
THE PROCESS OF PARALLELIZING THE CONJUNCTION PREDICTION

ALGORITHM OF ESAS SSA CONJUNCTION PREDICTION SERVICE USING GPGPU

M. Fehr, V. Navarro, L. Martin, and E. Fletcher

European Space Astronomy Center, Villanueva de la Cañada, 28691 Madrid, Spain,
Email: {vicente.navarro, luis.martin, emmet.fletcher}@esa.int, marius.b.fehr@gmail.com

ABSTRACT

Space Situational Awareness[8] (SSA) is defined as
the comprehensive knowledge, understanding and main-
tained awareness of the population of space objects, the
space environment and existing threats and risks. As
ESA’s SSA Conjunction Prediction Service (CPS) re-
quires the repetitive application of a processing algorithm
against a data set of man-made space objects, it is crucial
to exploit the highly parallelizable nature of this prob-
lem. Currently the CPS system makes use of OpenMP[7]
for parallelization purposes using CPU threads, but only
a GPU with its hundreds of cores can fully benefit from
such high levels of parallelism. This paper presents the
adaptation of several core algorithms[5] of the CPS for
general-purpose computing on graphics processing units
(GPGPU) using NVIDIAs Compute Unified Device Ar-
chitecture (CUDA).

Key words: GPGPU; Conjunction Analysis; Space Situ-
ational Awareness; Conjunction Prediction Service; Par-
allel Programming; ESA; ESAC;.

1. INTRODUCTION

As the population of space objects is constantly grow-
ing, maintaining Space Situational Awareness (SSA) has
become a core competence of many space related com-
panies and organizations. Apart from the space weather
and the Near Earth Objects (NEO) segments, the Space
Surveillance and Tracking Segment (SST) one of key
components in ensuring save access to the space environ-
ment and mastering the existing threads/risks. Among
other problems SST addresses conjunction prediction
analysis, re-entry prediction, fragmentation analysis, cat-
alogue correlation and orbit determination. The required
computations are characterized by their demand for a
large number of parallel computations in a very short pe-
riod of time.

To meet the need for independent utilization of and access
to space for research or services by an increasing number
of users, the European Space Agency is in the process

of adapting the European SSA System to offer modern
web-based front-end. The system provides the users with
timely and quality data, information, services and knowl-
edge regarding the environment, the threats and the sus-
tainable exploitation of the outer space surrounding our
planet Earth. Both the ability to provide service to mul-
tiple users in parallel and the increasing number objects
call for better performance and parallelization of the core
algorithms.

This paper presents the adaptation of several core al-
gorithms of ESAs SSA Conjunction Prediction Service
(CPS) for general-purpose computing on graphics pro-
cessing units (GPGPU). The prediction can be split up
into smaller mostly independent sub problems, in which
exactly one pair of objects is analysed. This is an ideal
scenario for parallel programming. Currently the CPS
system makes use of OpenMP for parallelization pur-
poses, which uses all available cores in the CPU of the
machine. Even though today’s multiprocessor CPUs can
launch a number of threads simultaneously only a GPU
with its hundreds of cores can fully benefit from such
high level of parallelism. A single GPU can launch thou-
sands of threads which can lead to a performance gain by
several orders of magnitude.

In this paper we describe the development of a pro-
totype that replaces the Conjunction Analysis (CAN)
System[4, 6], a part of the Conjunction Prediction Sys-
tem, with GPU enabled code based on NVIDIA’s CUDA
architecture and C language extension. We will start by
describing the choice of GPU technology used for de-
veloping and testing the prototype. In order to validate
the concept we reused the existing CPS code for data re-
trieval from database/files, object state vector interpola-
tion and collision risk evaluation. Using cross-language
development we seamlessly integrated the prototype (in
C CUDA) into the existing system (in Fortran). Hence
we were able to compare one to one the output and the
performance of both systems (modified and current). Fur-
thermore we describe what methods were used on each
parallelizable part of the algorithm and how the strengths
and weaknesses of the GPU influenced the design of each
part. We conclude with the lessons learned from develop-
ing this prototype and present the results obtained by the
performance measurements.

