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ABSTRACT 

With the intense increase in space debris, it is 
necessary to efficiently track and catalog the extensive 
dense clusters of space debris. As the main instrument 
for LEO space surveillance, ground-based radar system 
is usually li mited by its resolution while tracking small 
space debris with high density. Thus, the obtained 
measurement information could have been seriously 
missed, which makes the traditional tracking method 
inefficient. To address this issue, we conceived the 
concept of group tracking. For group tracking, the 
overall motional tendency of the group objects is 
expected to be revealed, and the trajectories of 
individual objects are simultaneously reconstructed 
explicitly. According to model the interaction between 
the group center and individual trajectories using the 
MRF within Bayesian framework, the objects' number 
and individual trajectory can be estimated more 
accurately. The MCMC-Particle algorithm was utilized 
for solving the Bayesian integral problem. Finally, 
simulation was carried out to validate the efficiency of 
the proposed method. 

1 INTRUDUCTION 

With the increasing amount of low earth orbit (LEO) 
space objects, especially space debris, space 
surveillance has become the foundation for utilizing 
space resources and avoiding the threats of space 
debris. Most of the current space surveillance networks 
can only track and catalog individual space object 
larger than 10 cm. However, objects larger than 1 cm 
can seriously damage or disable an operational 
spacecraft. Space debris of small size usually emerges 
in groups forming high-dense debris cloud [1]. 
Ground-based radar system is the main instrument for 
LEO space surveillance [2]. Unfortunately, this radar 
system cannot always meet the requirement for 
resolving the space debris cloud, which makes it 
difficu lt to track and catalog the objects individually. 
Instead of the traditional individual object tracking, 
tracking multiple space debris in group is becoming a 
potential demand and tendency. In addition, as an 
important application of space surveillance, collision 
avoidance is commonly based on calculating the 
collision probability using the “bulk”  of the predicted 
orbital covariance [3]. Group tracking describes the 
“bulk”  evolution of multiple closed orbital objects, 
which just satisfies the need. Group space debris can be 

defined as the hardly distinguishable objects that have 
similar orbit parameters during the observed period. 
The undispersed space debris clouds created by orbital 
collision possess the typical group character. Tracking 
or cataloging space debris in group can not only 
describe the overall evolution, but also potentially 
improve the accuracy of individual tracks using prior 
information regarding the group, which has profound 
significance in space situational awareness and 
collision avoidance. 

Group tracking has some differences with respect to 
the traditional multiple targets tracking. MHT [4] and 
JPDA filtering [5] are the two classical and effective 
methods for tracking multi -targets. These methods 
implement multi-targets tracking based on data 
association. To alleviate the computational 
intractability and track the unknown number of objects, 
Mahler and Vo et al. [6][7][8][9] proposed a series of 
recursive Bayesian filters including PHD, CPHD, 
GMPHD, GMCPHD, which are the low-order 
statistical moments of the multi-targets posterior 
density based on the finite-set statistics (FISST). The 
PHD filter operates on the single state space and avoids 
the combinatorial problem that arises from data 
association. However, the PHD filter does not consider 
target identity. Furthermore, these methods suffer from 
performance degradation when the environment is 
characterized by higher clutter rate and low target 
detection probability [1 0]. Sometimes, tracking the 
multi -targets as independent individuals hardly 
improves the tracking performance. Consequently, 
Khan [11] incorporated the Markov random field 
(MRF) to model the interactions between multiple 
targets. The proposed approach was implemented using 
MCMC, and the efficiency was verified by vision-
based ant tracking. However, the progress of group 
tracking was largely hindered by the problems 
resulting from splitting and merging of groups. Pang et 
al. [12] developed a group structure transition model 
that can describe the splitting and merging of groups 
smartly, as well as the interaction models for closely 
spaced targets. They simultaneously tackled the 
problem of group structure inference and joint 
detection and tracking for group targets within a 
Bayesian framework.  

