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ABSTRACT

To date, the actual populaion of High Area-to-Mass
Ratio (HAMR) objects in Degp Space is till un-
guantified. These are objects having area-to-mess ratios
(AMR’s) in the range of around 0.1 nf/kg to 20 nf/kg
and higher. Typical methods for population assessment
using optical sensors either count number of detections
per unit time, or employ adisparate sequence of methods
to compute HAMR object trgjectories, where these
methods assume linearized dynamics and fixed-gate
correlaions. This paper provides results from a set of
actual angles (line of sight) data on HAMR abjects,
where the initial orbit determination and follow-on
daaltrack associaion is performed probabilistically and
autonomously. Moreover, the data are not only used to
infer trajectories but also simultaneously exploited for
their information content relating to each deected
object’s albedo-areato-mass ratio. The results show tha
the inferred HAMR orbital elements and area-to-mass
ratio values (CrA/m), paramerically, cen be derived
autonomously and without a priori knowledge of the
orbit and CrA/m states. This will aid in the correletion
of large numbers of uncorrelated tracks.

1 INTRODUCTION AND BACKGROUND

Schildknecht, et al. [1] discovered a population of deep
space objects thought to have origins from sources in
the neighborhood of the geosynchronous orbit (GEO)
belt. The intemational space community is actively
involved in tracking and characterizing these objects as
they pose a hazard to active satellites operating in the
vicinity of the GEO stationary ring. The exact number
of these objects is unknown, as the dim, time-varying
magnitudes and orbital perturbaions resulting from the
combination of Ilunarsolar pertubaions and solar
radiation pressure (SRP) make them a challenge to track
consistently and reliably via optical sensors. Many are
either higher or lower than the GEO orbital altitude, and
thus transit into and out of view of nost optical tracking
sites due to the longitudinal drift relative to an Earth-
fixed reference frame. Radars are limited in their
ability of acquiring and tracking small objeds at the
near GEO ranges.

Nevertheless, repeated tracking of individual objects is
crucial to making long-term observations with sensors
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that will provide better characterization of the material

makeup of these objects, and to produce long-term
orbital histories tha might allow the objects to be
associated  with specific  objects of origin. The
photometric and spedtral characterization of these
objects will help, not only to determine their origin, but
to better determine and track their orbits through
improved non-conservative force and torque modeling
[2,34].

With the advent of optical systems that can seeto fainter
maegnitudes, more tracklets — a short sequence of
observation — will be collected on a larger number of
unknown objects. Many of these are likely to be HAMR
objects, and so techniques that enable rapid, and nearly
autonomous data association and processing are needed.
This pagper summarizes work done to demonstrate
techniques that can be gpplied toward this end. The
optical data used is described which was collected on a
set of actual HAMR objects. Previously determined
orbit and SRP values for the objects are described and
serve & a “tmth” state for conparison with the data
association and estimation techniques applied.  The
results are compared along with the assessment of the
daaassociation and estimation performance.

2 GEODSS HAMR DATA

Data for 26 HAMR debris objects have been collected
for analysis over the past several years from the U.S.
Air Force Ground-based Hectro-Optical Desgp-Space
Surveillance (GEODSS) network. A two-week segment
of data, January 7-21, 2010, were extracted and used for
this analysis. As nost of the tracked objects drift dueto
either being super-synchronous or sub-synchronous
orbits, the data are more consistent in terms of
observations follow-up for some objeds
than others, depending on the orbit drift and visibility to
thesensors.  Figure 1 depicts some ground-based
sensors (including GEODSS) along with the ensemble
ground tracks for the objects propagaed over a 1 week
period.



Figure 1. High Area-to-mass Ratio (HAMR) ground
traces and slected ground sensor locations (including
GEODSS.

