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ABSTRACT

The discovery of high area-to-mass ratio (HAMR) debris
in near geosynchronous orbit (GEO) raises concern for
the sustainability of this unique resource. It is thought
that HAMR objects are sheets of multilayer insulation
detaching from satellites in GEO disposal orbits due to
material degradation. Such objects are subject to gravita-
tional perturbations due to the Earth’s oblateness and the
Moon and Sun, as well as the effects of solar radiation
pressure (SRP). We have developed a first-order averaged
model, explicitly given in terms of the Milankovitch ele-
ments, which provides a very accurate description of the
long-term orbit behavior and allows for a qualitative un-
derstanding. We present this model and discuss its funda-
mental predictions, including the Saros resonance and the
systematic structure of the inclination-node phase space.
We also extend the model’s domain of validity by incor-
porating the parallactic term into the third-body disturb-
ing function expansion and the Earth’s shadow for SRP.

Key words: high area-to-mass ratio objects; averaging;
orbit perturbations; Milankovitch orbital elements.

1. INTRODUCTION

The long-term dynamics of high area-to-mass ratio
(HAMR) objects has been studied extensively since the
discovery of this debris population in near GEO orbits
[3, 7]. Most studies concentrate on numerical integra-
tion of the precise set of differential equations, which can
give an accurate trajectory of a particular object, but not
necessarily general insight into the important aspects of
the governing laws. Our purpose, however, is to adopt
the simplest possible expressions useful for studying the
long-term orbital evolution of HAMR debris. These ex-
pressions must reveal the qualitative regularities of mo-
tion, and they must provide a way of obtaining quantita-
tive predictions of long-term changes. Among the more
predominant perturbations acting on HAMR objects are
solar radiation pressure (SRP), Earth’s oblateness, and
third-body gravitational interactions induced by the Sun
and the Moon. We have developed a first-order averaged
model, based on the Milankovitch formulation of secular

perturbation theory, which accounts for these perturba-
tions and is written in a concise analytical vector form
[5, 6]. The secular equations do not depend on expan-
sions in eccentricity or inclination and avoid the small
numerical divisors. The disturbing function includes the
cannonball model of SRP, the dominant zonal harmonic
in the harmonic expansion of Earth’s gravitational poten-
tial, and the lowest-order term in the Legendre expansion
of the lunar and solar disturbing functions (i.e., Hill’s
approximation). Under these approximations, the semi-
major axis, a, does not undergo any secular changes and
the problem reduces to understanding the remaining four
orbital elements, e, i, Ω, and ω, at a given semi-major
axis. Higher harmonics in the lunar disturbing func-
tion may become important for HAMR objects in highly-
eccentric GEO orbits, and their neglect sets an upper limit
to the size of orbit for which the analysis is applicable [4].
On the other hand, neglect of higher harmonics in Earth’s
gravitational field and Earth’s shadow effects for SRP sets
a lower limit to the orbital radius.

Using this model, we study the dynamics of HAMR ob-
jects, and explore the various resonance effects caused
by the complex coupling between the Earth-Moon-Sun
system and the predominate perturbations. We discuss
a unique systematic structure associated with their dis-
tribution in inclination and ascending node phase space,
and investigate the extent to which the qualitative proper-
ties of the orbit persist with increasing area-to-mass. We
then extend the domain of validity of this model by incor-
porating the parallactic term into the disturbing function
expansion and the Earth’s shadow effects for SRP accel-
eration. All notations in this article are the same as in [6]
and all symbols have their conventional significance.

2. MILANKOVITCH ORBITAL ELEMENTS

The first-order perturbation theory can be formulated
simply and elegantly in terms of the Milankovitch
elements–the two vectorial integrals of the unperturbed
two-body problem [5, 6]. The angular momentum vector,

H =
√
µa(1− e2)ĥ, and eccentricity vector, e = eê,

describe the spatial orientation, geometrical shape, and
size of the osculating orbit, and, together with the scalar
integral that represents the motion in time, constitutes
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a complete set of orbital elements. Geometrically, H
points perpendicular to the instantaneous orbit plane and
e points towards the instantaneous periapsis. Their secu-
lar perturbations equations in Gaussian form, for an arbi-
trary disturbing acceleration ad, can be stated as [5]

Ḣ =
1

T

∮
r̃ · ad dt (1)

ė =
1

T

∮
1

µ

(
ṽ · r̃ − H̃

)
· ad dt (2)

where T is the period of the orbit.

When the perturbations come from a potential, the semi-
major axis, a, does not undergo any secular changes and
hence H can be scaled by

√
µa. For this vector, denoted

here as h, together with e, the secular Milankovitch equa-
tions take a compact and symmetrical form

ḣ = h̃ ·
(
∂R∗

∂h

)T

+ ẽ ·
(
∂R∗

∂e

)T

(3)

ė = ẽ ·
(
∂R∗

∂h

)T

+ h̃ ·
(
∂R∗

∂e

)T

(4)

where R∗ = R(h, e)/
√
µa. The average potential is

R(h, e) =
1

2π

∫
2π

0

R(α,M) dM (5)

where α is an arbitrary set of orbital elements excluding
the mean anomaly, M . Note that physically meaningful
solutions are restricted to the four-dimensional manifold
on which h · e = 0 and h · h+ e · e = 1.

