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ABSTRACT

As space gets more and more populated, a classification
scheme based upon scientific taxonomy is needed to
properly identify, group, and discriminate space objects.
Using artificial space object taxonomy also allows for
scientific understanding of the nature of the space object
population and the processes, natural or not, that drive
changes of an artificial space object class from one to
another.

In a first step, an ancestral-dynamic hierarchical
tree based on a priori knowledge is established, mo-
tivated by taxonomy schemes used in biology. In a
second step, available orbital element data has been
clustered. Therefore, a normalization of a reduced
orbital element space has been established to provide a
weighting of the input values. The clustering in the five
dimensional normalized parameter space is divided in
two sub-steps. In a first sub-step, a pre-clustering in a
modified cluster-feature tree has been applied, to initially
group the objects and reduce the sheer number of single
entities, which need to be clustered. In a second sub-step,
a Euclidean minimal tree algorithm has been applied, to
determine arbitrarily shaped clusters. The clusters also
allow determination of a passive hazard value for the
single clusters, making use of their closest neighbors in
the minimal tree and the radar cross section of the cluster
in question.
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1. INTRODUCTION

A study of a set of different objects leads to a specific
set of parameters describing the characteristics of those
objects. With the increasing number of objects and
accuracy to capture all possible characteristics, a large
parameter space is utilized. In order to make the data
set accessible and manageable, it is desired to reduce
the parameter space to significant quantities which
allow determination of differences and similarities
between different objects and to group and classify them

accordingly. However, the aim is not to introduce a
random grouping, but to find a taxonomy of significant
parameters corresponding to an actual physical and
behavioral (e.g. dynamic) attributes.

Currently, about 20,000 objects are cataloged in the
publically available USSTRATCOM catalog, whereas
in situ measurements suggest around 300,000 objects to
be in orbit around the Earth. So far, only a very broad
taxonomy has been applied in different orbital regions,
such as the orbital classifications of geostationary,
geostationary transfer orbits, Molniya, low Earth orbits,
which have been applied ad hoc. Another classification
scheme is based subsets of objects, such as the ESA
Classification of Geosynchronous objects, sorting objects
by their orbital evolution, such as objects in drift orbits,
around libration points, or controlled orbits. Another
classification that has been readily adopted is the dis-
crimination in classified and unclassified objects. If in
the following the term classification is used, it prescribes
the scientific terminology and shall not be confused with
a security relevant grouping of objects. But discussions
are ongoing about that a refinement of this structure is
needed. In the following, only unclassified objects are
taken into account. In this paper the focus is on orbital
element classification. The important topic of further
means of characterization and classification based on the
inclusion of spectral and light curve measurements is not
discussed here.

The oldest taxonomic systems are rooted in biology
primarily established by Aristotle. Biological taxonomy
orders plants and animals into an organized system that
includes species, genera, families and higher forms of
taxonomy. The system as applied to biology also shows
that taxonomies are not static, but subject to change
over time as new knowledge arises. Mayr defines the
crucial steps [7] in building a taxonomy of any kind:
The first step is (1) the collection of possible data, as
a second step he defines (2) the identification. At the
identification step the individual objects are sorted in
groups. The challenge is to select the relevant groups,
which are as broad as possible, while not overlooking
distinguishing features; the identification is, in general,
the analytical taxonomy step. The identification also
includes the process of naming the groups that have
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been identified with a useful term that is precise enough
to represent the group, but also short enough to be
useful. As a third step, (3) the classification follows
as a synthetic taxonomy categorization. In this step
the different identified genera and species are ordered.
Available a priori knowledge can be fed in, in addition to
assessing the physical reality of the defined classes. The
aim is to find an ancestral descent of the different genera
and species, and their interrelations. Using traditional
morphological taxonomy, convergence to a habitual state
is sought, e.g.. As it is easily conceived, the three steps
are highly interdependent. The data at hand determines
and limits the identification that is actually possible, and
identification is reiterated depending on the classification
step. As new knowledge independent of the initial data
set is added, classification can change, which traces back
to the identification step. This complete interdependent
system of data, identification and classification is named
the taxonomy.