The daa are typically oollected in “tracklets” when
maintaining a known orbit. However, the amount —
frequency and duraion — can vay depending on
whether or not a “new” object has been found and/or a
better orit estimate is desired. A histogram of the data
intervals over the 2 week period is shown in Figure 2,
where nost of the data in a tracklet are separaed by 5

20 seconds.  Figure 3 shows the data history versus dae
where it can be seen tha the aversge number of
observations per day isaround 150-250.
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Figure 2. Data interval higogram for HAMR data
collected over the 2 week period of January 7-21, 2010.
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Figure 3. Data history for HAMR data collected over
the 2 week period of January 7-21, 2010.

3 HAMRATTRIBUTES

The data used to test the Constrained Admissible
Region — Multiple Hypothesis Filter (CARMHF)
process consists of up to 26 near GEO HAMR debris
objects. Ormit end AMR solutions for each of these
objects have been previously determined manually
using the Orbit Determination Toolkit (ODTK) [5]. The
results of that processing are used as “truth” references,
and is summarized in Tables 1 and 2. Table 1 provides
the average semi-mgjor axis (Sma), inclination,
eccentricity and AMR over the 2 year period 2009

2010, where the objects are categorized as “SubGEO”
(sub-synchronous), “GEO” (near geosynchronous), and
SUpGEO (super-synchronous).  The semi-mgjor axes
range from 33194 km to 46228 km, the inclinations
from 6.4 degrees to 19.9 degrees, and the eccentricities
from 0.011 to 0.275. The AMR values range from

0.0966 nf/kg to 8.8805 nf/kg. Teble 2 shows the
corresponding variations for each of the parameters over

the period.

Table 1. Below isa list of 26 near GEO High Area-to-
Mass Ratio (HAMR) objects whose orbits have been

previoudy determined. The averages are over the 2009-
2010 period.



Mean Avg.
HAMR Orbit Sma Motion |Avg. Inc. CrA/m
Obj. # Class (km) |(reviday)| (deg) [Avg. Ecc| (m*2/kg)
60 SubGEO 39990 1.0856 11.9 0.135 3.3397
61 GEO 42618) 0.9868 14.7 0.011 0.0966
63 SubGEO 38230 1.1614 6.4 0.085 4.8805
64 SubGEO 40402 1.0691 8.8 0.071 4.3082
65 GEO 42239 1.0001 14.9 0.023 1.2224
67 GEO 41584 1.0238 13.2 0.045 0.9848
68 SubGEO 40790 1.0538 13.2 0.035 1.0441
71 GEOD 41469 1.0281 13.2 0.016 0.8024
73 SubGEO 40374 1.0702 12.0 0.055 0.4887
77 GEO 41424 1.0297 13.0 0.045 2.0726
79 SupGEO 46135)  0.9054 19.7 0.105 2.9519
80 GEO 41843 1.0143 7.8 0.038 2.8837]
62 SubGEO 39729 1.0963 8.5 0.055 2.1366
83 SupGEO 44704)  0.9185 16.8 0.090 2.0754
84 GEO 41922 1.0114 14.2 0.013 0.8514
85 GEO 42446)  0.9928 14.7 0.040 0.4911
86 GEO 42448  0.9927 16.0 0.060 2.1654
87 SubGEO 33194 1.4385 10.0 0.275 3.6361
90 SubGEO 40121 1.0803 12.1 0.031 1.6673
93 SubGEO 40181 1.0779 10.9 0.095 1.5485
94 GEO 41311 1.0340 9.7 0.056 3.3049
95 GEO 41171 1.0392 13.9 0.035 2.7999
96 GEO 41308 1.0341 12.9 0.040 0.8366
97 GEO 41461 1.0284 134 0.014 0.7863
98 SupGEO 46228 0.8735 18.7 0.125 3.1332
99 SupGEO 44626)  0.9209 19.9 0.095 1.3560

Table 2. Below isa lig of 26 near GEO High Area-to-
Mass Ratio (HAMR) objects and the variations in
inclination, eccentricity and effective area-to-mass
ratiosover the 2009-2010 period.