3. AVERAGED EQUATIONS OF MOTION

In terms of the Milankovitch elements, the first-order av-
eraged equations for SRP, J2, and lunisolar perturbations
take the form [6]

ḣ = ḣsrp + ḣ20 + ḣs + ḣm (6)

ė = ėsrp + ė20 + ės + ėm (7)

where the averaged SRP dynamics are given by

ḣsrp = −3

2

√
a

µ

β

d2s

˜̂
ds · e (8)

ėsrp = −3

2

√
a

µ

β

d2s

˜̂
ds · h (9)

in which β = (1 + ρ)(A/m)PΦ, ρ is the reflectance,
A/m is the appropriate cross-sectional area-to-mass ra-
tio in m2/kg, PΦ is the solar radiation constant (≈ 1 ×
108 kg km3/s2/m2), and ds = dsd̂s is the vector from
the Earth to the Sun. The secular Milankovitch equations
resulting from the oblateness of the Earth can be stated as

ḣ20 =
3nC20

2a2h5
(p̂ · h)˜̂p · h (10)

ė20 =
3nC20

4a2h5

{[
1− 5

h2
(p̂ · h)2

]
h̃+ 2(p̂ · h)˜̂p

}
· e
(11)

where C20 = −J2R
2 is the oblateness gravity field co-

efficient, R is the mean equatorial radius of Earth, n is
the mean motion, and p̂ is aligned with Earth’s rotation
pole. The Hill-approximated third-body dynamics result-
ing from a body with gravitational parameter µp are

ḣp =
3µp

2nd3p
d̂p · (5ee− hh) · ˜̂dp (12)

ėp =
3µp

2nd3p

[
d̂p · (5eh− he) · ˜̂dp − 2h̃ · e

]
(13)

in which where dp is the position vector of the perturbing
body. The product of two vectors, ab, is called a dyad
and is equivalent to the outer product (i.e., [a][b]T ).

4. LONG-TERM BEHAVIOR OF GEO ORBITS

Nearly fifty years have elapsed since satellites were
first launched into geostationary (equatorial, circular-
synchronous) Earth orbit. The motion of uncontrolled
GEO satellites is governed by gravitational perturbations.
By itself, Earth’s oblateness causes the pole of the orbital
plane to precess around the pole of Earth’s equator, the
rate of rotation being proportional to nC20/a

2. Lunisolar
perturbations will have a similar effect, but the precession
will now take place about the poles of the orbital planes
of the Moon and the Sun, respectively, at a rate propor-
tional to n2

p/n, where np is the mean motion of the per-
turbing body. The motion of the orbit pole of the satellite
is a combination of simultaneous precession about these
three different axes, one of which, the pole of the Moon’s
orbit, regresses around the pole of the ecliptic with a pe-
riod of 18.61 years (i.e., the Saros) [2]. As shown in Fig.
1, uncontrolled GEO satellites precess about the axis of a
mean reference plane (the Laplace plane) with a period of
nearly 54 years and a corresponding variation in their or-
bital inclinations of ±15◦. This and all subsequent plots
are reported in the Earth-equatorial frame. Note that the
inclinations and ascending nodes are strongly correlated.
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Figure 1. Scatter plot of the time-series, over 54 years,
of the orbital plane of initially geostationary objects as
predicted by our averaged model for four different ini-
tial lunar node positions, i.e., four different launch dates.
There is a near-commensurability of the period of the lu-
nar precession and the period of the motion of the satel-
lite’s orbital plane.



5. LONG-TERM ORBITAL EVOLUTION OF
HAMR OBJECTS

For a given semi-major axis and effective area-to-mass
ratio, we define the SRP perturbation angle as

tanΛ =
3β

2

√
a

µ

1

He

(14)

where He is the specific angular momentum of the Earth
about the Sun. This angle can be used to rigorously char-
acterize the strength of the SRP perturbation acting on a
body as a function of its orbit, its non-gravitational pa-
rameter, and the orbit of the Earth about the Sun [5, 6]

The evolution of several HAMR objects released from
GEO, obtained using numerical integrations of the aver-
aged equations of motion, are shown in Figs. 2 and 3. We
refer the reader to [5] for a complete description of the
first- order effects of each perturbing force on the system.
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Figure 2. Long-term evolution of the eccentricity and ec-
centricity vector for different values of Λ.

