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ABSTRACT

With the intense increas in gace debris, it is
necessy to efficiently tiack and cataloghe extensve
dense clustersf spacedebrs. As he main instrurent
for LEO space swveillance,grourd-based radr system
is wsudly li mited by its resdution while tracking small
space abris with high density. Thus, te obtained
measurerant information culd have been serbusly
missed which mekes the tradtional tracking method
inefficient. To addres his issue, weconceived the
concept of group tracking. Far group tracking, the
overall motional tendency of the gloup djects is
expected to be reealed, and the trajetories of
individual objecs are shnultaneowsly remnstucted
explicitly. According to model the interaction between
the group center and individual tragjecbries ushng the
MRF within Bayesian franswork, theobjects' number
and individud trajecbry can be estmated more
accurately. The MCMC-Padie algorithmwasutilized
for sdving the Bayesianintegal prdolem Finadly,
simulation was carriecbut to validate the efficiency of
the poposal method.

1 INTRUDUCTION

With the increasing anount of low eath orbit (LEO)
space objeck, epecially space debris, $pace
suveillance has bcome the fourdation for utilizing
spaceresoures and ®oiding the hreas of gace
debris. Most of the curret space surveillacnetworks
can only trakk and catabg individual space objéc
larger than 10 cm. However, objectslarger than 1cm
can seously danage or disale an operational
spacecrl. Spae ddris of anall size usudy emerges
in groups forming high-dense debris cloud [1].
Ground-basedradar systemis the main instrument for
LEO space surveillance [2]Unfortunately, thisrada
systen cannot alwaysmeet the requirment for
resoling the space debris cloud, which mekes t
difficult to track and catalogthe objects ridividually.
Instead of the tradtiona individual object trackng,
tracking multiple spacedebris in group is becaming a
potential demand and tendency. In addition, as a
importart application of space sweillance, cdlision
avoidance $ commonly basel on cakulating the
cdlision prokahility using the “buk” of the predtted
orbital covariance [3]. Group tradking describes the
“bulk” evdution of multiple closed orbital objects,
which justsatifiesthe ned. Groupspace debrigan be
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defined ashe hadly distingushabé objects that have
similar orbit parameters duringthe obsened period.
The undigpersed gacedebrs clouds teata by orbital
cdlision possess th tydcal group character. Tradkg
or catalogng smace debris in group can not ony
descrbe te oveall evolution, but also potentialy
improve the acuracyof individual tradks using prior
information regarding the group, which has piofound
significence n gpace situational aweness ad
cdlision avadarce.

Group trackng has sme differenceswith regect to
the tradtional multiple targets trackng. MHT [4] and
JPDA filtering [5] are he two classical ath effective

methods for tracking multi-targes. Thes mnethods
implement multi-targets trackng based on data
association. To alleviate the cpoiational
intractalility and track tke unknownnumber of objects,
Mabhler and Vo et al. [6][7][8][9] proposed aseiies of
recursive Bayesianfilters includng PHD, CPHD,
GMPHD, GMCPHD, which are the low-order

statistical momerts of the multi-targets pteror

density besedon the finite-set statistics (FISST). €h
PHD filter operateson the shgle state spceand awids

the canbinataial prodem that arises from data
assaiation. However, the PHDfilter doesnat corsider
target idetity. Furthernore, hese nethods siffer from

pefformance degadation when the environnment is

charactezed by higher cltter rate and low target
detection probalility [10]. Sametimes, trackg the

multi-targes  as ndegendent individuak hadly

improves he traking pefformance. @nseuently,

Khan [11] incorporatedthe Marlov randan field

(MRF) to model the interactils between multiple

targets. The proposed approach was implemented using

MCMC, and the efficiencywas verified by vision

based art tracking. However, the progress @ group
tracking was largely hinderd by the problers

resuting from sditting andmergng of groups. Panget
al. [12] developal a group structure tansition nodel
that candescribe the spitting and merging of groups
smarty, as well as té interaction models for closely

spacéd targes. They simultaneously tacKed the

problem of group stucture inference ard joint

detection and tacking for group targets within a
Bayesian franawork.

In this presen study, we have focusedon tracking the
overall group evolution aswell as ndividual objects’
trajectories. B analyzing the orhital mecharics o



space deris, we haveconstuctel the chaacteristics
paraneters for descibing the movenent and stucture
of groups. The goup objects ae tacked within the
Bayesian framework. By &blishing the interaction
model betveen the nominal group center and
individuak, we can not only obtain a nore robust
estimetion of objectnunber and improve the accuracy
of the estimated indivdual trajecory, but also depict
the ewlution of the groups in the caseof low object
detection probaliity.