The taxonomic classification used in astronomy has
the most overlap with the problem of artificial space
objects are perhaps asteroids. Taxonomy systems of
asteroids are traditionally based on color measurements
(filter UVB and spectroscopic measurements) and
albedo (including polarimetry). Earliest classifications
of asteroids [12] were based on the filter similarities of
the asteroid colors to K0 to K2V stars. The first more
complete asteroid taxonomy was based on a synthesis of
polarimetry, radiometry, and spectrophotometry, using
a survey of 110 asteroids [1]. The defined a class C for
dark carbonaceous objects, a class with the label S for
silicaceous objects, and U for objects that did not fit
either class. This system has the disadvantage that it was
not detailed enough and is based on the exclusion princi-
ple. The groundwork for the most complete taxonomy,
that significantly expands the previous taxonomy has
been proposed by Tholen [11]. This taxonomy is, with
small modifications, still in use today. Tholen established
several asteroid classes, which are based on the albedo as
well as eight channel color indices. The overall albedo,
as well as the spread and inclination of the color values,
distinguishes the classes. Tholen based his taxonomy
on the cluster analysis of a normalized set of the color
and albedo indices. The aim of asteroid taxonomy is
to link those classes to heliocentric distance, diameter,
and rotation rate, but also to the evolution, creation and
dynamic (orbit-attitude) long term behavior of asteroids.
Relatively independently a second asteroid classification
has been induced recently. These second classification
is a risk assessment of asteroids, with respect of their
miss-distance to the Earth.

A second increasingly relevant task of an asteroid
taxonomy is the quantification of the impact risk. The
impact risk according to the so-called Palermo scale [2]
is based on the expected energy of in impact, normalized
with the background risk and the time frame of the
collision. The energy of the impact is correlated to the
mass and the impact velocity. The impact mass is traced
back to the albedo and density (material properties) of the
object and hence correlates to the Tholen albedo-color

taxonomy. This is also a hint that the spectral classes
correspond to a physical reality.

In the case of artificial objects, a historically new
situation arises. For the first time the ancestral state
is theoretically and a priori fully known as the objects
originate from known man-made objects and materials.
This is a state that is normally determined at the end of
the development of a taxonomy. However, it does not
eliminate the task of identification as derived from the
data that is collected with the means at hand. Hence, in
this case the taxonomy is done in reverse as compared
to other applications in science or other disciplines. The
question is, how does the physical reality influence the
observed dynamical state the objects are in, nominal
orbital state, as well as quantities that are of interest of
us, such as the potential hazard those objects bear for
the preservation of space environment. Furthermore,
how the known ancestral state is inferred from survey
data. Those are general questions and much broader than
the scope of this paper. An initial task can determine
the grouping of available a priori data. A second step
is to establish groups of objects according to predefined
similarity criteria; the resulting taxonomy is the overall
system of these different object groups. The difficulty is
therefore to find useful, physically relevant criteria. This
requires a normalized parameter space, which provides
a weighting of the different input parameters that allows
the grouping of the classes and to sort them in a useful
taxonomy. Thirdly, the system is used to establish a
measure for the passive hazard a number for the groups
of space objects according the risk they pose for crossing
space objects.

2. A PRIORI ANCESTRAL-MATERIAL-
DYNAMIC TAXONOMIC CLASSIFICATION

Objects in near Earth space are either natural objects
or artificial. Making use of the fact that the creation
and origin of all artificial space objects is in principle
known, a new taxonomy has been developed. The
term in principle known, shall not obstruct the fact that
knowledge is missing for single objects, for which the
path from their creation to their current state cannot be
traced back. It is rather understood in a general sense.
Fig.2 shows the outline of the taxonomy in graphical
image. For the natural objects the reflection classes with
their name and components are given; for the M-, E-, S-
and C-class together the Palermo estimation values on
albedo and diameter are given [2].

