THE SOFTWARE ARCHITECTURE OF THE UPGRADED ESA DRAMA SOFTWARE
SUITE

Christopher Kebschull”, Sven Flegel, Johannes Gelhaus", Marek Mockel?, Vitali Braun", Jonas Radtke",
Carsten Wiedemann'", Peter Vorsmann'!, Noelia Sdnchez-Ortiz®, and Holger Krag®

(Dnstitute of Aerospace Systems, TU Braunschweig, Hermann-Blenk-Str. 23, 38108, Braunschweig, Germany
D DEIMOS Space S.L.U., Ronda de Poniente 19, 22, Tres Cantos, Madrid, 28760 Spain
(ESA/ESOC (Space Debris Office) , Robert-Bosch-Str. 5, 64293 Darmstadt, Germany

ABSTRACT

In the beginnings of man’s space flight activities there
was the belief that space is so big that everybody could
use it without any repercussions. However during the last
six decades the increasing use of Earth’s orbits has lead
to a rapid growth in the space debris environment, which
has a big influence on current and future space missions.
For this reason ESA issued the ”"Requirements on Space
Debris Mitigation for ESA Projects” [1] in 2008, which
apply to all ESA missions henceforth. The DRAMA (De-
bris Risk Assessment and Mitigation Analysis) software
suite had been developed to support the planning of space
missions to comply with these requirements. During the
last year the DRAMA software suite has been upgraded
under ESA contract by TUBS and DEIMOS to include
additional tools and increase the performance of exist-
ing ones. This paper describes the overall software ar-
chitecture of the ESA DRAMA software suite. Specifi-
cally the new graphical user interface, which manages the
five main tools ARES (Assessment of Risk Event Statis-
tics), MIDAS (MASTER-based Impact Flux and Damage
Assessment Software), OSCAR (Orbital Spacecraft Ac-
tive Removal), CROC (Cross Section of Complex Bod-
ies) and SARA (Re-entry Survival and Risk Analysis) is
being discussed. The advancements are highlighted as
well as the challenges that arise from the integration of
the five tool interfaces. A framework had been devel-
oped at the ILR and was used for MASTER-2009 and
PROOF-2009. The Java based GUI framework, enables
the cross-platform deployment, and its underlying model-
view-presenter (MVP) software pattern, meet strict de-
sign requirements necessary to ensure a robust and reli-
able method of operation in an environment where the
GUI is separated from the processing back-end. While
the GUI framework evolved with each project, allowing
an increasing degree of integration of services like valida-
tors for input fields, it has also increased in complexity.
The paper will conclude with an outlook on the future de-
velopment of the GUI framework, where the potential for
advancements will be shown.

Key words: DRAMA; GUI; architecture; upgrade.

Proc. ‘6th European Conference on Space Debris’
Darmstadt, Germany, 22-25 April 2013 (ESA SP-723, August 2013)

1. INTRODUCTION

Within the upgrade of the DRAMA software suite four of
the original tools have been upgraded as well as gained
new features. These are ARES (Assessment of Risk
Event Statistics), MIDAS (MASTER-based Impact Flux
and Damage Assessment Software), OSCAR (Orbital
Spacecraft Active Removal) and SARA (Re-entry Sur-
vival and Risk Analysis). For the new DRAMA version a
fifth tool called CROC (Cross Section of Complex Bod-
ies) has been developed. It is able to calculate the cross
section of a complex shaped object. The object model,
which the calculation is based on, can be assembled in
a 3D user environment developed by DEIMOS [2]. It
is part of the DRAMA graphical user interface. ARES
as well as MIDAS gained the ability to use MASTER-
2009 as a data backend [3]. ARES itself now can use a
customizable radar equation as well as new customizable
uncertainties and scaling factor look-up tables [4]. In MI-
DAS the user can specify custom ballistic limit equations
(BLE). OSCAR was redesigned so it can model the future
solar and geomagnetic activity using a variety of stan-
dardized approaches. Also it received an update for in-
vestigating de-orbit maneuvers using drag augmentation
devices [5]. All disposal scenarios investigated with OS-
CAR are checked regarding the compliance with the UN
Space Debris Mitigation Guidelines [6]. SARA received
minor updates for better integration with the new graph-
ical user interface (GUI). While all tools are stand alone
command line interface (CLI) applications, they are also
embedded in a new GUI, which uses a similar look and
feel as MASTER-2009 and PROOF-2009. The layout
and the basic features will be described in the following
section.