In this present study, we have focused on tracking the 
overall group evolution as well  as individual objects’ 
trajectories. By analyzing the orbital mechanics of 
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space debris, we have constructed the characteristics 
parameters for describing the movement and structure 
of groups. The group objects are tracked within the 
Bayesian framework. By establishing the interaction 
model between the nominal group center and 
individuals, we can not only obtain a more robust 
estimation of object number and improve the accuracy 
of the estimated individual trajectory, but also depict 
the evolution of the groups in the case of low object 
detection probability.  

The paper is organized as follows. Section 2 describes 
the kinetic model of space debris, the characteristics 
parameters of groups, group structure model of the 
existence state, and the Bayesian group tracking model. 
Section 3 breaks down the Bayesian tracking procedure 
into some detailed modules: the state transition model 
of space debris, the state transition model of group 
center, the interaction model between group center and 
individual trajectories, and the likelihood probability 
model of observation. In Section 4, MCMC-Particle 
algorithm has been utilized to calculate the Bayesian 
integral and fulfill group tracking. Section 5 presents 
the simulation of a single group tracking and analyzes 
its performance, and the conclusions are presented in 
Section 6. 

2 BAY ESIAN TRACKING MOD EL OF 
GROUP SPACE DEBRI S 

2.1 Kinet ic model and observation of gr oup 
space debris 

Based on the two-body problem, the individual orbit 
can be fixed according to the three-dimensional 
position vector and velocity vector at a certain time. 
First, let us define some parameters as follows: for the 

L th object, the motion state is , , ,,
7

7 7
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represent the position vector and velocity vector, 

respectively. 
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7
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; ;;  ª º¬ ¼!  denotes the state 

of max1  objects at time W . During a short time interval, 

the Keplerian trajectory and the propagation 
perturbation of the object’s orbit can be approximately 
calculated using an elegant transition matrix presented 
in Eq. 1. The transition procedure is nonlinear and has 
no closed-form solution, and requires solving the 
Kepler's equation by iterations [13]: 

 , 1,W L W L X; ); 4� �  (1) 

where X
4  is the perturbation of the motion model. The 

details about )  can be found in [13]. 

Furthermore, we can describe the group evolution as 

follows. Let 3 3
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 represent the group 

characteristics at time /4 , then: 

 � �W W/ ; 4 , � �1W O W // ) / 4� �  (2) 

where 4  is the function that extracts the group 
characteristics from the multiple objects’ states, O

)  is 

the prediction function of the group characteristics, and 

/
4  is the corresponding prediction error. The group 

characteristics have many different expressions, such 
as the average heading of flocks, and the “bulk” of 
multiple objects. Although there is no real orbital 
center for multiple closed space debris, it still has 
nominal characteristics parameter for describing group 
evolution. 

The observation model can be expressed as: 

 � �W W= + ; 4Z �  (3) 

where 4Z  is the observation noise. Here, we simplify 

the scenario by only considering the miss and false 
alarm. Simultaneously, for displaying the tracking 
procedure intuitively and analyzing the performance 
easily, we first transfer the measurements of radars, 
such as range, azimuth angle, and elevation angle 
within the radar coordinate frame into the position 
vector within the Earth centered inertial (ECI) 
coordinate. The noise distribution is also simpli fied 
into the Gaussian white noise. Thus, the function +  
can be written as the matrix > @1 3 1 3u u1 0 , which shows 

that the position vector is observed, where P Qu1  is a 

full 1 matrix with P  columns and Q  rows, and P Qu0  is 

a full 0 matrix with P  columns and Q  rows. 

2.2 Bayesian model of group center 

In this study, we have only considered the average 
value of multiple debris’ states to represent the group 
characteristics: 

 � �
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,
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The state transition procedure of group center can be 
expressed as: 

 � �1 1W O W / W // ) / 4 ) / 4� � �  �<  (5) 

In addition, there are some interior connections 
between the group centers and the individual objects 
which should be explored. For example, the group 
center should restrain the object number from 
fluctuating rapidly, and keep the consistency and 
stability of the tracks. The group center is not only 
important for improving the tracking performance of 



individual trajectories, but also can describe the general 
motion tendency of the group space debris. 