For artificial objects, the list of possible materials
is limited. Material degeneration may occur, but no
unknown materials per se are possible. The primary
branches of the tree constitute two main kingdoms, which
consist of (1) objects created in a controlled launch, and
(2) objects created in an uncontrolled manner. The group
of space debris objects is present in both kingdoms, the
group of operational space assets only in the former.
Objects that are created by some kind of controlled



launch process typically have a predictable shape in the
sense that it has been manufactured based on common
design practices and so is a priori known. The objects
resulting from a controlled launch can be subdivided
in two different classes: those that are operational and
those that are non-operational, where the non-operational
objects are one part of the space debris kingdom. The
non-operational objects either never made it into an
operational orbit, have been decommissioned and are
now in a graveyard orbit, or the life ended and they
remained where they were operationally. In this latter
category, in the absence of station keeping maneuvers,
the orbit evolves based on natural perturbations.

The other group of non-operational objects are mission
related objects, which never have been operational or in
a controlled orbit. Mission related objects are likely to
consist of very few different exterior materials, whereas
decommissioned satellites are likely to consist of a
complex variety of different materials. Those objects
are having low area-to-mass ratios (LAMR), which are
defined with an area-to-mass value (AMR) of below 0.1
square meter per kilogram, might either have been in a
spin-stabilized attitude state (a priori spun) or initially
despun, in the case where it was not spin-stabilized.
Formerly operational objects, which were not in a
controlled orbital state are in general smaller satellites
meaning that they fall in the class of medium sized
objects, consisting of an edge length of smaller or equal
than 1.5 meter. Mission related objects, are either also
LAMR objects, which can be originally spun, such as
PAM upper stages, or originally despun, such as other
rocket body types. Other mission related objects, fall in
the class of medium area-to-mass ratio objects (MAMR),
such as covers, which have AMR values between one
and above 0.1 square meter per kilogram. Those can also
be either originally spun, depending on how those covers
were disconnected from the parent object, or despun.
Mission related objects can either be larger in diameter
than 1.5 meter or medium, below 1.5 meter, or small,
which are below ten centimeter. That means, cubesats
consisting of a single cube are just large enough to count
to the smallest medium size objects.

The second category of the space debris kingdom
are those objects, created in uncontrolled birth, that are
non-operational and have irregular shapes. They can
either be created by delamination, whereas they consist
of a single material, have high area-to-mass ratios and
are small in dimension. Another creation process is by
explosion or collision, leading to either small or medium
sized objects. They typically consist of single materials
which can have high or low area-to-mass ratios. These
objects are not in any specific attitude state. This implies
that the kingdom of space debris objects consist of three
main groups, two of which result from controlled birth:
those that were formerly operational, mission related
objects, which never have been operational and were
used in the creation of the operational objects (e.g. upper
stages and boosters). The third group, the fragment
group, is created in an uncontrolled birth process. The
birth process has significant effects on the possible

dynamical state the objects can be in, the size as well as
the number of different materials a member object can
be expected to consist of.

The kingdom of the operational classes of space
objects can only stem from the controlled birth. These
objects consist of many different materials, and are
in either an active or passive attitude control state in
a controlled or uncontrolled orbit. If there is attitude
control, it can either be actively spin stabilized, hence,
spun up, or in a stable attitude, achieved by three
axis or other passive attitude stabilization mode (e.g.
gravity gradient). The objects that are in controlled
orbits are typically large or medium in size. Objects in
uncontrolled orbits are medium in size, and can either be
attitude controlled (spin or three-axis stable) or without
attitude control. The ancestral-dynamic tree leads to the
assignment of different size classes, which are linked to
the different ways of their creation.

3. A CLUSTER BASED CLASSIFICATION
ANALYSIS

A cluster analysis groups data by means of a similarity
criterion in a selected feature space. The cluster analysis
allows the determination of interrelationships within
sample data. In general, one distinguishes between
hierarchical clustering, heuristic segmentation methods
and partitioning methods involving objective functions.
Whereas the latter two methods produce clustered data
on the same level, hierarchical clustering methods
arrange data in nested sequences of groups, and can be
displayed in a dendrogram, or tree structure.