2. FEATURES OF THE GUI

The basic layout of the DRAMA GUI is composed of
four areas as shown in Figure 1. The toolbar on the top is
responsible to give the user control over the application
and the projects. Here new projects can be created,



'_an

DRAMA v20 Be(a default

BHB*E

Open Save SaveAs PDF Import

= Wt BSOS 3 U

Export Run Plot

L@I

CState Help PlotHelp

? 50

Reset Remove About Settings Quit

Toolbar

N o

ARES MIDAS OSCAR CROC SARA

Basic Settings

Population Settings

Begin date [2004/01/01 00 ]

Argument of Perigee [deg] [2.0

Mean Anomaly [deg] 0.0

Import Orbital States

World Population

Assumed World 7.0E9 |

REENTRY | RISK |

DRAMA
total cas.prob. for 2D swaths, PD=fct(lon,lat), Pop=7.000E+09
run ID: defaul; Pc[-] = 3.008E-04; objects: 11; Ac[m?]= 11.02

Alt [km]

Comments "

J +160 Result Window
|DRAMA - Default Settings | +140

[Debris Risk Assessment and Mitigation Analysis | +120

Initial Orbit Conditions +100

Semi-Major Axis [km] 6528.0 +80

Eccentricity [-] 0.0010 +60

Inclination [deg] 10.0 +40

Right Ascension of Ascen... [7.3 +20

+980

+60

Lon [deg] +120,7580

Material & Object Definitions

T Material Definitions (‘%] Object Definitions

Sidebar

Driver file | Data file

REBRB IR

---- DRAMA ( Re-entry Risk Analysis v 1.2 ) =---
ESA Aug 2012

gnuplot driver file -risk_hms.gnu-
run datettime: Tue Apr 9 11:48:13 2013

set style data lines
set term png large enhanced font Vera 14
set xlabel "Lon [deg]

set format x "¥4-3.0f

set ylabel Lat (deg]"

set format y "$+-2.0f

set zlabel "Alt (km]

size 640, 480|

Global Casualty Probability |

| Global Impact Probability |
Tot. Cas. Prob. 2D |
Tot. Cas. Prob. 3D

[ Tot. Cas. Prob. Close-up 2D

| Tot. Cas. Prob. Close-up 3D |

Statusbar

T -

Figure 1. The layout of the new DRAMA GUI

existing ones can be opened or the settings can be
changed. On the left hand side in the sidebar the user can
change the settings for each tool that is part of DRAMA.
First the tool needs to be selected, which happens on
top of the sidebar, as shown in Figure 2. Then one or
more settings sections appear below. Using the Apply
or Cancel buttons saves or discards the changes the user
has made. Once the settings are in order the user can
execute a tool by pushing the Run button on the toolbar.
The selected tool is being executed and generates its
results. The results can be in the form of simple text files
or plot driver and data files, which are compiled to image
files using the open source tool GNUPLOT. The results
are displayed in the result window. Multiple results
are grouped into tabs. While the tools are executing, a
status window is displayed showing the progress of the
computation. The progress is also visible in the statusbar
on the bottom of the DRAMA window.

