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ABSTRACT

We propose atype of admissble-regon aralysis for track
initiation in multi-satellite problems when angles are the
primary observalde. For a ecified recargular partition
in the pace & orbital elemerts, we gresert explicit upper
and lower bounds, and other congraints, for the values of
range and range rate that will lead to initial orbit
hypaheses(data asociation hypahese$ asociated with
that partition. These bounds dlow us to generate
candidate orbits in an embarrassirgly parallel fashion
becawse eacheement-space partition can be handed
indeperertly of the others. Meagsired or derived argle
rates provide additional bounds on rarge ard rarge rate,
also permitting the same parallelization.

1 INTRODUCTION

We begin with the angles-only case, in which argle rate
values are ot availade a are o inaccuate for reliabe
use. Asuume that we have a pair of line-of-sight unit
vecors u; and wuw; , measred at time t; at dtation
postion R; ard time t; at dation postion R;
repecively. Asuume without loss of genedity that
t; >t; . We want to test the hypothesis that these two
observations are asociated with the same space dject
To this erd, we atacha st of hypothetical range values
{pim,m=12,..} and {p;,,n=12,..} repecively,
to eachof thee measired unit vecors ard then generate
candidae orbits by solving Lambert’s problem for eat
of the pair-wise combinations of hypahetical orbital
position vedors 1, =R;+p;pu; ad 1, =R; +
pjn W; . In principle, we can consider al possille pairs of
observations and lve the family of Lambert problems
for each pair. Then each hypothetical orbit from the
solution of Lambert’s problem is a dda assdation
hypahess that must be ether confirmed or eliminated
through compaisons with other observational daa.
Given enoudh range hypotheses for each observed line of
sight, we are guararteed to gererate aviable candidate
orbit for ewvery object that has been observed at two or
more distinct times. However, the Cartesian product of
the st of range \alues for eachobserved line o sght
with the sets of range values from every other line of
sight implies a possibly prohibitive nunmber of Lambert
solutions to geneate and check. The computationd
complexity for generating hypathetical orbits on this
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approachis quadatic in the number of observed lines of
sight and dso quedratic in the number of range
hypaheseghat we atach to the doservations.

How should we limit the number of range hypotheses to
make the total number of candidate abits manageable
while dso generating candidates that are likely to
correspord to red orbits of interest? For the purposes of
this dscusson, let us sek to generate hypotheses for
orbits that lie only in a bounded region of semimajor axis
a , eccelbricity e , inclination I and right ascenson of
the ascending nale Q , namely, within a partition of the
element space pecified by the intervals [ayy , Amax] s
[emin » emax] » [Imin » Imax] @nd [Qun , Quax] - Then, to
the etent that we can redrict the gereraton of
hypathetical orbits to a spedfied partition of the spaceof
orbital elements, we have paradlelized the task of
building a @talog of objects detected within that
partition. The reason is that eachpartition canbe hardled
independently. In the gpproach autlined hee, al the
ob=rvations woud have to be considered for each
partition of the space of orbit elements. However, by
constructing uppea and lower bourds on range for eat
meagsired line o sght for ead partition of the element
space we limit the number of range hypotheses that have
to be cansidered for eachpartition. This approachallows
us to consder a manageale nunber of range hypotheses
for eachpattition, smply by making the partitions small
enough and usng more procesrs to cover the whole
element space.

We seek explicit bourds onrange and posibly range rate
that can be gpplied for each individua angle-basd
observation, or & mod to pdrs of ange-basd
observations Even with the further restriction that
hypahetical orbits be dliptical and Keplerian (which we
accep) ard ewen allowing the posshility that the
observation may indude angle rate values, it may na be
obvious that efficient bourds having these propeties can
be obtained. Exad bownds would have to be based on
some admissible-region andysis of the type developed
by Milani [1], Tommei [2], Maruskin [3], Fujimoto [4]
and others [5,6]. For example, dencting the gravitationd
parameter by u , we write the first integrals of Keplerian
motion as

energy: E = (i-1)/2—pu/|Irll 1)
angular momentum: h=rxr 2
Laplace vector: pe=1X (rxr) —ur/|r]] (3