Cluster analyses have a long tradition in taxonomy
of natural objects. In biological taxonomy of bacteria,
minimum distance sorting in a equal weighted feature
space has been determined to lead to a classification
[10]. A similar approach has been applied to a small
set of asteroid spectra [3]. Tholen has used minimal
spanning trees to establish an asteroid taxonomy [11].
The results of Tholen were confirmed using the same
data and artificial neural network clustering [6]. Zahn
compared different nearest neighbor algorithms to
the minimal tree structure for clustering, proving the
efficiency for cluster detection and pattern recognition,
especially for irregular patterns [13]. Extensive research
has been done on minimum spanning Euclidean trees,
where the distance in a Euclidean parameter space is
used as the measure of similarity [5, 8]. A greedy
algorithm for finding a minimal tree is also being used
[9], but comes with a large computational burden. In
two dimensions, Delaunay triangulation provides a
mean to supplement Prim’s algorithm [4], though this
is not feasible for higher dimensions. In this paper the
focus is on hierarchical methods for clustering. Further-
more it is assumed that the number of clusters is not
a priori known, and that a priori means have been defined.



The sheer amount of space resident objects, even
when only cataloged objects are taken into account is
very large, which makes the direct application of a mini-
mal tree for clustering not very attractive. Hence, a two
step process is proposed. In a first step, a modification of
the Iterative Reducing and Clustering Using Hierarchies
(BIRCH) algorithm is applied [14]. BIRCH is a very
effective algorithm, leading to a hierarchical clustering
in a single run. However, only the first step is used,
ordering the data in a so-called CF (Cluster Feature) tree.
A primary CF tree is created in a single run. The classical
BIRCH algorithm then continues by slimming down the
tree, with different resorting and merging techniques
used to overcome some of the shortcomings of the initial
CF tree. In the work presented here, a minimal tree
is implemented as a second step, deviating from other
CF combined approaches. Cluster features are a triple,
consisting of the number of data points, which have been
merged in the cluster, the linear and quadratic sum of
the data points. This allows for a convenient adding of
new data points into existing clusters. In the current
approach the last entry is substituted by the sum of the
radar cross sections (RCS). The feature consists of the
three following entries:

CF � pN,
¸

~xi,
¸

RCSiq, (1)

N is the number of objects in the cluster, vecxi is the
five dimensional vector of to the object in normalized and
cropped orbital element space, and RCS is the radar cross
section of the single objects that have joined the cluster.
The distance, which is used in determining the threshold,
between two clusters or between an existing cluster and a
new data point is determined as the following

dCF1CF2
�
d
p
°

~x1i

N1

�
°

~x2i

N2

q2, (2)

which makes direct use of the CF structure, which also
makes it easy to join two clusters together, by simple
vector addition. Two different algorithms have been
implemented to group the elements. The first step is
identical, a threshold T is determined on the leaf level for
the maximum radius of a leaf-cluster.This means, these
clusters have a circular structure. For both algorithms,
a threshold value for the number of leafs that can be
combined in one node, cannot be larger than a maximum
number B , and similarly a maximum number of nodes in
a root of L. This allows for deviations from the circular
shape. Nodes and roots are split, when the maximum
numbers are reached, sorting out the leaf or node,
respectively, that is furthest from the mean, determined
by the values stored in the node or root respectively. The
difference between the algorithms is the following. In
the classical BIRCH approach, the first node and root are
filled until their threshold values are reached and then
split according to the rule. This is computationally very
efficient, one of the great advantages of the method. In
the next step the next leaf is added to the node to which
it is closest, and so on. In the real of a limited number
of entries, this can lead to wrong results; the method