Furthermore, to reveal the change in group structure 
during the tracking procedure, let us define the 

existence state of multiple objects 
max, ,, ,W L W 1W

H HH  ª º¬ ¼" , 

where ^ `, 0,1W LH � . The variable , 1W LH   and , 0W LH   

represents the existence and disappearance of L th 
object in W

; , respectively.  

According to the observation model, we can note that 
the essence of group tracking is to estimate the group 
characteristics parameter W

/ , the state existence 

variable W
H , and the individual motion state W

; . 

Bayesian model is one of the optimum filtering for 
estimation and tracking, which makes the maximum 
use of prior information based on the probability 
density of states. Under the Bayesian frame, the group 
tracking is equal to the calculated posterior density 
� �1:, , |W W W WS / ; H =  at time W  based on the observations 

1:W=  from time 1 to W . By assuming a Markova state 

transition, the standard Bayesian filtering prediction 
and update steps can be given as: 
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From Eq. 6 and Eq. 7, we can find that the calculation 
of state transition density � �1 1 1, , | , ,W W W W W WS / ; H / ; H� � �  

is the key problem for estimating the posterior density. 

3 BAYE SIAN SOL UTI ON 

For solving the Bayesian tracking problem of group 
space debris, we first expand Eq. 7 to: 
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where � �1 1 1, | , ,W W W W WS ; H / ; H� � �  is the prediction model 

of the objects’ states, � �1 1 1| , ,W W W WS / / ; H� � �  is the 

prediction model of the group center, � �, ,W W W; H /\  is 

the MRF model that describes the interaction between 
the group center and individuals.  

3.1 Dynamic predict ion model of individuals 

The current multiple objects’ states can be derived 

from the prediction of previous individuals’ states. 
Here, we do not take into account the previous group 
center’s influence on individuals’ states. Thus, the 
prediction model of multiple objects’ states can be 
written as: 
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where � �1|W WS H H �  represents the prediction of the 

existence state, which can also be regarded as a 
transition of simplified group structure, and 
� �1 1| , ,W W W WS ; ; H H� �  is the state prediction of 

individuals’ motion based on the existence state. 

3.1.1 Tr ansition model of objects’  existence 
states 

In this formulation, W;  is regarded as a fixed 

dimensional quantity with max1  elements [12], each of 

which is active or inactive according to its existence 
variable ,W LH . This is a reasonable framework given that 

practical systems have computational and storage 
limitations. Thus, the existence state transition model is: 
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where an empirical value is set for the existence or 
disappearance probability of each object. The concrete 
parameters’ value should be selected according to the 
practical background. However, from our experience, 
we found that the tracking result is not sensitive to the 
parameters’ value.  

3.1.2 Tr ansition model of objects’  moti on 
states 

The transition models of objects’ motion state are not 
the same with respect to the different combinations of 

W
H  and 1WH � . Let E

b  denote the set of objects with 

, 1W LH   and 1, 0W LH �  , which represent the object’s birth. 

In the same way, let G
b  denote the set of objects with 

, 0W LH  , which represents the object’s disappearance, 

and X
b  denote the set of objects with , 1W LH   and 

1, 1W LH �  , which represents that the objects need to be 

updated. Furthermore, 
E

1b �� G
1b , and 

X
1b  are the 

corresponding object number in the set, respectively. 
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The details of the calculation of Eq. 11 can be found in 
[12]. 



3.2 Prediction model of group center 

When the existence state 1WH �  and the motion state 

1W; �  of the group objects are obtained, the state of 

group center can be predicted. The previous group 
center 1W/ �  is used to describe the group characteristics 

and constrain the individuals at the previous time. This 
information is involved in multiple objects states 1W; �  

through inference and interaction. Here, we directly 
predict the current group center according to the 
previous individuals’ states, ignoring the influence of 

1W/ � . Thus, we can get 

� � � �1 1 1 1 1| , , | ,W W W W W W WS / / ; H S / ; H� � � � �| . 