HAMR | Inc Var | Ecc Var (CrA/m Var| % CrA/m
Obj. # (deg) (deg) (mA2/kg) | Change
60 0.9 0.110 0.01 0.3
61 0.2 0.003 0.07 725
63 1.7 0.150 0.06 12
54 07 0139 0.22 51
65 01 0.034 0.75 6514
67 0.2 0.030 0.18 18.3
58 01 0.030 0.70 67.0
71 0.3 0.029 0.33 4111
73 0.2 0.010 0.27 552
77 06 0.071 0.35 16.9
79 01 0.050 0.03 1.0
80 1.0 0.064 0.01 0.3
82 0.8 0.070 0.07 3.3
83 01 0.060 0.1 53
84 0.1 0.015 0.01 1.1
85 01 0.020 0.18 36.7)
86 01 0.080 0.09 42
87 01 0.010 0.05 14
90 0.2 0.059 0.09 53
93 0.8 0.050 0.45 291
94 12 0.108 0.03 0.9
95 0.1 0.010 1.20 42.9
96 0.2 0.020 0.70 83.7]
97 03 0.013 0.26 331
98 01 0.050 2.30 734
99 0.5 0.050 0.02 15

Figure 4 shows the distribution of mean motions versus
inclingion, and Figure 5 the mean motion versus

eccentricity. Figure 6 shows the ensemble variations in
the AMR values in terms of the fractional (altemaively,
percentage) varigion relaive to the mean AMR value
for each object over the period 2009-2010. It should be
noted that these variations represent the “effective area”
relative to the sun, and some varidions are a significant
fraction of the average whereas some show minimal
varigbility. It should also be noted tha some of the
varigions have a periodic signature (at the scale of the
sampling) wheress others are more random This
diversity of orbits and AMR values poses a challenge to
space object tracking maintenance and prediction.
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Figure 4. Mean nmotion versus indination for the 26
near GEO HAMR objects.
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Figure 5. Mean notion versus eccentricity for the 26
near GEO HAMR objects.



CAm Fractional Variation of 26 HAMR Objects over 2009-2010
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Figure 6. The enserrble fractional variations of effective
area-to-nass ratio (rdative to average) for the 26 near
GEO HAMR objectsover the 2009-2010 period.

4 CAR-MHF PROCESSING

The CAR-MHF processing flow is illustrated in Figure
7. The CAR process [6,7] initiates aset of filters when
no existing estimates are available to process (i.e. when
the available data are not associaded to previously
known objects, also called Un-Correlated Tracks
[UCTs]). Existing estimates may be available from
previous CAR generdions. The CAR initiates a set of
hypotheses based on daa UCT and user supplied
hypothesis constraints. Each hypothesis is propagated
to the next measurement time. At that point, a
probabilistic data association process is goplied to one
or more daa pairs that might occur a asingle time. If
any measurements are associaed to any hypotheses
(based upon a Mahalanobis Distance criterion), all
hypotheses for tha object are updaed with the
associated messurement, and those updated are
weighted based on their statistical likelihood &s
presented in [89]. In the cese of an updae, the
hypothesis weights are adjusted accordingly and pruned
based on userselected criteria. If no update occurs, the
hypotheses weights remain unchanged.
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Figure 7. Depiction of the CAR-MHF process flow.
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Conceptually, the data and hypothesis update approach
enables multiple data to inform the filter which
hypotheses are the most likely states. Each filter update
further refines the hypotheses, rejecting the least likely,
so ultimately the surviving hypothesis (or couple of
hypotheses) is the converged state. The method can be
thought of as an inductive process where staes are
hypothesized and the data are exploited for their ability
to identify those hypothesized states that are statistically
unlikely. It allows the user to only infer trajectories that
are able to predict future observations. This process is
depicted in Figure 8, where it should be noted tha the
M ahalanobis distance metric is the basis for the daa
association. Each hypothesis state and covariance & the
measurement time is mapped to measurement space
(“C” and “P” in Figure 8) and compared to the actual
measurement at tha time (“O” in Figure 8). The K
parameter is a chi-squared staistic that is compared
against a user-specified probability limit for the purpose
of daa association determingion (end is only
statistically valid for distributions that are sufficiently
Gaussian).
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Figure 8. Conoeptual depiction for multiple hypothess
and multi ple data asod ation processing.