relies on a sufficient amount of data points, that lead to
enough splits in the nodes or roots, respectively, so no
nodes and roots are kept, combining very diverse data
points. Sufficient is determined by the amount of data in
combination with the threshold values, but also depends
on the diversity of the data, e.g. the number of outliers.
That is the cost at which the computational savings are
achieved. If the distribution would be perfectly uniform,
the number of numberleafs/B and numbernodes/L are
built. The number of data is nearly 20 000 objects,
threshold values are chosen as low as 10 for both roots
and nodes. Nevertheless, the CF tree is cross checked
with a different algorithm. In that algorithm, the leafs
and on the next level the nodes are combined to the
absolute closest node and root, respectively. Nodes and
roots are split at the threshold values at the same criterion
as in the BIRCH algorithm. The modified algorithm
allows a larger number of nodes and roots that are built
automatically when the data is very diverse, no limits on
the size of the data that is analyzed is enforced. For a
uniform distribution of leafs, a number of numberleafs/
numberclosest neighbours is built, that is in a perfectly
uniform distribution numbercloses neighbours is equal
to two. If this number is larger than the threshold, this
number is replaced by the threshold value and hence is
equal to the BIRCH approach. To explain this further.
BIRCH relies on the fact, that the nodes and roots
are overpopulated in order to find meaningful nodes
and roots, that represent the lower tree structures well,
the alternative approach, does equal to BIRCH in the
overpopulated case, but provides a more meaningful
structure, in sparse regions, where overpopulation is not
reached to enforce splitting in the BIRCH algorithm. It
is hence more flexible to data which is not circularly
shaped.

In a second step all leaf-nodes are taken as initial
input data points in the minimal tree, with their centroid
position as their new nominal position of a mean object.
For those nodes, a minimal tree is fitted [9], which leads
to the final clustering in cutting the longest links. Cutting
the longest links sacrifices some of the hierarchical
structure and leads to a flat clustering into same-level
clouds.

For the analysis, two line elements (TLE) have been used
as the source of orbital information. Radar cross sections
from the satcat catalog have been used to supplement
the data. In the case where no radar cross sections were
available, a default value of 0.3 m2 has been used. It
is the very aim of the work to expand the classification
to include light curve and spectral measurements, to
supplement the orbital element classification. However,
the present lack of light curves for the majority of
objects made this intractable. A crucial point in even
starting the clustering analysis is to express the quantities
in a comparable manner, which expresses the values
common units and hence makes them comparable
in the first place. The second step is to weight the
different orbital elements in a physical meaningful way.
To find a common scale, the semi-major axis is used
as a scaling factor and eccentricity, inclination, right

ascension of the ascending node (RAAN), and argument
of perigee are expressed in units of lengths as well, for
the specific orbit. Orbital anomalies are not included for
the clustering analysis. For the scaling of RAAN and
argument of perigee using the approximated value from
the circumference of the ellipse u, independently of the
specific anomaly, the system is assumed to be locally
flat. Because the accepted distances are limited by the
threshold T the locally flat approach is justified. The
inclination i, RAAN Ω and argument of perigee ω are
scaled as the following:

i1, ω1,Ω1 � i, ω,Ω

2π
� u, (3)

The circumference u is approximated by the following:

u � πpa� bq�1� 3λ2

10�?
4� 3λ2

q (4)

λ � a� b

a� b
, b �

a
a2p1� e2q, (5)

where a is the semi-major axis. The eccentricity e is
scaled to the linear eccentricity ǫ:

ǫ � e � a. (6)

The absolute scales are necessary to determine the dis-
tance in the five dimensional space, so only the relative
values enter the clustering process. One way to weight
the orbital elements would be an equal weight to all ele-
ments.

The topic of normalization cannot be overemphasized,
since it directly determines and shapes the clustering,
as it has the effect of defining what is regarded as dense
region and close neighbors.

The scaling and weighting is done a priori, to save
computational time.
Similarly to the Palermo scale, a hazard scale can be
developed for space debris objects. In general the
severity of a collision is linked to the energy and impulse
conservation of the participants involved in a possible
collision process. That is the mass of the objects in-
volved, material properties, and their relative velocities.
In contrary to the Palermo scale, which is an active
scale of the approaching object, in the current paper we
propose as a passive scale which depicts the hazard for
any approaching object to cross a specific region.