When DRAMA is started up for the first time the
user is asked for a workspace directory. The workspace
is a folder where DRAMA stores projects. After creating
the workspace a first project called default is created.
The sidebar is filled with settings that are shipped with
the software. The user can also create new projects or
open existing ones. Each project has an associated folder
within the workspace. In the project folder all project
related data is stored. When changes to the settings of
the tools are made through the sidebar, a tool specific
folder is created. It stores the configuration files. Also
part of the project handling is the functionality to export

projects. When using the corresponding button on the
toolbar the current project folder is compressed into
a single file, which can be distributed easily. Before
executing a tool, the configuration of the settings must
be finished. Unsaved changes to the settings are made
visible in the sidebar. Using the Apply button in each
sidebar section commits these changes. Using the Cancel
button these changes are discarded. The user also has
the ability to reset all settings either to factory defaults
(shipped defaults) or the input files via a button in the
toolbar. All entries that are done via the sidebar or
an associated dialog are validated through the GUL
Each input field is able to indicate whether an entry is
permitted. For example textual inputs are not permitted
where decimals are expected. This validation also takes
lower and upper limits into account so that inputs can be
limited to a specified range. For example the MIDAS
particle size range has been set to [107%,100.0]. The
Apply button is greyed out as long as at least one input
field in the sidebar section is invalid. This means that the
user is not able to commit the changes nor execute the
selected tool with the current configuration. Each input
field in the sidebar is provided with a tool tip which can
be activated by hovering with the mouse over a given
field. The content of the tip contains information about
the field and upper or lower boundaries monitored by the
validation process.

The result window not only displays a given text or
image but also related information. For example each
image was created by the means of GNUPLOT and



B

ARES MIDAS OSCAR CROC SARA

Basic Settings

Population Settings

Begin date [z004/01/01 00 |
Comments
Run-ID [defaul |

[DRAMA - Default Settings |

\Debris Risk Assessment and Mitigation Analysis |

Initial Orbit Conditions

Semi-Major Axis [km] [6528.0
Eccentricity [-] [0.0010

Right Ascension of Ascen... \?.3

Argument of Perigee [deg] [2.0

|

|
Inclination [deg] [10.0 ME

|

|

|

Mean Anomaly [deg] [0.0

‘ Import Orbital States [ :

World Population

Assumed World Population |7.0E9 |

Material & Object Definitions

«_’? Material Definitions i'»j Object Definitions
Apply H Cancel ‘

Figure 2. The sidebar showing the content of the Basic
Settings section of the SARA tool

therefore also has a linked plot driver and at least one
data file. Both are displayed in the lower part of the
result window. The user is able to manipulate the plot
driver file, store the changes and replot the image within
the window. This can be achieved by right clicking on
the image or the driver file. All of these files are kept
within the project directory in the tool specific output
folder. In the case that an image needs to be available
as an EPS instead of a PNG file it can be exported by a
simple right click on the given image. The dialog that
appears when selecting “Export to EPS” asks the user to
specify a folder where the image should be generated.
Using the PDF button in the toolbar DRAMA generates
a PDF report based on the available data. The user can
decide which tool he wants the PDF generated for, as
well as which content should be included: results, input
files, plot driver files or data files.

The overall settings of the DRAMA application can
be changed using the settings menu. Within the settings
menu numerous binaries can be specified. For example
the user can choose which PDF viewer should be used
to show the help files or the generated report. Each tool
has its own binary. In the settings the tool specific binary
path can be set to a different location. When DRAMA
starts up it checks whether the paths to the given binaries
are correct and prompts the user for input in case they
are not. While all binaries can be executed locally,

meaning the machine where DRAMA is started on, in
the final version of DRAMA the user can also specify
a remote host in the settings, where the binaries will
be executed. The remote execution transfers required
data to the remote host and retrieves the results once the
process has finished. In this use case the local machine
does not execute any computations of the tools. It simply
displays the GUI and manages the remote executions.
This feature however is still under development.