Given the vedor triangle relation r = R+ pu and its
time derivatve for each observaton, we can define
admissible regions in the (p, p) plare for eachpartition
in the space @ elements by mears of inequalitiessuch as

—u/QRavy) £ E < —pu/(2ayvax) 4)
cos Iyax < (h/[[h]]) -k < cos Iyy (%)
emiv < |le]l < emax (6)

Here Kk is the north polar unit vedor in the Earth-centered
inertial frame. For eachobservation, the values of rarge
and range rate that satisfy these inequalities will result in
orbits that lie only within the given partition of the space
of dements. DeMars ard Jah [7] have $hown what the
admissible regions look like for partitions of semimajor
axis and ecceftricity by a numerical treatment of
inequalities equivalert to (4)-(6). Marusin, et d. [3],
have shown how the admissble regions evolve in time
ard how the overdap of the adnissble regons for
different observations canhelp solve te data asociaton
problem Tommei [5] ard Famoccha [6] have abko
addresed the data asociaton problem in tems of
admissble regons. However, even though Egs. (1)-(6)
can be reduced to polynomial forms in range and range
rate, eachrelaion is coupled in both variabes ard the
polynomial degreeis high, preventing us from obtaining
explicit expressions for rarge ard rarge rate in terms of
the given data. Moreover, the wual admissble-region
aralysis leads nowhere if argle rates are rot availabe.
For example, the trackinitiation method of DeMars, et
al. [8,9], invalving multiple hypotheses on range and
range rate, requiresboth arngle ard argle rate values

Our emphesis on geneating candidate orbits with a
Lambert-based approach in the amlesonly cags may
require some explanation. Certainly, the bounds on range
that we present here caild be wed in a variety of ways
with other angles-based initial orbit determination
methods. All the traditional methods of angles-only orbit
determination, plus the modern methods of Gooding
[10], Mortari and Karimi [11], and others, rely on solving
for the range by ethe a root-finding method or an
optimization method Such algorithms can dways be
made to work more reliably when rigorous uppe and
lower bounds on the urknown quantity are available.
However, one ercounters at leas three dfficulties in
trying to apply dired angles-only methods to a large,
multiple-target catalog-building scenario.

First, dthough the range bounds presented here alow
one to accep or rgect cardidate lutions based on
range for methodslike Gooding's the range estimation is
tantamourt to the camplete solution. Therebre, with a
dired anges-only method one ill has to compute the
complete orbit solution in terms of the observationsin
order to find out if the range estimate sdisfies the
bourds In our proposd Lambert-based approach the

range bourds dlow us to avoid most of the potential
computation for the candidate orbits.

Secand, the drect argles-only methods do ot scde to
large problenms aswell asa Lambent-based method does.
Given N observations of line of sght, the computational
load of Lambert-based methodsis propational to N2,
because two ob®rvations pe daa asodation hypothesis
are reeced The “constant” of propationality is itself
guadratic in the nunmber of range hypotheses that mug be
considered for eachline o dght. Howewer, as noted
alove, the latter number can be diven down to
maregealle s$ze in ead partition of the dement space ly
making the partitions small. With traditional methods of
angles-only initial orbit determination, one faces a
computational load that is propational to at least N3,
becase at leas 3 dbservations must be asociated
together to compute the range ard hence te camlidate
orbit. The methods developed by Mortari and Karimi
[11] are more robust than traditional methods, but these
also require at leas 3 dbservations per asociaton
hypahess. In fad, the approach of Mortari and Karimi
works better with more observations pa asdation
hypahess, but then one faces a canputational load that
scaleslike N4, N°, or even higher.