A passive hazard value is attached to each of the
clusters. It is derived from the radar cross section of
all objects in the cluster and its averaged velocity as
determined from the semi-major axis. For the single
objects within the same cluster, a weighting can be
applied with the actual weight of the object, if known,
or from the inverse of the area-to-mass ratio value
multiplied by the RCS. A measured albedo times a
reflection value can also be used. This gives the highest
passive hazard value to the largest object in a dense
region, and a scaling with the semi-major axis leads to



a higher assignment of passive hazard values to objects
in lower orbits where absolute velocities of the cluster
are largest. The scaled values of the relative distance
and radar cross section of those clusters within the same
cloud are added. This takes into account that the object
is not only in a dense cluster, but also how densely the
space outside the cluster are populated and how close
other clusters are in normalized orbital element space.

h � r � n2 �
2¸

i�1

ri

di
, (7)

where r is the radar cross section of the whole cluster
in square meters, n is the mean motion, ri are the radar
cross sections of the neighboring clusters, and di the
distances to the center of the current cluster, d is the
diameter of the original cluster. In order to evaluate
the passive hazard scale, the singe leafs are used, in
combination with two closest objects, that belong to the
same cluster in the minimal tree.

4. RESULTS: DATA ANALYSIS

For the data analysis, a TLE data set has been selected
and supplemented by the satcat catalog for the radar
cross sections. In the case where no radar cross section
was listed in the satcat catalogue, a default value of
0.3 m has been assumed. The CF tree has been built
with a threshold value T of 1500 km, in the normalized
cropped orbital element space. This distance should not
be interpreted as a threshold for the state. For the branch
factor and leaf factor B and L the value ten has been used.

In the initial run for building the CF tree in the
classical approach, a total number of 575 roots were
found with a total number of 1206 nodes holding 5229
leafs, 1964 leafs hold more than one element. With the
modified algorithm 599 roots were found, with a number
of 1782 nodes. On the root level, the algorithms produce
nearly the same roots, on the node level, a significantly
larger amount of nodes are created with the modified
approach. The orbital elements of the six cluster leafs
with the largest amount of data points are listed in Tab.1.
Those are all high inclination low Earth orbits with small
eccentricities. The RCS sum of the clusters is of the
order of eight to six meters. Similar orbital regions are
covered by the roots containing the non-leaf nodes and
leaf nodes. The orbital elements and radar cross section
of the roots with the highest number of member objects
created in the modified approach is displayed in Tab.2.

Fig.1 shows the inclination as a function of the semi-
major axis and the eccentricity as a function of the
right ascension of the ascending node for the leaf nodes
determined in the pre-clustering step. In Fig.1(a) the
densely populated area is clearly visible is between 7000
and 9000 km, which contains the leafs with the largest
number of objects. The geosynchronous region around

Table 1. Six most populated leafs in the circular clus-
ter feature tree and their mid points: number of objects,
semi-major axis (km), eccentricity, inclination (deg), ar-
gument of perigee (deg), RAAN (deg), radar cross section
of the whole cluster (m)

# obj a e i ω Ω RCS

30 7177.6 0.009 98.72 85.73 40.57 9.00
29 7196.4 0.008 73.25 158.03 279.60 8.85
29 7152.8 0.004 74.04 145.01 286.79 8.70
27 7201.4 0.008 72.15 141.45 271.10 7.22
27 7144.8 0.004 74.04 143.10 299.69 8.10
26 7203.6 0.008 98.82 29.18 84.507 6.87

Table 2. Six most populated root nodes in the circu-
lar cluster feature tree and their mid points: number
of objects, semi-major axis (km), eccentricity, inclina-
tion (deg), argument of perigee (deg), RAAN (deg), radar
cross section of the whole cluster (m)

# obj a e i ω Ω RCS

197 7276.5 0.012 98.55 127.75 90.21 57.38
133 7546.6 0.056 77.07 81.70 97.40 83.75
131 7256.7 0.011 98.73 94.07 290.27 38.15
130 7361.2 0.010 97.16 73.26 341.12 41.81
129 7172.1 0.008 73.03 97.40 298.99 44.62