5 ANALYSISRESULTS

The CAR-MHF process wes performed on data
spanning the 2 week period of January 7-21 2010. No
specific a priori omit or AMR information was
provided to CAR-MHF beyond the constraints that the
semi-mgjor axis have values between 33000-45000 km,
that the eccentricity be less than 0.2 and the AMR fall in

the range of 0-5 n/kg.

The results are summarized in Table 3 below where the
object nunber in the far left colum indicates which
HAMR debris object the results represent (as compared
to the ODTK analyses). The number of starting
hypotheses generated by CAR, and the “final” number
of hypotheses are indicaed in columns 2 and 3.
Columns 4 and 5 show the total number of observation
pairs (right ascension and declination) that were
associated to each object, and of those, the number of
false associdions. Columms 6 and 7 are the averages



(over 2009-2010) and CAR-MHF solutions for semi-
major axis. Columns 8-10 are the averages (over 2009
2010), variations of the averages and the CAR-MHF
solutions for inclination. Similarly, colunns 11-13 are
the averages (over 2009-2010), variations of the
averages and CA R-M HF solutions for ecoentricity. And
finally, columns 14-16 are the corresponding averages
(over 2009-2010), variations and CAR-MHF solutions
for CrA/m. A synopsis of the results presented in Teble
3 are subsequently provided.

It is first noted that the majority of objects converged to
the expected solutions (un-colored rows), and most of
those converged to a single hypothesis, with a few
having 2-3 remaining hypotheses. Subsequent daa for
these later objects would likely allow those also to
converge to asingle hypothesis. It is noted that, though
Object #60 had 6 false associations, the Probabilistic
Data Association (PDA) weighting evidently prevented
the solution from diverging.  Most al CAR-MHF
solutions at the last observation fall within the average,
plus or minus the varidion, with one exception. Object
#80, highlighted in the darker blue row, did not
converge to the correct CrA/m value in spite of no false
association.  Further analysis revealed that this object
had data only spanning 1-2 days and, hence, was of
insufficient  duration to “observe” the CrA/m
Subsequent data spanning a longer duraion would
likely help the solution to converge to the correct value,
provided the subsequent data were correctly associated.

There were several cases where a single object had a
second CAR generaed, and observations processed.

Object #83, highlighted in yellow rows, is one of these.
In this case, there was a ggo in the data which resulted
in the object’s estimate being terminated (a user-defined
“kill” rule). A subsequent set of observations resulted
in a new CAR being generaed, and the data after tha
point being correctly associated. One can see that the
solutions match quite nicely and, with the aid of
backward smoothing, would certainly be combined into
a single estimate upon subsequent filtering.

Object #96 is ancther instance where two CARs were
generated for asingle object. However, in this case, the
first CAR (highlighted in the red row) had a relatively
small amount of data associated with it, and of these, a
significant percentage were false associaions.  The
second instance (highlighted in the yellow row) has
more data associated with it, and no false associaions,
and with sufficient follow-up daa would likely
converge to the corredt solution as indicated by the
results at the end of the processing.

The last object having duplicate CARs generated and
subsequent estimates is Object #97 (both highlighted in
red rows). In this case, the number of observations
associated was small and, having no follow-up data in a
reasonable amount of time, resulted in these two “false
Starts.”

Finally, Object #65 (highlighted as a red row) had very
little data for the filter to follow-up on, with 8 associated
observetions and 2 of those false. This estimate would
not likely result in further correct associaions and,
subsequently, the estimate would be “killed” with no
legitimate follow-up data after aspecified time.