The papeis organizedas bllows. Sedbn 2 describes
the kinetic nodel of spacalebris, be characteristics
paraneters of groups, group stucture nodel of the
existencestate, andhe Bayaiangroup trackng nodel
Sectim 3 bealks down the Bayesiantracking procedure
into sore detiled modules:the sate ranstion nodel
of spacedebris, the statéransition nodel of group
certer, the interaction model betweengroup cerer ard
individual trajectaies, andthe likelihood probahility
model of observation. In Secion 4, MCMC-Partcle
algorithm has been utilized to calclate the Bayesian
integal and fufill group tracking. Section5 presets
the simulation of asingle group tracking and analyzes
its performance, ad the @nclusionsare presentedhi
Secton 6.

2 BAYESIAN TRACKING MOD EL OF
GROUP SPACE DEBRIS

2.1 Kinetic model and observaton of group
space debris

Basedon the two-body problem, the individual orbit
can be fixed accordig to the treedimensional
position vector andvelocity vecta at a certai time.

First, let s define same parameters as flows: for the

. . . T
i th object, be motion state isX, =[r.v/, ] =

. . . T .
[ X, ii0Z00%, 0,02, | attimer, wherer,; andv,,
represeh the paition vector and \eocity vecta,
respectively. X, =[ X, ... X, T denotesthe state

of N, objects at time . During a short time interval,

the Keplerian trgectoy and the popagation
perturbation of the obgct’s orbit can ke appoximatdy
calcdated usingan eleaart trarsition matrix presered
in Eq 1. The tarsition procedure isnoninear anl has
no cbsedform soltion, and requires slving the
Kepler's equaiton by iterations [13]:

Xt,i = FX:—J.:‘ +0, (@]
where Q, is the pertubation of the notion model. The
details abait F can be faundin [13].

Furthernore, wecan deskbe the gioup evoltion as

3001, , 0
0 100l
characteistics at tine Q, , then:

follows. Let{ } repesen the group

3x3

Lr :®(Xr)’ Lt :I;‘/(szl)+QL (2)

whee @ is the furction that exracts tke group
characteistics from the multiple objects’ sates, 7, is
the predction function of the group daraceristics, and
Q, is the carespading predction eror. The goup

charactristics hare many different expresions such
as he awergye healing o flocks, and te “bulk” of
multiple dbjects. Althowh there is no real ahbital
center for noltiple closed spacedebris, it still has
nominal charateristics parmeter for descibing group
evolution.

Theobservation radel carbe expresed as:
Z,=H(X,)+0, 3

where Q, is the olsenation noise. Here, wesimplify

the sceario by ory considering the mis ard false
alam. Simultaneously, for dsplaying the tracking
procedure ntuitively ard analyzirg the performance
easily, we firs transfe the measuremants of radars
sucdh as range azimuth angle, and elevian angle
within the radr coadinate frane into the position
vector within the Earth centere inertial (ECI)
coadinake. The noke distribution is also simplified
into the Gaussian white nase. Thus, the function H

canbe written as tke matrix [1,, 0, ,], which shows
that the pasition vector is osened wherel s a

mxn

full 1 matrix with m columnsand »n rows,and O, , is
a ful 0 matrix with m colurmsand n rows.

2.2 Bayesian model ofgroup center

In this dudy, we have only considered the awerage
value of multiple debris’ states to epresemn the group
charactestics:

L=0(x)=—>Yx, @

The state ranstion procedure of group ceter canbe
expresse as:

L=F(L,)+0, =FeL 4+0, ®

In adlition, there are some farior connectiors
betwea the group catersand the individual objects
which should be exdored For exanple, the group
center Boud restrain e object number from
fluctuating rapidly, and keep the consistency ard
stahlity of the track. The group certer is nat ony
important for improving the tradking performance of



individualtrajedories,but also candescibethe gaerd
motion endency of the group spacedébris.

Furthernore, b reveal thechange in group structure
during the tacking procedure, let us ddine the

existerce state of mltiple dbjectse, = [e”,m e me]
where ¢, €{0,1} . The variale ¢, =1 and ¢, =0

represats the existence ad disappeeance ofi th
object in X, , repectively.