3. ARCHITECTURE

* Used for MASTER-2009 and PROOF-2009

Figure 3. The architecture of the DRAMA software suite

The DRAMA software is designed to strictly separate the
computations done by the tools ARES, MIDAS, OSCAR,
CROC and SARA from the GUI. The tools themselves
are command line applications and can be executed inde-
pendently, as shown in Figure 3. The GUI was developed
to be platform independent using the Java programming
language. It can be executed on Windows, Linux and OS
X given that a Java Runtime Environment (JRE) 1.6 or
above is installed. Each tool has been compiled specit-
ically for a given platform. During the installation rou-
tine the installer deploys the platform specific binaries of
the tools and configures the GUI accordingly. The GUI
uses its configuration to locate and call each tool. Fur-
thermore it is able to encapsulate every tools’ configura-
tions into a project structure, which can be modified as
needed using the input fields in the sidebar of the GUI,
as shown in Figure 4. The GUI monitors the input done
by the user and writes it into the respective input files,
when all inputs have passed the validation process. After
the files have been written, the user can execute the se-
lected tool. The GUI then makes a call to the tool via the
command line and sets its working environment to the
project directory’s tool specific folder. The tool then is
executed within the project and generates its results. Out-
put files are stored in the output folder. An overview of
the folder structure is shown in Figure 5. Plot driver files
are then passed on to the GNUPLOT executable. It gener-
ates PNG image files. These are then displayed in the re-
sult window. Results which have been stored as text files
are handed over to the result window directly. Each tool



GNUPLOT

Figure 4. Internal processes of the DRAMA sofiware suite

except SARA supports so called Run-IDs. They define
which files in a tool’s output folder are associated with the
current simulation. The generated files with a given Run-
ID are removed from the associated output directories,
files of different Run-IDs are kept. These results then can
be recalled without executing the tool again, given that
the correct Run-ID is specified. This can be achieved in
the Basic Settings sidebar section each tool has.

Workspace folder

[ I
Project_2

]
| | ] ] |

ARES OSCAR SARA

Project_1 Project_3

input output || input output input output

Figure 5. The folder structure of a DRAMA workspace

3.1. Model-view-presenter Paradigm

The GUI was created using the Java language. The soft-
ware design pattern is based on the model-view-presenter
(MVP) paradigm [7]. The basic idea behind the MVP is
to separate the data model from the viewing tasks of an
application. The presenter part acts as a manager between
them, as shown in Figure 6.

o Model - holds the information

e View - displays the information and receives the
user interaction

e Presenter - is the link between model and view
which manages the synchronization between them
and defines the behavior of the application

Remote/Local Host

Presenter

Commands

1
|
I
I
:
I
Actions/Events :
|
|
!
|
|

Figure 6. The model-view-presenter design pattern

The GUI relies on the Java Swing library to visualize
its views. However by design any other library can be
used instead because the view interface definitions do not
show any dependencies to a specific graphics library (e.g.
Swing, AWT or SWT). In the implementation, however,
the graphics library Swing was chosen as the front-end
for the application. The chosen MVP approach enables a
client-server architecture, where the model can reside on
aremote host (server), while the view resides on the local
host (client). The presenter is responsible for managing
the data model, how it is stored and accessed by the view.
Implementing the MVP design pattern results in a more



complex project structure and an increased implementa-
tion effort. For every input field that is needed in the side-
bar three classes have to be created. For a simple text
field this results in TextFieldPresenter, TextFieldView and
SwingTextFieldView classes in the DRAMA GUI project.
The presenter handles how to store the data model, in
this case the content of the text field, and acts on the
user’s input by implementing the validation process. The
TextFieldView itself is an interface, that provides the pre-
senter with the methods it needs to control the displayed
user interface uncoupled from the implemented graph-
ics library. This includes for example methods for dis-
playing detected input errors by the validator subsystem
or enabling and disabling the Apply and Cancel buttons
based on the determined validity of the input. The Swing-
TextFieldView is the implementation of the just described
interface using the Swing graphics library. It actually
places the input field in the sidebar. It could easily be
replaced by a different appearance and graphics layout,
while the functionality is guaranteed to remain the same
due the interface of the presenter. This defined hierarchy
is strictly implemented throughout all inheritance layers
of the DRAMA GUI project. Not only makes this ap-
proach the front-end replaceable but it also enables the
ability for the application to execute the tools remotely
(remote data model in the form of input and output files)
and view the generated results on the user’s desktop com-
puter.