Third, a Lambent-based method, ideally implemented,
will produwce a cadidate orbit for every object that has
been observed at leas twice. In comparison, a drect
angles-based method, such as Gooding’s, will produce
cardidate abits only for those real objects that have been
observed at least 3 times. An N* method will produce
cardidate abits only for thase real objects that have been
observed atleas 4 times, ard so on. Herce, the Lambert-
based method may do amore conmplete job of generating
viade cardidate abits from real datasets, while scding
more favorably than the dired angles-based methods for
large nubers of observations

In the present andysis, we take a geometric and
kinematic approachthat leads to explicit upper and lower
bourds on the posible vaues of range for each
observation, given only ange data atdiscrete times In
fact we dexribe sewveral inequalities that must be
satisfied smultaneaisly, ard we can take the most
restrictive superpostion of the different bounds as our
working reallt. In cag ange ratesare awilade, we can
obtain explicit uppe and lower bownds on range rate, as
well asadditional bounds on rarge. It may happen that,
for a given dbservation, there are no vaues of the range
or range rate that lead to orbits within the given eement-
space prtition, so that the observation can be eiminated
from further consideraion. We desribe explicit
conditions for the existence of posible values of range
and range rate, in terms of the observation itself.



2 BOUNDS ON RANGE IMPLIED BY
ANGLES

Here we describe bourds on range that must hold for
eat obsrved line of sight. Assuming that al orbits of
interest are dliptical, require that the orbital radii lie
between the maximum specified apogee ad the
minimum specified perigee:

[amin (1 — emax)]? < Irll? < [amax(1 + emax) ] (7)

The values of range that correspord to tese limits on
orbital radius can be found explicitly by inserting the
vedor triangle relationship r =R+ pu . Considering
the perigee a apogee cass separately, we arive ata set
of quadratic inequalities that restrict the posside values
of range to finite intervals. It is easy to isolate the range
in these inequaliti es to produce explicit expressons for
the alowabe intervals. The requirement that range ke
nornegatve further reduces thes intevals. The
requiremert that rarge be realvalued identifies those
observations for which no range consstent with the
element partition is possilde. If no range is possible, then
we can eliminate the dservaton from further
consideration and form no hypotheses with it. For eat
measured line of sight tha is nat eiminaed in this
manner for the eement partition of interest, the set
intersedion of the intervals defined by the range
inequalities becames the hypothess set from which we
sample values of the range.

3 RESTRICTIONSIMPLIED BY THE SET
OF ORBITAL PLANES

The above conditions are bounds on the possible values
of rarge, which can be canputed for each singe
observation. The fad tha only single observations are
involved is wha alows us to find explicit bourds for
ead of the ranges before we form any range hypotheses.
However, additiona restrictions on the alowable values
of range can be deducedfrom relations that involve both
of the ranges presented for a solution to Lambet's
problem. Although the nonineaities in these relations
prevent us from getting explicit inequalities, nevertheless
we can formulate additional condtions that p; and p,
must sdisfy. Checking these extra canditions for each
range pair may keep us from having © produce some
unrecesary and relaively expersive Lambert solutions.

Using the vedor triange relation r = R + pu for eachof
the two lines of sight, compute the unit vedor n normd
to the candidate orbital plane:

n=s(r Xr)/|r X (8)
Here te quartity s is a sgnum fundion: s = +1 for

“short-way” trajecories ard s = —1 for “longway’
trajeciories In general, we do nat know a priori the Sgn

for s and both cagswill needto be cansidered With the
sign chosen, theindination is given unanbiguaudy by

cosI=n-k 9
Hercewe require that

cosyax < n-k < coslyy (10)

In the cag d low-inclination intervals, it may be better
to work in terms of sineindination:

SinIM]N < \/1—(n'k)2 < sinIMAX

In a smilar way, we use the unit nodal vedor to obtain
condtions that the range pair must satisfy if the
candidate orbit is to lie within a spedfied interval of right
acersion of the ascending nade, [Quvn , Qmax] - In the
Earth-centeredinertial frame, we have

(11)

(kxn)/|[k x| = (cosQ,sinQ,0)" (12)
so that, following standard logic for quadrant resolution,
we require

Qumin < tan~1(sin Q/cos Q) < Quax (13)
Of caurse, for importart special cas like nearGEO
orbits, it may be preferable to define element partitions in
terms  of nonsingular edements  such as
p 2 sin(I/2) cosQ and q £ sin(I/2) sin Q . No special
difficulty attaches to working in terms of these or any
other elements related to the orbit plane.