_____________________________________ 

Proc. ‘6th European Conference on Space Debris’ 

Darmstadt, Germany, 22–25 April 2013 (ESA SP-723, August 2013) 

 



2. CONJUNCTION PREDICTION SERVICE
(CPS)

The Conjunction Prediction Service is a core function-
ality of the Space Surveillance and Tracking mission
(SST). The current deployment of the Conjunction Pre-
diction Service has the following structure:

Figure 1. Simplified structure of the CPS system.

The system allows users to trigger their own conjunc-
tion prediction computations and access the conjunction
database through a web interface. In this paper we focus
on the work done by the conjunction computational node,
the Conjunction Analysis (CAN) System. This core part
of the CPS system, executes the computations necessary
to determine potential conjunctions according to the gen-
eral conditions and settings provided by the users through
the web interface and the operators through the opera-
tional node. The system should not only be able to with-
stand a large number of simultaneous requests by users
and operators and process them in an appropriate amount
of time, but also be ready for the increasing size of cata-
logues. Therefore the performance of the algorithms in-
volved is essential.

3. NVIDIAS COMPUTE UNIFIED DEVICE AR-
CHITECTURE (CUDA)

NVIDIA introduced CUDA[3] as software and hardware
architecture to allow access to the memory and virtual
instruction set of CUDA enabled GPUs. Using this pro-
gramming model[1, 2], the developer can run highly par-
allel code on the GPU like on a CPU. The main differ-
ence is the large number of parallel stream processors
that allow for many concurrent, but slow, threads instead
of a small number of fast threads running on powerful
multi-purpose cores. As a parallel computing platform,
CUDA supplies the developers with programming lan-
guages extensions (e.g. CUDA C/C++, CUDA Fortran),
directives for optimizing compilers (e.g. OpenACC) and
GPU-accelerated libraries (e.g. cuBLAS, cuFFT). We
implemented the prototype using the CUDA C/C++ pro-
gramming language extension, as it is free, very well doc-
umented and comes with the official NVIDIA nvcc com-
piler, whereas some other language extensions (e.g. for
Fortran) require expensive 3rd party software.

The basic functionality of CUDA is supported by the G8x
series graphics cards onwards, but the range of supported
functions on NVIDIA graphics cards varies a lot and can
significantly limit the use of CUDA for certain tasks. As
the CPS system requires calculations involving state vec-
tors using double precision (location and velocity of ob-
jects), we required a NVIDIA graphics card with double
precision capabilities and minimal performance penalty.
NVIDIA assigns a compute capability ranging from 1.0
to 3.5 to its GPUs to describe the scope of supported
functions. Even though double precision support is in-
troduced with compute capability 1.3, the performance
penalty for such calculations depends solely on the GPUs
architecture (e.g. Fermi, Kepler) and does not necessar-
ily decrease as the compute capability increases. CUDA
supports the use of multiple GPUs with one CPU and in-
troduces the term device for a single graphics card and
host for the CPU. The code sent to the devices and exe-
cuted in parallel is referred to as the kernel. GPUs with
compute capability higher than 2.0 support the simultane-
ous execution of multiple kernels. Each GPU, depending
on its architecture, contains a different number of stream-
ing multiprocessors (SMs). Each of those SMs contains a
specific number of stream processors, each capable of ex-
ecuting one single thread at a time. In order to cope with
the varying number of SMs and stream processors among
the different GPU architectures, CUDA introduces a gen-
eral thread model as a layer of abstraction. In order to
map threads to the GPUs SMs CUDA organizes threads
in an up to three dimensional grid of thread blocks and
each block organizes its threads in an up to three dimen-
sional grid. At runtime the GPU automatically distributes
the thread blocks among the different SMs to ensure an
optimal utilization of all resources. SMs then execute
threads in a SIMT (Single Instruction Multiple Threads)
fashion in groups of 16 to 32 threads , so called warps.
SIMT means that all threads in a warp have to execute
the same instruction at the same time. If a warp has to
wait for a few cycles (e.g. to load data) it is swapped out
and another warp is executed in the meantime. In general
this thread model allows the developer to dimension the
grid and the thread blocks in the way it best suits his task
and create portable code.