The group center has a more reliable motion tendency 
and higher detection probability than the individuals. 
The prediction of group center should maintain the 
consistency of orbit. At time 1W � , the probability of 
group existence state 1WH K�   is � �1WT H K�  . The 

different existence states of objects will lead to 
dif ferent group structures. Thus, a plethora of group 
centers will exist. To prevent divergence of the 
tracking result, the group structure whose probability is 
smaller than a threshold *3  is removed. *3  can be 

chosen to have a small value between 0 and 0.5; e.g. in 
this study, its value is 0.3: 
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Subsequently, the probability of group structure is 
normalized as follows: 
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Let H
b  be the set of objects with 1, 1W LH �  , and 

H
1b  be 

the corresponding object number. The group center is 
set as the average value of the objects’  states 

1 1,

1
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W LW

L

;
1

; � �
�bb

 ¦ . If the group has no member, 

there is 1W; 1D1�  . The trajectory of group center 

can be predicted according to the mean value 1W; �  at 

time 1W �  as: 
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where /
4  is the orbital prediction covariance of the 

group center. The probability distribution of the 
predicted group center can be rewritten as: 
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3.3 Association probabili ty between group 
center and individuals 

Both the group center and the individuals’ states reflect 
the kinetic characteristics of the group space debris. 
Certainly, there are some connection and interaction 
between them. Here, the association probability 
� �, ,W W W; H /\  is used to describe the relationship in the 

form of MRF. When the objects’  motion state W
; , the 

existence state WH , and the group center W
/  have been 

inferred at time W , the matching degree between the 
predicted group center and the average value of the 
predicted individuals’ states can be used to evaluate the 
association probability. 

Let Hb�  be the set of objects that have , 1W LH  , and 
H

1
b�

 

be the corresponding object number. The mean value 

of the multiple objects’ states is ,

1

HH

W W L

L

;
1

/
�bb

 ¦
��

� . If no 

object is contained, the value is W 1/ 1D � , and the 

corresponding association probability is also set as 
1D1 . Otherwise, the association probability between 
the group center and the individuals can be calculated 
with JPDA filtering [14] as follows: 
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In Eq. 16, :  denotes the validation matrix of joint 
association event, /

4  is the observation covariance, 

IDS  indicates the probability of false alarm, G
S  

signifies the detection probability, and O  is the 
expected number of false alarm in the observation area. 

According to the MRF model � �, ,W W W; H /\ , which 

achieves a prior information fusion between the group 
and individuals, the overall tendency of the group and 
individuals’  trajectories can be maintained with 
consistency and robustness even in the case of low 
detection probability and highly dense clusters. 

3.4 The likelihood probability of  observation 

The probability density of observation 
� �| , ,W W W WS = ; H /  was calculated using the JPDA 

algorithm. As the group center W
/  cannot be directly 

observed, only the position information was assumed 
to be consisted in the observation W= . Let us denote the 

position vector in W
;  as W

r . The observation 

probability density can be obtained from Eq. 17:
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where the calculation procedure and parameters setting 
in Eq. 17 is similar to Eq. 16. 

4 CAL CULAT IO N OF BAYESIAN 
TRACKING BASED ON MCMC-
PARTIC LE A L GORI THM 

MCMC algorithm [15] is an efficient tool for the 
inference and integral of probability distribution during 
a nonlinear process. However, it usually has a serious 
computationally burden. For releasing the computation 
resources, we have used the improved MCMC-Particle 
algorithm [12] to solve the Bayesian tracking problem 
presented in Section 3. 