Table 3. CARMHF results are provided for the 26 near GEO HAMR objects for process ng over Jan. 7-21, 2010.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Avg. Avg. Var. CAR-MHF
HAMR | Start# | End # | # Assoc. | # False Sma | CAR-MHF | Avg. Inc. | Var. Inc. |CAR-MHF CAR-MHF( CrA/fm | CrA/m CrA/m
Obj. # |Hypoth. |Hypoth.| Obs. Assoc. {km) |Sma (km)| (deg) (deg) |Inc. (deg)|Avg. Ecc | Var. Ecc Ecc. |(m*2/kg) |(m~2/kg) | {m*2/kg)
60 528 1 268 6 39980 39990 1.9 0.9 11.8 0.135 0.110 0.186 3.340 0.010 3.260
61 732 1 62 0 42618 42620 14.7 0.2 14.7 0.011 0.003 0.008 0.097 0.070 0.032
63 681 1 72 0 38230 38215 6.4 17 6.3 0.085 0.150 0.084 4.881 0.060 4.847
64 774 1 Id| 0 40402 40392 8.8 0.7 8.9 0.071 0.139 0127 4.308 0.220 4.428
65 712 14 8 2 42239 33226 149 01 145 0.023 0.034 0.164 1.222 0.750 2542
67 694 1 234 0 41584 41588 13.2 0.2 13.3 0.045 0.030 0.038 0.985 0.180 0.980
68 894 1 146 0 40730 40787 132 01 131 0.035 0.030 0.051 1.044 0.700 0.569
Il 697 1 150 0 41469 41473 132 0.3 131 0.016 0.029 0.018 0.802 0.330 0.782
73 827 1 44 0 40374 40374 12.0 0.2 12.0 0.055 0.010 0.053 0.489 0.270 0.371
i 617 1 86 0 41424 41420 13.0 0.6 13.0 0.045 0.0M 0.058 2073 0.350 2.036
79 i 2 50 0 48135 45130 19.7 01 19.7 0.105 0.050 0.114 2952 0.030 2915
80 685 1 28 0 41843 41840 78 10 77 0.038 0.064 0.07 2884 0.010 0.001
52 635 3 51 0 39729 39734 8.5 0.8 jiRe] 0.055 0.070 0.070 2137 0.070 2.037
83 590 2 63 0 44704 44695 16.8 01 16.8 0.030 0.060 0.102 2075 0.110 1.901
83 290 1 89 0 44704 44695 16.8 01 16.8 0.030 0.060 0.102 2075 0.110 1.888
84 750 2 25 0 41922 41915 14.2 01 14.2 0.013 0.015 0.005 0.881 0.010 0.822
85 792 1 169 0 42446 42446 147 01 14.7 0.040 0.020 0.037 0.491 0.180 0.258
86 440 3 64 0 42448 42450 16.0 01 16.0 0.060 0.080 0.100 2165 0.090 2.302
87 (no data)|(no data)| (no data) | (no data) 33194 | (no data) 10.0 0.1] (no data) 0.275 0.010| {no data) 3.636 0.050] (no data)
a0 833 2 102 0 40121 40124 121 0.2 121 0.031 0.059 0.010 1.687 0.090 1.622
93 589 1 84 0 40181 40178 109 0.8 10.9 0.095 0.050 0121 1.548 0.450 1.170
94 772 1 103 0 41311 41300 97 12 10.3 0.056 0.108 0.016 3.305 0.030 3242
95 633 3 36 0 41171 41363 13.9 01 13.9 0.035 0.010 0.058 2.800 1.200 1578
96 690 1 19 1" 41308 41284 12.9 0.2 127 0.040 0.020 0.107 0.837 0.700 4.792
96 714 1 29 0 41308 41300 12.9 02 13.0 0.040 0.020 0.030 0.837 0.700 0.543
a7 742 4 12 4 41461 33573 134 0.3 133 0.014 0.013 0.051 0.786 0.260 2658
97 742 6 14 4 41461 31052 134 03 136 0.014 0.013 0.233 0.786 0.260 2544
98 851 2 12 4 46228 29642 18.7 01 19.2 0.125 0.050 0.231 3.133 2.300 2469
99 659 1 109 0 44626 44625 19.9 0.5 19.9 0.095 0.050 0.097 1.356 0.020 1.324




The summary above provides just an overview of the
results, and indicates the overall successful performance
of CAR-MHF in finding and determining orbit and
AMR values autonomously with no a priori orit or
AMRvalues. A more detailed look at one of the objects
(Object #60) is now provided in order to yield some
insight into the results.