4. THE ADAPTATION OF THE CONJUNCTION
ANALYSIS (CAN) SYSTEM

The main task of the conjunction analysis is the detection
and risk assessment of close encounters between objects
in an orbit around earth. The objective is to issue warn-
ing bulletin to the appropriate parties to allow for further
risk assessment or even orbit corrections if there are ma-
noeuvrable objects involved. Such an analysis could in-
volve only specific subset of the space population during
a short time period or the whole object catalogue dur-
ing an extensive period of time. The latter involves han-
dling large amounts of data and computationally inten-
sive calculations, as the number of pairs to analyse grows
quadratically with the catalogue size. The SSA program
is currently using the public catalogue provided by the



Figure 2. The CAN processing flow

U.S. Air Force JSpOC with 16’000 objects, but there are
estimates[9] that more than 600’000 objects bigger than
1cm are in orbit around earth.

Our first objective was to identify all parts of the program
that can be parallelized using a GPU and would profit
the most. We analysed each subtasks and evaluated their
potential. Fig. 2 shows the strucutre of the CAN algo-
rithm. The parts highlighted in bold are using OpenMP
to parallelize loops on the CPU. Therefore those already
parallelized parts are ideal candidates.

• Apogee-Perigee Filter: This is the first filter applied
to eliminate all object pairs that have no chance of
ever producing a conjunction. After this filter, the
prediction period is analysed in smaller time steps,
so called epochs, one at the time.

• Loading Ephemeris: Is executed every few epochs
to load the required ephemeris data for each object
(position an velocity) from database to main mem-
ory.

• Smart Sieve: This local filter eliminates even more
object pairs. The filtering however is only valid for
the current epoch.

• Interpolating For Smart Sieve: Previous to the
Smart Sieve, the state vectors for all objects are up-
dated to the current epoch. The state vector match-
ing the current time (the time of the epoch) is inter-
polated from the ephemeris data in memory.

• Linear Search: The epoch is divided into even
smaller time steps to perform a linear search for a
sign change of the relative velocity along the rela-
tive position vector.

• Interpolating for Linear Search: Linear Search
requires the exact state vectors at the beginning of
each small time step for each object analysed. Hence
those vectors are interpolated from the ephemeris
data in memory.

• FindTCA (Time of closest approach): Given a
time step with a sign change from the linear search
function, this part applies the Regula Falsi algorithm
to find the exact time of the zero crossing and there-
fore the exact time of closest approach.

• Conjunction Definition: This part collects all the
information about each potential conjunctions as a
preparation for inserting it into the database.

• Penetration Factor: This part includes the calcula-
tion of the safety ellipsoid penetration factor and the
final filtering of the close conjunctions. The safety
ellipsoid factor gives a measure of how close an ob-
ject comes to another (e.g. using a safety ellipsoid
of 25 x 10 x 10 km).

• Remaining Operations: This part includes all the
time spend in between the parts described above.

To further analyse the potential for improvement, we con-
ducted the following performance analysis (fig. 3) of the
original program. We ran an all vs. all conjunction pre-
diction involving 10000 objects during 8 days and dis-
abled all OpenMP directives. Thus it appears that the
percentage of the overall runtime spent in the parts using
OpenMP further supports our initial selections of candi-
dates. The interpolation in the local and in the global
filter are basically the same function executed at different
steps of the computation and therefore the interpolation in
the global filter obviously becomes a candidate too even
though it does not contribute greatly to the overall run-
time.

4.1. Cross-Language Development

The original conjunction prediction program is mainly
written in Fortran 90. As we wanted to use the CUDA
C extension, we decided to translate the Fortran module
that contains the functionality described above to C. This
module, called CANfi Filters, is part of the main con-
junction analysis library. In our prototype it is moved
to a separate library. This new library not only con-
tains a C version of the CANfi Filters module but some C
versions/copies of functions from other libraries as well.
This was necessary as calling a function in another lan-
guage is not supported from inside a CUDA kernel (the
code executed on the GPU). Fig. 4 shows the changes in
the structure of CAN system.

4.2. Non-GPGPU Algorithm Optimizations

In the course of translating the CANfi Filters module
from Fortran to C we discovered two major non-GPU re-



Figure 3. Time spent on each section of the algorithm

Figure 4. Structure of modified CAN system

lated optimizations in the original program. We decided
to implement these changes in our prototype and we will
briefly describe them as they had a non-negligible impact
on the performance and omitting it would distort the per-
formance measurements.