4 RESTRICTIONSIMPLIED BY
LAMBERT'S THEOREM

We canalso use three gedal solutions of Lambert's
problem to redrict the rarges. The eccetricity of the
orbit of lea$ possble eccetricity that goes through a
given pair of postion vedors can becomputed lely in
terms of thase position vedors. Call it e, :

0<eo=|(rll =l IDI /e, =l <1 (14)
Likewise, the semimajor axis of the orbit of least posside
semimajor axis that goes through the par of postions
canbe canputed solely in terms of the position vecors.
Calit ay:

day = [Irg]l + eyl + [l — | (15)

If ay,>amax OF €y > emax , then reject the rarge
hypothesis par withou solving Lambert's problem,
becawse the geometry is guararteedto prodiwce alarger
semimajor axis or eccefricity thanwe have specfified



Next, Eulers Theaem, a special cage of Lambert’s
Theaem expresesthe time of flight Atp between given
position vecors on a parabolic (zer-energy) orbit:

4 16
Atp=§ ’ag u(l—s23 (16)

Here agin the quartity s is a sgnum function: s = +1
for “short-way” trajecoriesand s = —1 for “longway’
trajeciories The parameter A is defined in terms of the
pasition vedors:

_ Il el — e —nll 1 17)

<A = <
Ire || + [zl + ey — gl

0

Because, for given postion vectors, the time of flight in
Lambert’s problem is a monotonic decreasing function of
the orbital energy, dliptic (negative-energy) orbits will
always have a time of flight longe than the parabdlic
time, and hyperbolic (postive-energy) orbits will always
have atime of flight shorter than the parabolic time. In
our ca®, we can require that our observation pairs ard
range hypotheses dways produce dli ptic orbits:

t, —t; > Atp (18)

Finally, the solution of Lambert’'s problem for dliptic
orbits requires us to ecify the nunmber of complete
orbital revolutions, Nggy , between the initial ard final
times. We camot have an arbitrarly large number of
revolutions in the given time of flight because the period
of the orbit of minimum possible peaiod T, is fixed by
the geometry of the problem:

Ty =27 /ag/u (19

Accaurting for the factthat some fracion of a revolution
must remain after Nggy complete revolutions on the
solution orbit, including posibly zero complete
revolutions, the time of flight and number of revolutions
must satisfy the inequality

tz - t1 2 NREVT (20)

where T is the actud period. Without solving Lambert’s
problem, we do not know T . However, the period is
equal to or greaer than T, . Herce te ime d flight
must dso satisfy the inequality

; 21)
ty =ty = NreyTo = 2Nggy [ag/ 1t

Becawge d the unknown differerce letween T and T, , it
is posible that the number of complete revolutions
allowed by Eq. (21) is larger than the true maximum

number of revolutions alowed in solutions of Lambert’s
problem.

If any range-par hypothesis (p,,p,) does not satisfy
Egs (8) and following, then tha pair of values can be
eliminated from further consideration without solving
Lambert’s problem. Note that it is the pair of range
values that is eliminated either range value by itself may
gill leadto anaccepable hypothess in combinaton with
some caher range value.

5 BOUNDS ON RANGE AND RANGE RATE
IMPLIED BY SIMULTANEOUS ANGLES
AND ANGLE RATES

In ca® the dbservations include, or allow us to derive,
angle rates, we can deduce additiond bounds on the
possible values of range. Like the bounds deived ebove
from perigee ad apgee dstarces thee extra bounds
will apply to dnge obsrvations, where we rmow
understand an obsrvation to oonsist of the values
(R,R,u,u) ataknown time. Differentiating the vecor
triangle relation r=R+pu , we get the orbital
velocity:

=R+ pu+pu (22)

The we d argle rate, when it is availabe, is especially
important. If the observation includes smultaneous
argles and argle rates a conplete abit hypothess can
be formed for each observation withou any iterative
solutions, merely by chocsing a value d rarge and a
value of range rate. This is the gpproach outlined by
DeMarsetal. [8,9]. Asin theangles-only cas, the rack
initiation problem is parallel with resped to eement
patitions. If we can provide bourds on range and range
rate for eachéement partition, then we can reduce the
number of orbit hypotheses needed for each patition
simply by making the partitions smaller and usng more
procesors to cover the whole ekment space. Bounds
depending on angle rate will complement the range
bound alread/ availade from the argles-only case, and
can be expectkd to further redrict the set of possble
range hypotheses.