4. FRAMEWORK

The DRAMA GUI was developed with the goal to have
the same look and feel as MASTER and PROOF-2009.
For this reason a framework had been developed that
ensures the same behavior in all future GUI projects.
The framework is also based on the MVP paradigm and
provides key functionalities, like the basic layout of the
main window, as shown in Figure 1 or the ability to
manage project structures, read and write input files,
execute binaries within the project structure etc. Due
to using this framework these core functionalities can
be reused in every GUI project and do not have to be
redeveloped individually, but can be adapted to fit the
needs of the specific project requirements. For example
for DRAMA the framework has been extended with new
features like handling multiple tools instead of one as in
MASTER and PROOF-2009.

Figure 7 shows the parent-child hierarchy as it ex-
ists in the DRAMA GUIL The example shows the Basic
Settings sidebar section for the SARA tool. From the
top presenter layer (ProjectPresenter) to the bottom
layer (BeginDatePresenter) all presenter classes and
associated view classes are in a parent-child relationship.
The BeginDatePresenter is the child to the BasicSet-
tingsPresenter while the BasicSettingsPresenter is a
child to the SARAModulePresenter etc. The advantage
of building up this kind of hierarchy is first the logical
structure itself. In each layer of the hierarchy the parent
and child classes are able to interact. The parent class

ProjectPresenter

SidebarPresenter

]
v v v

SARAModulePresenter

¥ i ¥

BasicSettingsPresenter

]
2 v ¥

BeginDatePresenter

Figure 7. The parent-child hierarchy in the DRAMA GUL
The hierarchy as it exists for the SARA Basic Settings sec-
tion Begin Date as shown in Figure 2

can broadcast to its children to enable or disable their
controls and the child classes can pass up their status.
For example the input field can be in a valid or invalid
and stored or not stored state. The parent classes can then
determine whether the Apply or Cancel buttons should
be active.

Figure 8 shows the core functionalities of the framework
with respect to their MVP domains. As stated before in
the view domain the Java native graphics library Swing
has been used to implement the controls the user is
interacting with. The interaction can be categorized into
Actions and Events. Actions are direct interactions of
the user with the GUI, like pushing a button or typing
in an input field. Events on the other hand are triggered
reactions of the system to certain parameters like the
response of the validator to correct or incorrect inputs
in the field. It will cause the Apply button to be greyed
out and the warning icon to appear. While Events and
Actions are directly connected with the view domain,
their processing is done in the presenter domain where
an Event Bus is available. The Event Bus is built in
through all child classes of the ProjectPresenter. 1t
enables each layer to act individually on Events. This
way dependencies between different sidebar entries
can be achieved. Information can be passed to another
presenter uncoupled from the parent-child layer they
are part of. All presenter instances listen on the same
Event Bus. To act on different kinds of Events so called
Event Handlers are provided by the framework. They
can be implemented to act on any Event that is fired and
broadcasted to all presenters on the Event Bus. With the
implementation of an Event Handler for a given Event
the presenter is given the means to act on input values. In
ARES and CROC for example functionality modes can
be selected by the user. Depending on the mode, input
fields or entire sidebar entries are enabled or disabled.
While enabling and disabling input fields is done in layer