At the end of each epoch the conjunctions found are
added to a temporary list of conjunctions. This list is then
analysed and each conjunction is assigned a penetration
factor. Only the pairs where the penetration factor is pos-
itive, i.e. one object violates the safety ellipsoid of the
other one, are added to the final list of close conjunctions.
In the original algorithm even conjunctions with a dis-
tance larger than the maximum axis of the safety ellipsoid
were inserted into this temporary list. Those conjunctions
later on are assigned with a constant negative penetration
factor and therefore discarded at the final selection stage.
By eliminating those conjunctions as early as possible we
reduced the number of conjunctions that need to be anal-
ysed drastically, as only very few conjunctions are closer
than the maximum axis of the safety ellipsoid. This op-
timization will therefore have the biggest impact on the
calculation of the penetration factor and the conjunction
definition. The second optimization concerned the Find-
TCA (Time of closest approach) function. After complet-
ing the actual computation for each potential pair (par-
allelized with OpenMP), the function loops again over
all potential pairs using a single thread to check for er-
ror flags. However before checking if an error happened,
the program computes a string to print the current time
as preparation for the actual error message. This is done
for every potential pair where a conjunction has been de-
tected. This small mistake in the error handling had a big
impact on the overall performance of this function.

4.3. The GPGPU CAN system

Fig. 5 shows the time line of the adapted system, with
both the CPU and the GPU and the the data transfer be-
tween them. Minimizing the overhead produced by these
allocations and transfers turned out to be crucial, as it can
prevent the whole performance improvement achieved by
the kernels. For example the number of potential pairs to
analyse and the number of state vectors in the ephemeris
varies from epoch to epoch. To prevent unnecessary and
expensive reallocations, all variables whose size is related
to those changing values are allocated with a margin, i.e.
only in case of an unexpectedly big increase of poten-
tial pairs or state vectors reallocation is necessary. The
following parts of the CAN system have been adapted.
Please note that the algorithms described are all adopted
(and adapted) from the original CAN system and there-
fore please read [6, 4, 5] for more detailed descriptions.

Interpolating for the Smart Sieve and Linear Search:
At any given time during the programs execution mem-
ory contains the ephemeris data for several epochs, in-
cluding the current one. This ephemeris data is stored as
set of position-velocity 6-vectors at regular time intervals
for each object. Using Lagrange polynomials the inter-
polation method can approximate a state vector for every
point in time within the boundaries of the ephemeris data
in memory. The interpolation for the Smart Sieve takes
place once per epoch before the Smart Sieve to calcu-
late the exact state vectors at the beginning of the cur-
rent epoch. The interpolation for the Linear Search on
the other hand is called for every time step of the Linear
Search algorithm, the number of invocations depends on
the length of those time steps (e.g. Tprediction = 8 days,
Tepoch = 180s, Ttimestep = 6s).

In the original CAN system OpenMP is used to paral-
lelize the loop that runs over all the objects, which typ-
ically uses as many threads as CPU cores available. C
CUDA on the other hand allows us to run one thread
for each object, i.e. each thread executes one iteration
of the loop. However providing the necessary data for
the computations on the device is more demanding. In
order to interpolate the current state vectors the method
needs access to the ephemeris data, which is located in
the host memory, i.e. we need to copy it to device mem-
ory. GPU memory is limited compared to main memory
and therefore our first approach was to identify all data
required to interpolate all state vectors needed in the cur-
rent epoch and then load it to device memory. The main



Figure 5. Time line of the GPGPU version of CAN.

Figure 6. GPGPU version of the Smart Sieve.

advantage of this approach is the minimal device mem-
ory consumption. A first performance analysis however
revealed a considerable overhead produced by this data
transfer, as it requires thousands of small allocations and
transfers instead of a few big ones. To counter that we
decided to load the ephemeris data to device memory for
several epochs at once, i.e. right after we loaded it from
file or database to host memory. This way we extended
the partial loading mechanism of the original system to
device memory. A further performance analysis backed
this second approach. On the downside the upper limit of
epochs that can be loaded to memory at once decreased
due to the GPUs limited memory.

Smart Sieve: At the beginning of each epoch, this func-
tion filters all pairs by analysing the relative position and
velocity using different filter steps. Only pairs that pass
all filter steps are added to the list of potential conjunc-
tion pairs for the current epoch. In the original CAN sys-
tem OpenMP is used to run the filtering of the pairs in
parallel threads. For 10000 objects, the number of pairs
that pass the apogee-perigee filter goes into the millions,
which means we could use millions of parallel threads.