Saros Resonance and (i,Ω) Phase Space : When the
nodal rate of the perturbed system is near-commensurate
with the nodal rate of the Moon (i.e., the Saros), the per-
turbations build up more effectively over long periods to
produce significant resonant effects on the orbit. This
resonant behavior explains the long-term beating phe-
nomenon that occurs for Λ = 12.60◦ (vide Fig. 3). Fig. 4
shows the time-series of inclination and node for a range
of SRP perturbation angles. For Λ = 13.81◦, the nodal
period in the equatorial frame is ∼18.61 years, thereby
inducing a 1: 1 resonance with the Saros. The qualitative
picture of the evolution changes drastically based on the
initial lunar node. The pattern associated with their distri-
bution in (i,Ω) phase space is systematic, which means
that HAMR objects evolve in predictable ways.
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Figure 3. Long-term evolution of the inclination and an-
gular momentum unit vector for different values of Λ.
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(a) Λ = 0.85◦
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(b) Λ = 4.26◦
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(c) Λ = 8.47◦
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(d) Λ = 13.81◦ (resonant case)

ï180 ï120 ï60 0 60 120 180
0

5

10

15

20

25

30

35

40

45

Ω [deg]

i
[d
eg

]

(e) Λ = 16.59◦
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(f) Λ = 20.43◦

Figure 4. Scatter plot of the time-series, over 100 years,
of inclination and ascending node, for two different initial
lunar node positions for each value of Λ.



6. DISCUSSION

6.1. Accuracy of Averaged Equations

The dynamic behavior underlined by our model is in good
agreement, both qualitatively and quantitatively, with the
precise numerical integrations of Anselmo and Pardini
[3]. We attribute any quantitative differences to our use
of the Hill approximation for lunar perturbations and our
neglect of Earth shadow effects. Though neither of these
secondary perturbations had any significant long-term ef-
fects, they can easily be included into our framework.

The Third Harmonic : The perturbation potential re-
sulting from the third harmonics (parallactic term) is

Rp,3 =
µp

2d4p

[
5(r · d̂p)

3 − 3r2(r · d̂p)
]

(15)

Averaging Eq. 15 over the mean anomaly of the orbiter,
computing its partials, and substituting them into Eqs. 3
and 4, the secular equations can be stated as

ḣp,3 = −15aµp

16nd4p

{
5
[
7(d̂p · e)2 − (d̂p · h)2

]
e

− 10(d̂p · e)(d̂p · h)h+ (1− 8e2)e

}
· ˜̂dp

(16)

ėp,3 = −15aµp

16nd4p

[{
5
[
7(d̂p · e)2 − (d̂p · h)2

]
h

− 10(d̂p · e)(d̂p · h)e+ (1− 8e2)h

}
· ˜̂dp

− 16(d̂p · e)h̃ · e
]

(17)

SRP with Earth Shadow Effects : Using E as the in-
dependent variable with E1 and E2 being the shadow exit
and entry points, the first-order perturbations can be de-
rived in closed form as [1]

Ḣsrp =
aβ

2πd2s

{[
3

2
eE −(1 + e2) sinE +

1

4
e sin 2E

] ∣∣∣∣
E2

E1

˜̂e · d̂s + h

(
cosE − 1

4
e cos 2E

) ∣∣∣∣
E2

E1

˜̂e⊥ · d̂s

}

(18)

ėsrp =
1

2π

√
a

µ

β

d2s

[(
e cosE − 1

4
cos 2E

) ∣∣∣∣
E2

E1

˜̂e · ˜̂e

+ h

(
3

2
E − e sinE − 1

4
sin 2E

) ∣∣∣∣
E2

E1

˜̂e · ˜̂e⊥

− h

(
3

2
E − 2e sinE +

1

4
sin 2E

) ∣∣∣∣
E2

E1

˜̂e⊥ · ˜̂e

+ h2

(
1

4
cos 2E

) ∣∣∣∣
E2

E1

˜̂e⊥ · ˜̂e⊥
]
· d̂s (19)

where h =
√
1− e2, and ê⊥ =

˜̂
h · ê.

6.2. Systematic Structure in (i,Ω) Phase Space

The distribution in (i,Ω) phase space for HAMR objects
is the same systematic structure that the uncontrolled
GEO satellite population exhibits. For inactive satellites,
the oblateness of the Earth and the gravitational pull from
the Moon and the Sun force their orbital planes to precess
around the Laplace plane (vide Fig. 1). On the Laplace
plane, the secular orbital evolution driven by the com-
bined effects of these perturbations is zero, so that the
orbits are frozen. This structure for HAMR orbits im-
plies that the classical Laplace plane can be generalized
to accommodate SRP, which is a topic of future research.

7. CONCLUSIONS

We presented a complete non-singular formulation of
first-order averaging based on the Milankovitch elements.
This model accurately captures the long-term orbit be-
havior, and allows for the general nature of their evolu-
tion to be understood. We identified the Saros secular
resonance and a systematic (i,Ω) phase space structure.
Future work will investigate more realistic SRP models.
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