four of the parent-child hierarchy the same mechanism
for the entire sidebar section has to be applied one layer
above. In both layers Event Handlers are implemented,
which are able to react on the same Event. In the
depicted case it is an ValueChangedEventHandler that
has to be implemented. The value of the input field will
be checked within that Event Handler and the enabled
or disabled state will be set accordingly. The value of
the input field is part of the model domain. It is however
encapsulated within the presenter and monitored by the
validator. When the value conflicts with the bounds set
for the validator it causes the input field presenter (e. g.
the BeginDatePresenter in the sample above) to switch
into the invalid state. Due to the parent-child relation the
invalid state is passed up to the Basic Settings sidebar
section. This behavior of the system also reflects on
other parts of the framework like the Executor Service. It
denies the execution of the SARA binary while at least
one configuration value in the corresponding sidebar is
invalid. The Executor Service allows for synchronous or
asynchronous execution of threads. It queues pending
executions and monitors their state. Internally the
executables, which are handled by the Executor Service
are called Commands. They can have two states. Either
they are dispatched which means they are in the queue
or already executing or they are released. When a
Command has finished its execution it is released. The
state of a Command can also be transmitted through
the Event Bus. An Dispatched or Released Event is
fired when a Command’s state changes. The Command
is the last abstraction layer with the presenter domain.
It comes directly in contact with the command line or
remote interface. Within a Command the operating
system depending binary of each tool is called and
monitored. Also the Command interface provides a
progress monitor as well as a log file reader. As a binary
is running, the corresponding Command makes sure that
the user is informed of its progress and any available log
information is shown in the statusbar. Before a tool is
called the 10 Operations are executed. They write the
input files given that the validation process is passed.
After a tool has finished executing, its results are read
back within the Command and distributed to the result
window (output presenters) over the Event Bus. In turn
these presenters will either display the results via their
associated views or pass them along to the GNUPLOT
Command for further processing, as shown in Figure 4.

4.1. Remote Execution

By design Commands can be executed locally or re-
motely. With default settings the DRAMA GUI is started
as a standalone application, which expects its tool bi-
naries (ARES, MIDAS, OSCAR, CROC and SARA) to
be available on the local filesystem. With the use of
the described Command interface in the framework they
are called and executed on the same machine as the
GUI. However it is also possible for the Command to
be handed over to a remote machine where its execution
is realized. For this service to work, a modified version

View Domain

_iv i I: uﬁ
Presenter Domain
!
| Model Domain
i
S —

Figure 8. The GUI framework deploying the model-view-
presenter paradigm

of the GUI application has to be provided. In this sce-
nario the modified version is the server. It is executed
on the remote machine. The Executor Service of both,
the client (original DRAMA GUT) and the server are able
to communicate by the means of Java Remote Method
Invocation (RMI) [8]. On the server side all the bina-
ries of the tools have to be present. For the client this
is no longer the case. After the server ran a Command,
thus executed a binary, it submits the results back to the
client where they are displayed or further processed by
GNUPLQOT. Even the GNUPLOT Command can be ex-
ecuted remotely. This kind of architecture has a couple
of advantages for the user. First the user does not need
to install the entire DRAMA software suite but rather re-
trieve the GUI executable, which could simply be done
over a web browser. When executing the DRAMA GUI
it can be configured so it automatically tries to connect
to a dedicated server. The server can be reachable over
a companies local area network or the internet. The sec-
ond advantage for the user is that updates to the bina-
ries and operational data like the solar activity data are
managed on the server side. This is especially appealing
for unsupported operating systems. While the Java based
GUI is executable almost on any platform the tool bina-
ries are restricted to Windows, OS X and Linux on Intel
x86 compatible processors. Due to the remote interface,
any machine running a compatible JRE is able to execute
DRAMA. Please note that the client-server functionality
is in the testing stage for MASTER-2009 and is currently
under development for DRAMA.