At the P th MCMC-Particle iteration, the procedure is 
absolutely same as the details in [12] except that the 
group center proposal should be done firstly in this 
paper. Here, only the group center proposal is 

introduced. Firstly, all the particles ̂ `1, 1,,W S W S; H� �  at 

time 1W �  should be clustered. Commonly, the particles 
will converge around the real value after carrying out 
MCMC iteration for certain number of times. The 
classic K-means algorithm [16] can easily accomplish 
the clustering. After deleting the clustering sets of 
particles with minor proportion (e.g. 5%), the estimated 
states are labelled. The set of particles belonging to the 

Q thÈ max1,2, ,Q 1 "  object is denoted as ,H Qb . The 

average value of the particles’ states 
,1, 1, H QW Q W; ;� � b  is 

taken as the state estimation of the corresponding 
object, while 1, 1W QH �  . If there is no particle that 

belong to the Q th object, we have 1, 0W QH �  . 

Subsequently, we propose an existence state variable 

1WH K�   with a probability � �1WT H K�c   at time 1W � . 

Let Hb�  represent the set of objects with 1, 1W QH �   based 

on the existence state 1WH K�  . The group center is 

proposed from the Gauss distribution 

� �*
1 1,

~ ,
H

W /W
/ 1 ; 4� � b� . If the value of all the existence 

states is zero, then we set *
1W/ 1D1�  . 

We executed MCMC-Particle iteration for a certain 
number of times and burnt-in partial old particles. The 
distribution of converging particles can be 
approximately represented as the posterior density of 
the group space debris’ states. 

5 SIMU LA TION S AND PERFORMANC E 
ANA LYSIS 

Let us consider the scenario of four closed-space debris 
combined to a group. The maximum object number is 
set as max 41  . The orbital parameters of the four 

space debris at initial time are listed in Tab. 1. 

7DEOH����2UELWDO�SDUDPHWHUV�RI�VSDFH�GHEULV�LQ�WKH�VFHQDULR�
 Semi-major 

Axis�km� 
Eccentricity Inclination(°) Right ascension of 

ascending node(°)
Argument of 
perigee(°) 

Eccentric 
Anomaly(°) 

Object 1 7500 0.01 1 0 0 0.4 
Object 2 7500 0.01 1 0.4 0 0 
Object 3 7501 0.01 1 0.4 0 0 
Object 4 7501 0.01 1 0 0 0.4 
 

The tracking parameters for the simulation scenario are presented in Tab. 2. 
7DEOH���7KH�WUDFNLQJ�SDUDPHWHUV�IRU�WKH�VLPXODWLRQ�UHVXOWV�

 symbol value  symbol value 
Observation time interval W  1 s Motion model error of objects 

X4  3 3

3 3

50

10
u

u

ª º
« »
¬ ¼

I 0

0 I
Maximum number of objects  

max1
 

4 Prediction covariance of 
object’s state 

S4  3 3

3 3

300

100
u

u

ª º
« »
¬ ¼

I 0

0 I
Observation covariance 4Z  3 3100 uI

 

Prediction covariance of group 
center 

/4  3 3

3 3

150

50
u

u

ª º
« »
¬ ¼

I 0

0 I
Probability of false alarm of 
object 

IDSc  
2e-005 Probability of false alarm of 

group center 
IDS  

0.01 

Probability of detection for 
one object 

GSc  
0.65 Probability of detection for 

group center 
GS  

0.98 

Expected observed number of 
false alarm objects at each 
time step (Poisson 
distribution ) 

Oc  2 Expected number of false alarm 
of group centers at each time 
step (Poisson distribution ) 

O  1 



The four orbits propagate after 30 seconds from the 
initial time in our scenario. They form a steady group 
in the tracking area. 

The four orbits propagate after 30 seconds from the 

initial time in our scenario. They form a steady group 
in the tracking area. We obtained the observation at 
each one second. The real trajectories of space debris 
and the observations are shown in Fig. 5. 