Accarding to the obsevation model we ca note that
the essece of goup trackng is to estmate the graip
charactestics pararster L, , the state existerc

variable e, , and the individual motion stte X, .
Bayesianmodel is one of the optimum filtering for
esitmation and tracking, which makes he maximum
use d prior information based on the pobahility
density d statesUnder the Bayesianframe, tle group
trackng is eqw to the calclated posteror density

p(L,.X, e |Z,) attime ¢ basel on he obsewations

Z, fromtime 1 to . By assiming a Markova state

trarsition, the stawlard Bayesian filtering predction
andupdate seps can begiven as:

p(Lt‘X/’el |Zl:z)
_p(Zlet’et’Lz)p(L | 1t 1) (6)
p(Zz |Zl:t—1)
(L, X, e 12y, )
L X ’ , 1 &
( e L, 1€ 1)dX,,1d€,,1dLl,1 M

(Lz v X el th—l)

FromEq.6 and Eq. 7, we can find that the calculation
of state tanstion density p(L,,X,.e |L_,, X, 1.e_;)
is the key problemfor estimating the posterior density.

3 BAYESIAN SOLUTION

For sdving the Bayesian &tking problem of graip
spaceadébris, we first @pandEq. 7 to:

(Lxeltl’tl' )

o p(Xoe 1Ly X, e o) (L Ly X, pe, Y (X, .€,.L,)
©)
where p(X,.e, |L_,, X, ,.¢_,) is theprediction nodel
of the objects’ states,p(L, |L,_,,X, e ;) is the

prediction model d the group center, w(X,.¢,,L,) is

the MRF nodel that describes the interactibetween
the goup center and individuals.

3.1 Dynamic prediction model of individuals
The arrent multiple objeds’ states ca be deived

from the preliction of previous individuds’ states
Here, we do nat take into accaunt the previous group
centers influence o individual$ states. Thus, the
prediction nodel of multiple obgcts’ states catbe
written as:

( e L, X, € ):

p( € |Xt—1'et—1):p(Xr | X, 1 ’et—l)p(et |ez71)

where p(e, |e._,) represats the preliction of the

existence stat which can alscbe regardel as a
transition of gnplified group stucture, and

p(X,1X, ,.e.e.,) is the state prediction of
individuals motion basedon the existace sate.

9)

3.1.1 Transition model of objects’ existence
states

In this formulation, X, is regrded as a ixed
dimensional quantityvith N, elements [12], achof
which is active or inactiveaccording ¢ its existene

varigble e, ;. Thisis a reasonable freeworkgiven that

practical sgtens hare mputational ad staage
limitations. Thus, the existea state transition odlel is:

NIT!BK
p(et | etfl) = Hp(et,i | e,,;u) (10)
i=1

where an enpirical valueis setfor the eistenceor
disappeanace probability of each olgct. The conaete
paraneters’ value shouldbe selected aarding b the
practical bakground However, from our expe&ience
we found thathe tracking result is not sensitive to the
paraneters’ value.

3.1.2 Transition model of objects’ motion
states

The transitionmodels ofobjects’ notion state are not
the sare with respectad the different conbinations &
e, ande_, . Let Y, denote theset of objects wit
e;=lande_,, =0, which represat theobject's birth.
In the sare way, let Y, denote theset of obgcts with
e, =0, which represents theobjedt’s disgppeaance,
and Y, denote he setof objects withe,, =1 and
e_,; =1, which representshat the objects needo be
updated Futhermore, N, , N, , and N, are the

corespondng obect nunberin theset, respectively.
P(X, | X 1e.e.,)=

) FACHEAS) ) PACH L

€Y, ieYy

p(zrl

Thedetails of he calculatio of Eq. 11 canbe fourd in
[12].



3.2 Prediction model ofgroup center

When the exstence state, ; and he nmotion state
X, , of the group objects ae obtainedthe stateof

group center can be predicted. The previous group
centerL, , is usel to descibe thegroup characeristics
and constrainthe individuals at the pevious time. This
information is involved inmultiple obgctsstates, ,

through inference and ieraction. Here, we directly
predict the curren group certer accoding to the
previous individuals’ states,ignoring the influenceof

L, Thus, we can ge

p(Lt |Lt—l’Xt71‘etfl) ~ P(L; |X17116171) .