The tracking data history for Object #60 over a 1-week
span is shown in Figure 9. The CAR initializes on the
first data available on Jnuary 7, and it would have to be
“rejected” in the data association of any CARS initiated
previously.
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Figure 9. Exanple measurement distribution exanple
for Object #60 over the week Jan. 7-14, 2010.

The CAR and associaed hypotheses for Object #60 are
shown in Figure 10, where the admissible region (range-
rate vs. range) is shown in green in the plot on the left-
hand side, and the plots on the right show the
“discretized” hypotheses corresponding to the orbit
ecoentricity vs. semi-mgjor axis (top), inclinaion versus
semi-major axis (middle) and right ascension of
ascending node versus semi-mgjor axis). These are
derived from the initial angle tracklet and derived angle
rates [8], the orbit constraints and the non-linear
mapping from angle, range and range-rate to Cartesian
J2000 position and velocity (and, hence, Classical
elements). The AMR oconstraints also add additional
hypotheses that the M HF processes.
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Figure 10. Exanple Condrained Admissible Region
(CAR) and asxociated hypotheses for Object #60.

In this cese, the several hundred Object #60 initial
hypotheses were reduced to a single hypothesis after 2-3
days of data processing. The converged orbit and AMR
values are as follows:

a=39998.565km
e=0.1841

i =11.820deg

L = 331129 deg

w = 349.442 deg
ta=140.182 deg
CrA/m=2981 n"2/kg

Onecan compare to the“truth” values provided in Table

1 and see tha these osculating state elements fall within
the averages and associaed variations.  Plots of the
estimation history of the semi-mgjor axis, eccentricity,

inclinaion and right ascension of ascending node are

provided in Figure 11 for the first week of processing.
The AMR estimation history, and its associaed
uncertainty, are provided in Figure 12 where it can be
seen that it gopears to converge to a fairly stable value
after about 3days of processing.
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Figure 11. Exanple element edimation history (semi-



major axis, eccentricty, indination and RAAN) for
Object #60 over the 7-day egination period.
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Figure12. Example CrA/m edimation higory for Object
#60 over the 7-day estimation period.

6 SUMMARY AND CONCL USIONS

The CAR-MHF gpproach to initial orbit determinaion
and object characterization wes applied to a set of
HAMR debris objects and compared to previously
determined results for those objects. No a priori orbit
and CrA/m values were used beyond constraints
enforced for the hy pothesis generation in the CAR. The
results show the overall successful performance of
CAR-MHF in finding and determining orbit and AMR
values autonomously with no a priori orbit or AMR
values. There were some cases where data were
incorrectly associated, but the PDA gpproach de-
weighted many of these and good solutions were
achieved. There was one case where insufficient data
were available to converge to the correct orbit and
CrA/m solution, and another where there wes
insufficient duration of data for the CrA/m estimate to
converge to the correct value. Lastly, there were a few
cases where duplicae CARs were generated, along with
subsequent solutions. These were due to gaps in the
daa caussing estimates to be terminated, and
subsequently, new estimates to be generated.  Some of
this could also be affected by significant variations in
the CrA/m causing mis-associations to occur, and a new
track thus generated. The tracks would ultimately be
correlated with the aid of backward smoothing.

Some of the shortcomings noted in the PDA gpproach
will be mitigated by several future nodifications.
Implementaion of Joint Probabilistic Data Associaion
(JPDA) will allow for a more efficient, statistically
consistent and robust daa association. Compressing
tracklets to a single messurement will also ad in

mitigating the cases where an outlier causes a false
association and, hence, initiation of a new CAR when
subsequent data might be correctly associaed for an
object. Finally, in the cases where there are sparse data,
and/or long periods beween observations, correctly
characterizing the errors should improve the data
association performance [11]. Future work will be
expanded to include other orbit regimes, including
geosynchronous transfer orbits (GTO) which can have
segments passing through GEO.
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