 

(a)                                                                                                                       (b) 
)LJ������D��5HDO�WUDMHFWRULHV�RI�VSDFH�GHEULV���E��7KH�REVHUYDWLRQV�

We assumed that the real value exists around the 
observations in the form of normal distribution. Thus, 
the track is initiated by proposing the particles from the 
observations. At every time step, 10000 MCMC 
iterations of both the joint and individual proposals are 
performed. The initial 1000 iterations are used for 
burn-in, and 2000 MCMC outputs were kept as particle 
approximation to the posterior probability distribution. 

The performance superiority of Bayesian tracking has 
been verified in [11][12] based on the MCMC 
algorithm. In the present study, we primarily analyzed 
the group center’s impact on the performance of group 
tracking. 

We considered the simulations according to the above-
mentioned tracking parameters. The original state 
particles were distributed as shown in Fig. 6. 

 

(a)                                                                                          (b) 
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Fig. 6(a) and 6(b) shows the group tracking result with 
the group center and the multi-objects tracking result 
without the group center, respectively. According to 
the group center tracking, not only the group motion 
tendency can be obtained, but also the trajectories can 
be reconstructed more explicitly using the prior 
information of the group. Subsequently, the state 

particles were clustered using the K-means algorithm 
[16], and the outlier clusters were deleted. According 
to the labels of particles, the average values of the 
particles’ states were taken as the state estimation of 
the corresponding objects. The estimation results are 
shown in Fig. 7. 
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(a)                                                                                    (b) 
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The comparisons for the distribution of the estimated existence state at each time step are shown in Fig. 8. 

 

(a)                                                                                                 (b) 
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FHQWHU�

From the simulation results, we can see that the group 
tracking with group center can improve the stability of 
individuals’ existence states, when compared with that 
without the group center. In this study, 30 Mont Carlo 
runs were carried out to analyze the tracking 

performance. The average number of detected objects 
and the RMSE of the estimated objects’ states at each 
time step were statistically calculated, as shown in Fig. 
9. 

 

(a)                                                                                                    (b) 
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REMHFWV���E��506(�RI�WKH�HVWLPDWHG�REMHFWV¶�VWDWHV�

Based on the Mont Carlo runs, it is suggested that the 
estimated number of objects using our presented group 

tracking method is closer to the actual number than that 
obtained using the traditional multiple objects tracking 
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method. The group tracking method can efficiently 
depress the miss alarm and reduce the estimation error 
of the objects’ states. In addition, by tracking the group 
center, the group evolution can be exhibited clearly. In 
fact, in the case of low detection probability, the group 
tracking method can greatly improve the accuracy of 
the detected number and states of the objects mainly 
because the group center has a more consistent state 
and higher detection probability than the individuals. 
According to the mutual constraint between the group 
center and individuals, the group information improves 
the accuracy of the individuals’ trajectories, while the 
individuals’ tendencies also assist in the inference and 
adjustment of the group’s evolution. In this study, the 
detection probability for group center was set as 0.98, 
while the individual’s detection probability was only 
0.65. Thus, by incorporating the group center, the 
tracking performance could be certainly improved due 
to the application of prior information of the group. 

6 CONCLU SIONS 

Group tracking of space debris is a potential and 
foremost requirement in the domain of space 
surveillance. It has an important significance in the 
surveillance of space debris clouds. 

In this study, we first proposed a concept of group 
tracking. Subsequently, the kinetic model of group 
space debris was introduced. According to the motion 
characteristics of space debris, the Bayesian group 
tracking procedure with the group center was presented. 
The MCMC-Particle algorithm was employed to solve 
the intractable Bayesian integral. Based on these 
procedures, we carried out the simulation of tracking 
multiple closely spaced orbital objects. The results 
verified the effectiveness of our presentation in the 
case of low detection probability and high dense clutter. 
When compared with the traditional multi-objects 
tracking method without group center, our proposed 
method exhibited improved consistency and accuracy 
of individuals’ trajectories, as well as derivation of the 
overall group’s evolution. 
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