The group center has aare reliable notion tendacy
and higherdetection probality thanthe individuals.
The predction of group centershould maintain the
consistency obrbit. At time -1, the probablity of
group eistence statee,_,=h is g(e_, =h) . The

different exisence statesof objects will lead to
different group structures. Thus, a plethoa of group
centers will exist. To pevent divergence of he
tracking resultthe groupstructure whose probabilitis
smeller than a thresholdP, is removed P, can be

chasen b have a snall value betwee 0 and 05; e.g in
this study, itsvalue is0.3:
0 if g(e,=h)<P,

7o) {q(er-l =h)

Subsequently, theprobability of group structureis
normalized as follows:

otherwise

- "(e,=h
e =h)=ila=t) (13)

Z q (etfl = h)
h=1
Let Y, bethe set of objects witke_,, =1, and N, be

the corespording object nunber. The group cerer is
set as the awrage wvaue of the objets doates

= 1

X, = v > X,,, . If the group hasno member,
Y, i€,

there is X, , = NaN . The trajectoy of group certer

can beprediced acording to the rean véue X, , at
time -1 as:

_ NaN if X, = NaN
p(Ll | Xf—l) =

_ 14
N(F-X,,,0,) otherwise (14)

where Q, is the orbital predition cvariance of the

group center. Té probabiliy distributon of the
predicted grougentercanbe ravritten as:

p(Lz |erl 'ezfllLtfl) = Q(erfl = h)p(l’; |)?;_1) (15)

3.3 Assciation probability between group
center and individuals

Both thegroup centerard theindividuals states ridect
the kinetic characteristicef the group space Hss.
Certainly, there are samnconnection and interaction
between hem Here, he association probability

v (X,.¢,L,) is usel to degribe therelationsip in the
form of MRF. When tte objeds’ motion date X, , the
existencestatee,, and the gioup certer L, have been

inferred attime ¢, the matching degee betveen the
predicted group cente and he aveage vdue of the
predicted irdividuals’states can besel to evaluate tle
association probability.

Let Y, be te set ofohjects thathavee,, =1, and Ny

be thecorresponding object nurmber. The mean vale

of the multiple objects’states isL, = =S z X, .lfno

T, ieY,
object is cordined, the value isZ, = NaN , and he

corresponding ass@tion probability is also setas

NaN . Otherwise, the assation probability between
the group ceter and the idividuals canbe calculated
with JPDAfiltering [14] asfollows:

l//(Xt’et’Lt) =

ZVQPJPDA ([’t [L,,Q,0, 1PrarPa ’/’i’)pJPDA (Q)
In Eq 16 Q denotes the validatio matrix of joint
association ent, O, is the observation avariance,

p,, indicates the probability offalse alarm p,

signifies the detection probability,and 1 is the
expecte nunber of falsealam in theobservation area.

(16)

According b the MRF nodel y (X,.¢,,L,) , which

achieves a pior information fusion betweenthe group
ard individuals, the overall terdency of the graup and
individuals trajecbries can be maintained with
consistery and robustress even in tre case oflow
detection probability andighly dense clsters.

3.4 The likelihood probability of observaton

The probability density of observation
p(Z,1X,.e,L) was calculatedusing he JPDA
algorithm As the group agter L, camot be directly
observedonly the positioninformation was assued
to be consisted in thebservationZ, . Let usdenote tre
position veodbr in X, as r, . The obsevation
probability density canbe obtained fromEq. 17:



p(Zz |Xt’et’Lt’Gr):p(Zx |rt’el)
= ZVQ/ Pippa (Z Ir,.e,,Q',0, 'p"/z: Py '/1') Poroa (1)

where the caldation procedur@nd pararaterssetting
in Eg. 17 is similar to Eq 16.
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4 CALCULATION OF BAYESIAN
TRACKING BASED ON MCMC-
PARTICLE ALGORITHM

MCMC algorthm [15] is an efficient tool for the

inference and integral girobability distribution during
a nallinear process.However, it usually has a serous

computationallyburden. For releasing e computation

resairces,we haveusal the improved MCMC-Particle

algorithm[12] to solve he Bayesian trackig problem

presetedin Section 3.

At the m th MCMC-Particle iteratin, the procedue is
absolutely sme as the detailin [12] excet that the
group ceter proposal sioud be done firstly in this
pape. Here, only the group center proposal is

introduced. Fistly, all the particles(X, , e ,,} at

t-1,p?
time r—1 shoud be clstered. Commanly, the paticles
will convergearoundthe real value after carryingut
MCMC iteration for cetain number of times. The
classic K-neans ajorithm [16] can easilyacconplish
the clustering. Afterdeletirg the clusténg sets of
particleswith minor proportdn (e.g. 5% the estirrated
states are labelledh& set ofparticles bednging to the

n thl
averae value of the paticles’ statesX,, =X

t=1n =1Y,,
taken as he state estition of the orresponding
object, whilee_,, =1. If there isno particle that
belong to then th dbject, we have ¢_,=0 .
Subsegently, we popose @& existence stat varidle
e_,=h with a probability ¢'(e,_, = /) at time ¢-1.

n=12,---,N

max

object isdenated asY,,. The

is

Let Y, represet the setof objects withe,_,, =1 basel

on the existence statec, , =4 . The goup cener is
proposel from the Gass distribution

*

L~ N()_(Fm ,QL). If the value of all the existnce

3

states is zerohen weset L, , = NaN .