42000 km is also clearly discernible. Fig.1(b) shows
the accumulation of the objects at low eccentricities
and around 0.7 for all right ascension values. Fig.2
and 3 show the comparison between the classical birch
clstering (noted by the subscripts B), and the modified
algorithm. The modified algorithm tends to provides
a stronger focus on the densely populated areas and
seems to captures better the overall structure, which is
discernible in the data. The minimal tree algorithm was
applied to connect the clusters at the leaf level. Only
the leafs containing more than one object are taken into
account. The fifty longest connections in the tree have
been cut leading to a total number of four main remain-
ing clusters. A main cluster is defined by consisting
of more than one leaf, and of more than 10 objects in
total. This method works well in the case when only
the leafs that include more than one object. In this case
cutting the connections leads to the distinct clustering of
four different regions: The sun-synchronous region in
low Earth Orbit, the geosynchronous region, as well as
two clusters in the medium Earth orbit, one with a low
inclination and one with a higher inclination of around 60
degrees, the color coded clusters can be found in Fig.4.
Depicted in black are the leafs which were cut loose, but
are then neglected. They do not match the criteria for
a cluster mentioned above. The method did not prove
successful when including all leafs, also in particular,
those which only hold one object. The selection of the



Figure 1. Cataloged space objects clustered in leafs, nodes and roots with the modified algorithm.

Figure 2. Leafs of clustered space objects with more than one member.

Figure 3. Leafs of clustered space objects with more than one member.

Table 3. Example cluster with large RCS and the cluster to which it is connected in the minimal tree: Number of objects
in the cluster, semi-major axis (km), eccentricity, inclination (deg), argument of perigee (deg), RAAN (deg), radar cross
section of the whole cluster (m), and distance in 5 parameter space between the two clusters (km)

# obj a e i ω Ω RCS dist

3 7235 0.05 32.87 61.61 137.43 24.02 -
2 7444 0.06 29.48 46.86 121.47 0.40 2355.8



Figure 4. Color coded clusters of space objects: near
sun-synchronous clusters, medium earth cluster with low
inclination (iMEO), medium Earth cluster with high in-
clination (IMEO) and near-geosynchronous cluster.

correct link to cut is crucial and not as intuitive as in the
previous case. Often single leafs are cut off rather than
separating clustered regions. Further research is needed
to develop an efficient mechanism for link selection.

Tab.3 shows the example of the leaf with the high-
est radar cross section value together with its orbital
elements. The leaf is connected to one other leaf only (at
maximum two would be possible). The connected leaf is
also shown in the table. The passive hazard value for this
region can be readily determined using the Eq.7, leading
to a value of h=43.8. No complete list of hazard values
for all clusters is shown here because of limited space
for this paper. In general, objects in the class of near
sun-synchronous LEO orbits have the highest values
because they have the highest radar cross section sum
and the connections to the neighboring clusters as the
shortest.

5. CONCLUSIONS

Initial work towards a taxonomic categorization of
artificial space objects have been conducted. An
ancestral-dynamic taxonomy of object creation has
been outlined in this initial step, making apparent the
relationship between shape, material composition and
dynamical state on the creation mechanism of the differ-
ent space objects. Three different space debris classes
have been established, consisting of former satellites,
mission related objects with a controlled birth as well
as debris objects stemming from an uncontrolled birth.
In a second step, the orbital element sets available from
USSTRATCOM were analyzed, and cluster analysis
performed. Orbital elements have been normalized,
and analyzed, neglecting anomalies such as orbital
maneuvers. Cluster features have been determined and
circular hierarchical clustering has been performed., and
517 root nodes found that hold a total of 8090 leafs in
several branches. In a follow-up step, a minimal tree

has been applied and clusters have been determined.
Clustering based on the minimal tree approach was
established using only the leafs which consisted of more
than one object. This lead to four groups of objects
that can be grouped as being near sun-synchronous low
Earth orbits, in highly inclined medium Earth orbits, in
moderately inclined medium Earth orbits, and in near
geosynchronous orbits. A mean to determine a passive
hazard values has been established based on the leaf level
clusters and the minimal tree, giving emphasis to the size
of the cluster itself based on its radar cross section, as
well as the clusters to which the region is linked the most
closely in the minimal tree.

Next steps are the refinement of the clustering based
on the minimal tree that includes all objects, the estab-
lishment of a better and approachable size metric for
the objects, and the inclusion of the classification and
taxonomy to spectral and light curve measurements.
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