The CUDA kernel we developed launches one thread for
each pair that passed the Apogee-Perigee Filter. Each
thread then has to pass a series of filters. As soon as a pair
fails one filter, the thread terminates and the pair is elimi-
nated for the current epoch. All threads execute the same
instructions in the same order, which makes this approach
ideal for the SIMT architecture of the GPU. All active
threads in a warp are guaranteed to execute the same in-
struction, because the ones that take a different branch
(i.e. do not pass a filter) terminate immediately. Once

Figure 7. GPGPU version of the Linear Search.

a thread passes all the filters, it enters the critical sec-
tion. A critical section, in parallel programming terms,
is a section where only one thread at a time is allowed to
enter, because a shared resource is accessed and/or mod-
ified. In the Smart Sieve this shared resource is a counter
that registers the number of pairs that passed this filter.
Having a critical section like this one is generally very
expensive, our first implementation was therefore trying
to avoid it by having a single CPU thread summing up
the local counter of each GPU thread. This solution per-
formed better than the original implementation, however
after the first detailed performance analysis we noticed
that only around 0.2% of all pairs actually pass all filters.
Therefore only a very small number of threads is com-
peting for the shared resource. Our final implementation
is using the atomicAdd operation provided by CUDA to
guarantee mutual exclusion, which proved to be consid-
erably faster than the previous approach.

Linear Search: After the two filtering steps (Apogee-
Perigee Filter and Smart Sieve) this is the first actual con-
junction analysis step. The epoch is divided into small
time steps and a linear search is conducted. In order to
identify a conjunction, the sign of the relative velocity
along the relative position vector is computed for each
time step and compared with the sign of the previous time
step. A change of the sign from negative to positive im-
plies that the objects have been approaching each other
and passed the point of closest approach. Thus a con-
junction has been detected between those objects.



Figure 8. GPGPU version of FindTCA function.

For each time step there are two distinct tasks, the first
one is to interpolate the state vectors for all objects for
the current time step, the second one is the computa-
tion and comparison of the sign. Therefore two different
CUDA kernels are executed for every time step. As we
described before, the interpolation kernel launches one
thread per object and uses Lagrange polynomials to in-
terpolate the current state vector from the ephemeris data
in GPU memory. The second kernel launches one thread
for each potential pair. Each thread computes the sign
and compares it with the sign of the previous time step,
which still resides in GPU memory from the previous ker-
nel launch. Although this function requires a large num-
ber of CUDA kernel calls, there is almost no data transfer
to and from GPU memory necessary in between kernel
calls, as the ephemeris data is already present in GPU
memory as well as the interpolated state vectors.

FindTCA (Time of Closest Approach): Once the time
steps with the conjunctions are identified by the Linear
Search kernel, this functions determines the exact dis-
tance and time of closest approach using a zero finder al-
gorithm. The Regula Falsi algorithm that is used as zero
finder is a iterative algorithm that requires repetitive cal-
culation of the derivative of the relative velocity in order
to find the exact time of the zero crossing, i.e. the time
where the sign changes from negative to positive.

The function is implemented as a single CUDA kernel
and launches one thread for each potential pair. If there
has been a sign change detected for a pair the thread en-
ters the zero finder, otherwise it terminates. The Regula
Falsi algorithm requires that the ephemeris data is avail-
able in GPU memory for the computation of the deriva-
tive of the relative velocity function. Our first approach
was similar to the one we started from in the interpolation
kernel. The ephemeris data required for the computation
of the derivatives is identified and loaded to GPU mem-
ory. But like in the interpolation kernel this approach pro-
duced a considerable overhead and with the extension of
the partial loading mechanism to GPU memory it became
obsolete. Once the Regula Falsi algorithm completes its
final iteration, the exact distance and time of closest ap-
proach is loaded back from GPU memory to main mem-
ory where the collision risk is computed and the close
conjunctions are inserted in the final conjunction list.