We eeated MCMC-Particle iteration for a certain
nunmber of times an burnt-in partial o paticles. The
distribution of converging paticles can be
appoximately representa as the posteria density of
the group pace déris' states

5 SIMULATIONS AND PERFORMANCE
ANALYSIS

Let us congler the scené of four closel-space dbris
combined b a group. The maximum objed number is
set asN__ =4. The obital parameters of the four

max

spaceadebris atinitial time ardisted in Td. 1.

Table 1. Orbital parameters of space debris in the scenario

Semi-major Eccentricity Inclination(®) Right ascensioof Argument  of Eccentric
Axis (km) ascendingiodef) perigee(®) Anomaly(®)
Object 1 7500 0.01 1 0 0 0.4
Object 2 7500 0.01 1 0.4 0 0
Object 3 7501 0.01 1 0.4 0 0
Object 4 7501 0.01 1 0 0 04
Thetradking paraneters fa the simulation scenaro are presatedin Tab. 2.
Table 2.The tracking parameters for the simulation results
symbol value symbol  value
Observation tirainterva T ls Motion modelerror of objects O 501, . 0
| O 101, ,
Maximum numier of objects  x7 4 Prediction ~ covariame  of (@ 300 0
max P P 3x3
object’s stae
| 0 1001, ,
Observation cowariance 0, 1001, Predictioncovaiance ofgroup 0, (150 - 0
cener
0 501, ,
Probabiliy of fase darm of 5" 2e-005  Probabiliy of false alarm of 0.01
object s group ceter s
Probabiliy of detection for ) 0.65 Probabiliy of deedion for P, 0.98
one object group ceter
Expected obseed number of 3’ 2 Expectednumber offalse alarm 4 1

false alarm objects at eat
time step (Poisson
distribution)

of group certers at eachtime
step (Poisson digbution)




The four orbits propagate after30 second from the initial time in our scenarioThey form a steady group
initial time in our scenarioThey form a steady group in the traking area We obtained e observation at
in the tacking area. each oneseond. The real trajectorief space debris

The four orbits propagate after30 second from the ard the observatios are shown irig. 5.

—+— Object 1 ‘ + Observations of space objects‘

Object 2
—+—Object 3
Object 4

E 7425 £
% 7424 é
x 4 x
7423
-100
0 0 K
Y axis (km) 100 200 -2 Z axis (km) Y-axis(km) 200 -4 Z-axis(km)
@) (b)
Fig. 5. (a) Real trajectories of space debris, (b) The observations
We assmed that thereal value eists aound he The performance speriaity of Bayesian tacking has
obevatiors in the form of normal distribution Thus, been verified in [11][12] baseé on the MCMC
the track is infated byprgposing thepartides fromthe algorithm In the preset study, we pimarily analyzed
observations. At every time step 1000 MCMC the group certer s impact a the performance d group
iterations of bth the jointand individual poposalsare tracking.
performed. The initial 1000iterations are usedor . L .
burrvin, and2000MCMC outputs wee keptas particle We considered the simtations acording to the dove-

mentioned tracking parangters. The original state

approxination to theposteror probability distribution. particles wee distributedas $iown in Fig, 6,

e

Particle distribution of individuals
+ Particle distribution of group center

Particle distribution of individuals ‘

£ ATy g
B 7425 A - B 7425
S : S
X 7424 4 X 7424

2

0

0

100 . 10 Z-axis(km)
Y-axis(km) 200 -2 Z-axis(km) Y-axis(km) 200 -2
(a) (b)
Fig. 6. Distribution of original estimated state particles: (a) with the group center; (b) without the group center