Most importantly, with acarat amle rat te tack
initiation job scdes linealy with the number of
observations rather than the square a cube d the rumber
of observations. The problem also scakeslineaty in the
number of range hypotheses and in the number of range
rate hypothesesOne cauld hardly expectto do ary beter
than this in lving alarge tradk-initiation problem using
opticd daa Of course, nothing prevents us from usng
the improved bourds on range and possibly range rate,
to improve the efficiency of a Lambert-based approach
This choice may deperd on whether the angle rates are
accuate eroughto repreent the orbital statediredly, or
whether they shodd be used merely to provide extra
bound on therange



We require the welocity magnitude  lie between the

minimum possible gpogee speed and the maximum

posshle perigee peed

U (1 — eMAX
1+ eMAX

L(l‘l'eMAX) (23)

) < Il <
MIN

amax 1 - emax

We are looking for the region in the (p, p) plane implied
by these inequalities. We define this region by the set-
intersedion of the intervals of range and range rate
corepondng to each of the two inequalities. The
quadratic form for velocity-squared, has no terms
containing both range and range rate.
IF2=R-R+2pR-u+2pR-u+p2+p2u-u (24)
Consequently, it is a smple matter to solve the
inequalitiesfor rarnge in terms of range rate a for range
rate in terms of range. Specificaly, for eachof the two
ca®s pefigee a apogee,we can derive two equivalent
sets of formulae.

First, solve the inequality in question for range rate in
terms of range The condtion for having red values for
range rate will involve a gqadratic inequality in ramge.
Solve this subsidiary inequality explicitly for range to
find theinterval of rangeover which red values for range
rate occur. The requirement tha range be nonnegdive
further redricts the possble interval of range. Then, for
each value d rarmge in this interval, we dtain a
correspording par of values of range rate. This pair
defines the alowalle interval of range rate atthat value
of range

Sewmnd, solve the origind inequdity in question for
range in terms of range rate. The condtion for having
red vdues for the range will involve a quadratic
inequality in range rate. Solve this subsidiary inequality
explicitly for range rate o find the interval of range rate
over which real values for range occu. Then, for each
value d rarge rate in this interval, we ddtain a
correspording par of values of range This pair defines
the interval of range at tha vaue of range rate. The
requiremert that rarge be mn-negdive further restricts
the dlowable interval of range.

In either ca®, the level curves of the function (24) are
éllipsesin the (p, p) plane The cuvesare agroximately
concertric with regect to a point defined by the
observation. The stintersedion of the intervals defined
by the cdllecton of inequaliti esfor rarge ard rarge rate
lies between two dlipses and defines the region in the
(p,p) plare from which we must sample hypothetica
values of rarge and rarge rate.

6 ALGORITHM SUMMARY

For each ramge hypahess {pi_m,m =123, }
associatedwith eachline o sight vecbr u;, one will need

to test for dl i andj#i, where t; > t;. Tab. 1 provides the
summary agorithm.

Table 1. Acceptance algorithm for orbit hypotheses

Step Acceftance Qiteriaforalli,j #i,m |

1 I =R; + pimU;
lamin (1 = emax)]?® < ]2 < [amax(1 + emax)]?

2 I, = Rj +p]-’mUj, tj >t;
n=s(rxn)/rxr]s=+1

cosyax < n-k < coslyy

3 (kxn)/||k x n|| = (cosQ,sinQ,0)T
Qumin < tan~1(sin Q/cos Q) < Quax
4 eo = |(lrell = I [DI / [l — x|