5. FUTURE IMPROVEMENTS

For the DRAMA GUI the original framework, which
was used for MASTER-2009 and PROOF-2009, had to
be modified so it could handle a more complex setup.
The major difference between MASTER/PROOF and
DRAMA is the number of tools the GUI is able to control.
For MASTER-2009 it was only a single binary that had



to be executed. In DRAMA there are five tools and all to-
gether six binaries (SARA consists of the binaries RISK
and REENTRY). Each binary needs its own input files
and generates a number of different results which need to
be considered by the result window. During the develop-
ment of DRAMA this complexity led to an increased im-
plementation effort especially on the IO Operations side.
This is due to the fact that the compatibility between the
DRAMA file handling and the file handling of the binary
has to be guaranteed. With the current process where the
GUI generates the input files for the tools and the tools
then have to read the files there is an increased chance
for errors. Not only are the file handling interfaces writ-
ten in different programming languages (Java and FOR-
TRAN) but also they are implemented very differently.
A lot of testing had to go into this issue to confirm the
proper working of this approach on both sides. Another
downside to this approach is that at the moment when
changes occur in the input file, e. g. the layout is changed
by adding a new line to hold a value, both 10 implemen-
tations have to be altered and re-tested.This overhead of
implementing IO handling in both the GUI and the bi-
naries can be reduced by creating a directly callable in-
terface between the Java GUI and FORTRAN binary. In
the current process the only interaction between the GUI
and the binary is by calling it via the command line in-
terface. The information exchange is done via the input,
progress and log files, which have to be written and read
by them accordingly. By implementing a new interface a
future GUI would not have to read or write any files but
rather invoke FORTRAN routines, which are prepared in
the binary as shown in Figure 9. The binary itself would
handle its own IO Operations while the GUI uses the de-
fined callable routines through the Management Interface
to exchange information directly. Note that the binary can
still be called via the command line interface but there is
no command line interface involved between the GUT and
the binary. The Java Native Interface (JNI) or Java Native
Access (JNA) libraries can be used to achieve these inter-
actions between Java and a binary. The use of this kind
of interface would improve the performance of the sys-
tem because of the drastically reduced use of the filesys-
tem for exchanging information between the GUI and the
binaries. The complexity of the GUI project and the im-
plementation and testing effort in the development stage
would likely be decreased.

6. CONCLUSION

A summary of the features of the new DRAMA GUI
has been given. Also the general structure and internal
processes of the software suite has been discussed. It
has been shown that the model-view-presenter paradigm
has been used to support the on-going developments for
remote execution of the DRAMA tools on a dedicated
server by the means of Remote Method Invocation. The
functionalities of the underlying GUI framework, which
had been used in previous projects, has been explained.
Due to the increased complexity of the DRAMA GUI,
potentials for improvements in future projects could be

ommand Line Interrace

Call

Management Interface
Core

call ! ﬁAccess

Functions C D
-D"H a
glnvoke ﬂ Store

Access

Figure 9. New interfaces enable a simple transfer of in-
Jormation between the GUI and the binary. The filesystem
is no longer used for exchanging data.

identified. Utilizing the Java Native Interface or Java
Native Access library could reduce the development ef-
fort and increase the performance of the system.

REFERENCES

1. ANON., ESA Requirements on Space Debris Mitiga-
tion for ESA Projects, 2008.

2. Sénchez-OrtizN., et al., (2013), Computation of Cross
Section of Complex Bodies in ESA DRAMA tool, Darm-
stadt, April 2013

3. Gelhaus J., et al., (2013), Upgrade of DRAMA - ESA’s
Space Debris Mitigation Analysis Tool Suite, 6th Eu-
ropean Conference on Space Debris, Darmstadt, April
2013

4. Dominguez-Gonzalez R., et al., (2013), Update of
ESA DRAMA ARES, 6th European Conference on
Space Debris, Darmstadt, April 2013

5. Braun V., et al., (2013), Upgrade of the ESA DRAMA
OSCAR 1ool, 6th European Conference on Space De-
bris, Darmstadt, April 2013

6. ANON., UN Space Debris Mitigation Guidelines,
2007.

7. Bower A., McGlashan B. (2000), Twisting The Triad
The evolution of the Dolphin Smalltalk MVP appli-
cation framework., Eighth ESUG Smalltalk Summer
School, Southampton, UK, August 28th - September
1st

8. Kriiger G. (2002)., Handbuch der Java-
Programmierung, Addison-Wesley, 3. Auflage.