Fig. 6(a) ard 6(b) shows thegroup traking result wit particles were clusteredsing the K-neans algorithm
the group cemr and the miti-objects trackingresult [16], and theoutlier clusters wereleleted. Accordig
without the group centerrespectively. Acording to to the labelsof particles, the aveage vdues of the
the gioup center tracking, not aly the groyp motion particles’ states were takeas the state @mation of
tendecy can be dtained but al the trgectories an the correponding objects. he estination results are
be reconstructed one explicitly using the prior shawvn in Fig. 7.

information d the group Subseuently, the state



+ Estimated trajectory of object 1
Estimated trajectory of object 2
+ Estimated trajectory of object 3
Estimated trajectory of object 4

+ Estimated trajectory of object 1

Estimated trajectory of object 2

+ Estimated trajectory of object 3

Estimated trajectory of object 4
[ | =

7427 7426

~ 7426 —

3 E 7425

< <

@ 7425 a

‘>}§ ‘>‘§ 7424

X 7424 4 X 4
7423 7423
-100 -100

0 0
10 10
Y-axis(km) 200 -2 Z-axis(km) VY-axis(km) 200 -2 Z-axis(km)
(a) (b)
Fig. 7. The tracking results of group space debris: (a) with the group center; (b) without the group center
The conparisonsfor the distribution of the estinated existencestateat each tire step ee $own in Fig. 8.
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S8 [1010] 0.6 c@[1010] 0.6
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Fig. 8. Distribution of estimated existence state for the group objects. (a) with the group center, (b) without the group
center
From the simulation results, we can seleat the group performence. The weragge number of deteted objects
tracking witi groupcenter can iprove the stability of and the RMSEof the etimated objects’ stées at each
individuals existence statesyhen conpared with that time step were statisticgltalculated, ashown in Fig.
without the gioup center. In this study, 30 Mont Carlo 9.
runs were arried out to analyze the traking
4 % 350
o —&— With group center : 4‘ :
@ G E 3001 s Without group center |~ Tt 7,{# S
T3l - 5 2504 - — ‘——_——-f_‘.—-r*--if———#:———‘-u—
=, S o g 5 v
8 @ g 200 - S5-o-d-a-aF"
B 36l - :'E 150 | | | | |
15} I | . o
2 | | | —=— With group center >
S, | 1 |rwithoutgrou center] € w0
o | | | | | =
5 | | | | | 5 % 70
1 I N SN NS SR N 52
N/
3 1 L L L L © 50
0 5 10 15 20 25 30 ° ,
Time step (s) Time step (s)
(@) (b)

Fig. 9: Tracking performance of group space debris based on 30 Mont Carlo runs: (a) Average number of detected
objects, (b) RMSE of the estimated objects’ states

Based m the Mont Carlo runs, it is sggeged that the tracking method isclose to the actuahumber thanthat
estimated nunber of oljects usiig our presented goup obtainal using the tralitional multiple objects trackig



method. The group trackihg method can efficiently
depresghe miss alarmandreducethe estination error
of the obgcts’states. Iraddtion, by tracking the group
center, he goup evolution can be &hibited clearly In
fact, in the case obl deecion probaliity, the group
tracking nethod ca greatly inprove theaccuracyof
the detecte nunber and stees of the olgcts nainly
because thgroup cater has a more consitent state
and higherdetection probality thanthe ndividuals.
Accordng to the mutual canstraint betweenthe group
center and indiduals, thegroup information improves
the acaracyof the individuds’ trajectories, while the
individuals tendencies ale assist in thenference and
adjustnent of the goug's evolution. In this study the
detectionprobability for graup centewasset as 0.98,
while the individual's detction probability wasonly
0.65. Thus, by incorporating the group center, the
tracking peformance could be certainly mproveddue
to the applicatiorf prior information ofthe gioup.

6 CONCLUSIONS

Group traging of gace debris is gotential and
foremost reguirenent in  the domain of gpace
surveillance. It has an partant significancen the
surveillance ospacedebris clouds.

In this study, we first proposed a corcept d group
tracking. Subsequently, the kinetic nodel of group
spacedebris was introduced\ccording to he notion
charactestics of spacedebris, the Bayesian group
tracking procedure witthegroup certer was peseted
The MCMC-Particle algoritim was erployed to solve
the intactabé Bayesian ritegral. Basd on these
procalures,we carried outhe simulation of tradking
multiple closely spaced obital objects. The results
verified the effediveness of ou presertation in the
case ofow detectionprobablility and high dense clutter.
When conpared with the traditional multi-objects
tracking method without group cener, our propcsed
method ehibited inproved corsistency ard acairacy
of individuals’ trajecbries, as well asderivation of the
oveall grougs ewlution.
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