4ao = IInill + [l l| + [l — x|
ay < apax and ey < epax

5 o _mll + [l =l — x|
leill + [ | + [l = v
t—t; > %w/ag/u (1-5s23),s=+1

6
tj —t; = 2mNggy /ag’/u

7 I =Ry + Pyl + Py
u o (1—emax . U (1+emax
(7) < il < —(7)
amax \1 + emax amin \1 — emax

7 NUMERICAL EXAMPLES

The results of the previous sedions can be illustrated by
a caiple d smple examples In this secion we focus on
the case of simultaneous obgervation of angles and angle
rates since the use of baoth of thes data types offers an
oppatunity for reduction in complexity of the problem
compared to usng angle daa dore. In the following
examples, we assume Keplerian motion with error-free
measurements of angles and angle rates.

The first example asaumes a ation located at the origin.
Therebre, the line-of-sight to the spaceobjed will be in
the same diredion as its position vedor. Tah 2 lists the
relevant position, velocity and orbit quantities of the
system. The element partitions used for semimajor axis
ard eccetfricity are listedin Tab. 3.



Table 2. Orbital and Observational Data for Example 1

Quantity Value

R,R [0, 0, 0] km, km/sec

r [2624, -10603, 5247] km
[3.673, -1.272, -4.408] km/sec
12118 km
0 km/sec
12756 km
0.05

(eI T el oI

Table 3. Element Partition for Example 1

Element Partition (min, max)
a (11756, 13756) km
e (0.03, 0.09)

Regions Implied by Perigee and Apogee Speed Limits
10

Range Rate (km/s)
(=)

0 5000 10000 15000

Range (km)
Figure 1. Overlapping range-range rate hypothesis
regions for Example 1.

The maximum perigee velocity and minimum apogee
velocity inequalities produce regions in the range-range
rate plane which correspond to the selected partition of
semimajor axis and eccentricity for the given angle and
angle rate observation. For Example 1, these two regions
are shown in Fig. 1. Note that the perigee condition is
satisfied within an elliptical region whereas the apogee
condition is satisfied outside a similar region. If a given
observation were to form a pair of regions which had no
overlap, then that observation would not lie within the
selected element partition and could be eliminated from
consideration.

The set intersection of these two regions forms the range-
range rate hypothesis set for the given observation and is
shown in Fig. 2.

Net Hypothesis Region for Angles and Angle Rates

Hypothesis
*  Admissible
X Actual

Range Rate (km/s)

2000 3000 4000 5000

Range (km)

o 1000

Figure 2. Range-range rate hypothesis set and
admissible region for Example 1.

Note that ranges are restricted to positive values but
range rate can be negative. The actual range and range

rate for this observation are shown with the symbol “x”
that lies within the hypothesis set as expected since the
selected element partition contains the actual semimajor
axis and eccentricity. Shown in red in Figure 2 is the
exact admissible region for the given element partition.
This region contains those range-range rate pairs which
produce orbit solutions lying within the element partition.
This region is typically smaller than the full hypothesis
set. Part of the reason is that the latter set was derived
without enforcing the ey boundary of the partition,
since eppy does not affect the range and range rate
bounds offered in this paper. The admissible region
shown in Fig. 3 does explicitly reflect the epy
constraint. If eyy is made large enough, the admissible
region may break into disjoint sets, although the whole
admissible region is always contained within our
hypothesis set.

Admissible Region for emin=0.03

. ‘Hypolhesis
s, *  Admissible ||

BT
B

i

-

N w B
R T
BisInniIany

Range Rate (km/s)
(=]

20
g
KK 115 12 125 13
Range (km) x 10"
Figure 3. Admissible region with e, = 0.03 for
Example 1.

Finally, Fig. 4 shows the same hypothesis set and
admissible regions as in Fig. 2, along with the range



bounds implied by the minimum-perigee and maximum-
apogee inequalities based on angle data only.

Net Hypothesis Region for Angles and Angle Rates

Hypothesis
*  Admissible i
X Actual
—-—--Angles-Only Bounds

Range Rate (km/s)

0 5000 15000

Range (km)
Figure 4. Range-range rate hypothesis set with angles-
only range bounds for Example 1.

In this particular case, the combination of the angles-only
range bounds with the range-range rate bounds derived
from angle-angle rates produces a fairly small hypothesis
set for the given observation.