Table 1. Performance gain for a catalogue with 15’000
objects for 8 days

Original CAN system 42 min - -

Optimized CAN system 22.2 min -47.1% 1.9x

GPGPU CAN system 4.5 min s -89.3% 9.4x

5. RESULTS

We elaborated and implemented the following improve-
ments to the CAN system:

• Adaptation of several core functions of the conjunc-
tion prediction algorithm for execution on the GPU
(filtering, ephemeris data interpolation, conjunction
detection)

• Non-GPU related improvements in the algorithm
(conjunction definition, error checking)

All performance measurements have been performed on
the same OpenSUSE Linux machine with a Intel Xenon
CPU (E5620 4 Cores @ 2.4 GHz) and 6GB of memory.
Additionally we equipped the machine with a CUDA-
enabled GPU, a NVIDIA Geforce GTX 580 (1.5 GB
memory, 512 CUDA cores, compute capability 2.0). The
following compilers were used: Intel Compiler (Fortran,
Linking), NVIDIA C CUDA Compiler, GCC.

Thanks to those two improvements we reduced the run-
time of the computational part of the CAN system by up
to 89%, i.e. it was reduced from 42 min to 5 min. Tab.
1 summarizes the runtime of the computational part of
an all vs. all conjunction prediction task with 15’000 ob-
jects and a prediction period of 8 days. The comparison
includes three different versions of the CAN system. The
original CAN system, a version that only includes the al-
gorithm optimizations and the GPGPU version including
both the algorithm optimization and the CUDA kernels.

The complete performance measurement included dif-
ferent catalogue sizes ranging from 300 to 15’000 ob-
jects and from a one day prediction period to a eight day
prediction period. We observed the expected quadratic
growth with respect to the number of objects and a linear
growth with respect to the length of the prediction period
for all versions, also described in [4].

The algorithm optimizations resulted in a performance
gain with a constant factor of around 40% for all cata-
logue sizes. This particular performance gain depends
a lot on the distribution of the objects in the catalogue,
as the optimizations are related to the number of con-
junctions and number of potential pairs (pairs that passed
the Smart Sieve). Therefore it is possible that this factor
changes for different prediction tasks, e.g. including only



Figure 9. Conjunction Analysis for 8 days using different
catalogue sizes

objects from one orbital belt, which could lead to more
conjunctions compared to the number of objects.

The GPGPU version outperformed both other versions by
several orders of magnitude for big catalogues. The factor
of the performance gain is increasing with the catalogue
size and therefore the best performance is shown with our
biggest catalogue of 15’000 objects and we expect that
this trend will continue. For small catalogues, the small
number of parallel threads and the overhead produced by
transferring data to GPU memory lead to a significant de-
crease of the performance. To be more precise, for 1250
objects the GPGPU version is still faster than the original
CAN system, but slower than the optimized version. For
even smaller catalogue sizes the GPGPU version is up to
4 times slower than the original version.

The more detailed performance analysis (fig. 10) shows
which functions of the algorithm profited the most from
the GPU and the algorithm optimizations.

The algorithm optimization described in section 4.2 re-
duced the time spent for conjunction definition and the
calculation of the penetration factor to near zero. The
optimization of the error checking leads to a significant
performance gain in the FindTCA function. However the
comparison between the original CAN system and the
optimized versions should be treated with caution. The
original is written in Fortran and compiled by the Intel
Compiler (IFORT) and the optimized one is written in C,
compiled with NVCC (which invokes GCC) and linked to
Fortran code using the Intel Compiler. Furthermore both
versions use slightly different OpenMP libraries. We be-
lieve that the language and compilers account for most
differences aside from the effects of the algorithm opti-
mizations mentioned above. However the performance
gain in the Smart Sieve function prompts questions, as
there is no significant difference in the code that could
explain this 30% improvement. A possible explanation
could be that the synchronization between the threads,

that is required for the critical section of this function, is
handled differently in both OpenMP libraries.

The functions that profited the most from their CUDA
kernel are Linear Search (10 times faster) and the Smart
Sieve (12.5 times faster). The FindTCA and the interpo-
lation function improved only by a factor between 2.5 and
3.5. The former functions require mostly branchless and
simple computations, which is ideal for the SIMT archi-
tecture of the GPU. As described in section 3 this archi-
tecture reaches optimal performance only if all threads in
a warp execute the same instruction at the same time. The
latter functions both require more complex computations
and FindTCA even executes an iterative algorithm (Reg-
ula Falsi) in every thread, which creates a larger variety
of instructions that have to be executed at a given point
in time. Our efforts to reduce the time spent on trans-
ferring data to and from GPU memory clearly manifest
in this measurement, as only a very small fraction of the
overall runtime of the GPGPU version is spent for CUDA
memory operations.

