by setting Q equal to unity 

applied at (x0, y0).  

Here 
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Setting the point force Q equal to unity, the influence 

coefficients Aij
s
 can be obtained from the equation (6): 
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Once, all influence coefficients are determined we 

obtain a closed system of algebraic equations from 

which the unknown forces Q1, Q2, can be calculated 

numerically. The Fig. 8 illustrates the convergence of 

the computational procedure.  

The obtained forces contribute additional traction to 

the piecewise traction distribution p(x) originally 

shown in Fig. 4b affecting the structural integrity of the 

reinforced structure in a positive way, and as such 

improving the failure control and overall survivability 

of the spacecraft. 

4. MODEL VALIDATION 

This section gives the numerical examples which 

illustrate the application of the method of singular 

integral equations for the structures with cracks or 

crack-like damages. 

The Fig. 9 illustrates the evolution of the crack tip 

opening displacement after an impact hole was 

suddenly introduced in the loaded plate made of 

aluminum alloy 2024. It is known that the ratio of the 

radial crack length (Lrad.cr.) to the hole diameter (Dhole) 

has a considerable effect on the critical stress. Fig. 10 

illustrates that the singular integral equations method 

allows obtaining the accurate result for any specific 

case of (Lrad.cr./Dhole)-ratio. The obtained results also 

illustrate the fact that for Lrad.cr./Dhole>0.25, the hole 

with two radial cracks can be considered as a straight 

crack. 

In order to verify above method and illustrate its 

application, numerical calculations were performed and 

compared with results of impact and tensile tests of the 

3-mm thickness specimens fabricated from alloy 2024. 

The computational analysis predicted residual strength 

to within 5% of the experimental data given in [4]. 

The validity of the present approach has been proved 

by comparing with the computational results obtained 

by the finite element method [1] to quantify the critical 

crack length in the cylindrical pressurized module 

experiencing 68.6 MPa hoop and 34.3 MPa 

longitudinal stresses respectively. The numerical 

analysis was performed for 2219-T87 aluminum alloy 

shell with the following parameters: 1u =430 MPa, 

1y=343 MPa, E ������ 03D�� � ������ ZDOO� WKLFNQHVV�

ts=3.17 mm, toughness at the crack initiation Kic= 68 

03D�P
1/2

 and toughness at the maximum load Kc max= 

���03D�P
1/2 

[1] 

The comparisons presented in Table 1 shows that the 

computational results obtained by the finite element 

and singular integral equations methods are in fair 

agreement.  

The numerical experiments on the reinforced habitable 

modules of the International Space Station showed the 

³XQ]LSSLQJ´�RI�WKH�SUHVVXUH�ZDOO�LV�XQOLNHO\� 

 

 

Fig. 9. Evolution of the crack tip opening displacement 
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Fig. 10. Critical stress for various (Lrad.cr./Dhole)-ratio 

Method 
Critical crack length, mm 

Crack initiation Crack unstable 

Elasto- <599 1041 

Present 590 1082 

Deviation,% N/A 3.4 

Table 1. Critical crack length (specimen: 2219-T87, 

ts=3.17 mm) 

5. CONCLUSIONS 

The present paper is focused on the engineering 

methodology which is viewed as a key element in the 

spacecraft design procedure providing that under no 

FLUFXPVWDQFHV�ZLOO� WKH�³XQ]LSSLQJ´�RFFXU� A model of 

crack propagation in impact-damaged pressurized 

aerospace structure is presented. The numerical 

solution is obtained by the method of mechanical 

quadratures. Comparisons of the calculated results with 

the test data and numerical results obtained by finite 

element method showed good agreement. Therefore, 

the suggested SIE-based approach is concluded to be 

effective way of assessing the fracture behavior of the 

impact damaged aerospace pressurized structures. 
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