The position, velocity, observation, and orbit quantities
for the second example are listed in Tab. 4, and the
element partition is listed in Tab. 5. Here the ground
station is on the surface of the Earth and has a non-zero
velocity.

Table 4. Orbital and Observational Data for Example 2

Quantity Value

[4092, 2690, 4076] km
[-0.196, 0.298, 0] km/sec
[8102, 2576, 5271] km
[-2.683, 5.383, 2.786] km/sec
4185 km

-1.724 km/sec

11149 km

0.145

o LoD - R R

Table 5. Element Partition for Example 2

Element Partition (min, max)
a (11049, 11249) km
e (0, 0.1555)

The maximum perigee velocity and minimum apogee
velocity hypothesis regions are shown in Fig. 5 and the
net hypothesis set is shown in Fig. 6, along with the
admissible region and actual range-range rate values. As
before, the hypothesis set is shown along with the angle-
implied range bounds in Fig. 7.

Regions Implied by Perigee and Apogee Speed Limits
10

Apogee
Perigee

Range Rate (km/s)
o

-100 1000 2000 3000 4000 5000

Range (km)
Figure 5. Overlapping range-range rate hypothesis
regions for Example 2.

Net Hypothesis Region for Angles and Angle Rates

Hypothesis
*  Admissible ||
X Actual

Range Rate (km/s)

2000 3000 4000 5000

Range (km)
Figure 6. Range-range rate hypothesis set and
admissible region for Example 2.

0 1000

Net Hypothesis Region for Angles and Angle Rates

Hypothesis

+ Admissible
X Actual

--—-Angles-Only Bounds ||

Range Rate (km/s)

4000 6000 8000

Range (km)

0 2000

Figure 7. Range-range rate hypothesis region along
with angles-only range bounds for Example 2.

8 SUMMARY AND CONCLUSION

Our results show that the possible values of range and
range rate can be limited a priori for each line-of-sight



obervation to finite intervals correspording to a
specified partition of the ekemert space.The empants of
the intervals are given explicitly in terms of the angle-
based observations, station position and station velocity,
ard canbe canputed indeperdertly for eachobservaton.
In the angles-only case, additional conditions based on
speciad solutions of Lambert’s problem, which mug be
satisfied by rarge values for pairs of observations, canbe
used to further reduce the number of Lambert solutions
needed for the initial orbit determinations. We aso
de<cribe explicit condtions identifying when a given
observation does not correspord to any possible orbit
within the specified element-space partition. Such
ohservations canbe discaded before ary data asociaton
hypotheses or ohit solutionsare produced.

The rarge and range rate bounds described in this paper
dlow a @nwenient parallelization of the task of
computing initial orbits in large space surveillance
tracking scenarios, which is the phase of the tracking job
that involves most of the computational complexity.
Because the ounds are canservative to some extent ard
not exact, some values of range and range rate tha lie
within the bounds given here will lea to candidate orbits
that lie outside the spedfied partition of the eement
space. This fact leads to some inefficiercy in the
parallelization of the initial orbit hypotheses over the
whole ebment space.Esentially, Lambert solutions that
lie outside the spedfied dement partition must be
discarded or movedto the carect partition, or else nearly
dugicated candidate orbits would be gererated ard
would therefore have © be idertified ard merged later in
the tracking proces. Each of these cloices invoves
some “overhead in the pocesing. Of caurse, the
detecion ard merging of duplicat tracks must always be
dore in any multiple-hypahesis trading job. However,
the indficiency of our range amd rarge rate bounds
necesarnly increa®s the sze d that task, unless we
move or discard many Lambert solutionsto prevent the
dugication. The actual cost of this inefficiency in
paticular problems will depend on the observation sets,
the eement partitions of interest and the range / range-
rate sampling strategy, and may need to bestudied if the
scenaio is computationdly stressng. On the other hand,
al the orbits within an eement-space partition
correspord to values of range and range rate that lie
within the bounds given heae, so that no candidate orbits
will bemissed merely through tis choice of bownds
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