6. FUTURE WORK

The computational part of the CAN system was reduced
significantly, hence the distribution of the overall runtime
changed drastically. The I/O, the reading and writing of
ephemeris data and conjunction information to and from
database now clearly outweighs the computational part.
The GPU has no direct access to the hard drive or the net-
work adapter of its machine and therefore I/O operations
can not (yet) be adapted to be executed on the GPU. How-
ever could one use the additional computational power of
the GPU to recompute the required data instead of load-
ing it from database. In the CAN system, the ephemeris
data required for the computations consists of a large
number of state vectors for each object that have been
computed from a single state vector using orbit propaga-
tion. By recomputing the required state vectors at runtime
using the GPU the CAN system could overcome the I/O
bottleneck.

7. CONCLUSION

We presented important performance gains for the CAN
system regarding all vs. all conjunction predictions for
large catalogues, first by harvesting the power of hun-
dreds of GPU cores and second by improving the algo-
rithms. The improvement of the computational part of
the original CAN system to the GPGPU version of CAN
clearly shows the viability of our approach. With the
computational part improved by up to 89%, the I/O is
now dominating the runtime of a conjunction prediction
task. However considering very small and very large cat-
alogues, two major limitations of the GPGPU approach
emerge. For small catalogue sizes the overhead of load-
ing data to and from the GPU and the small number of
parallel threads produces a significant overhead, enough



Figure 10. Detailed performance analysis for 15’000 objects for 8 days

to completely negate the gain achieved by the faster com-
putations and decrease the performance by several orders
of magnitude. For very large catalogues, larger than what
is currently available, calculations show that the mem-
ory consumption will require significant changes in the
conjunction analysis algorithm. The current design per-
mits catalogue sizes of up to 15’000 for the GPGPU ver-
sion, which is a slightly lower boundary than the origi-
nal CAN system. However the memory consumption for
both versions with the current algorithm design is grow-
ing quadratically and will exceed available GPU memory
as well as the main memory. Furthermore we identified
other elements of the CPS system that could benefit from
GPGPU, e.g. online orbit propagation instead of loading
the ephemeris data from database or the calculation of the
collision risk. We expect that the former would reduce or
even remove the bottleneck produced by the expensive
I/O operations.

ACKNOWLEDGMENTS

The authors would like to thank Diego Escobar, one of
the developers of the CAN system, for his valuable com-
ments and insights into the system and for providing tools
and data for testing. Furthermore we would like to thank
the SSA team for their general support, but especially for
their help with acquiring and setting up the test environ-
ment.

REFERENCES

1. NVIDIA, (March 2013). CUDA Programming
Guide, http://docs.nvidia.com/cuda/

cuda-c-programming-guide/index.html

2. NVIDIA, (March 2013). CUDA best prac-
tice guide, http://docs.nvidia.com/cuda/

cuda-c-best-practices-guide/index.html

3. NVIDIA, (March 2013). CUDA Architecture
overview, http://developer.download.nvidia.

com/compute/cuda/docs/CUDA_Architecture_

Overview.pdf

4. Escobar, D., Àgueda, A., Martin, L. and Martinez,
F. M., (2011). Predicting Collision Risk for European
SSA System with closeap, Proceedings of the 22nd
International Symposium on Space Flight Dynamics,
Brazil

5. Escobar, D., Àgueda, A., Martin, L. and Martinez, F.
M., (2011). Efficient all vs. all collision risk analyses,
Proceedings of the 22nd International Symposium on
Space Flight Dynamics, Brazil

6. Escobar, D., Àgueda. A., Martnez, F. M. and Garca,
P., (2010). Implementation of conjunction assessment
algorithms in modern space mechanic systems, Pro-
ceedings of the 4th International Conference in Astro-
dynamics Tools and Techniques, Madrid, Spain

7. OpenMP Architecture Review Board, (March 2013).
OpenMP Specifications, http://openmp.org/wp/

openmp-specifications/

8. European Space Agency Council. Declaration on the
Space Situational Awareness (SSA) Preparatory Pro-
gramme, ESA/C(2008)192, Paris, France 8th Decem-
ber 2008.

9. H. Klinkrad, (2006). Space Debris: models and risk
analysis, Springer


