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ABSTRACT 

This paper presents the CORAM software tool 
developed by DEIMOS Space for the ESA/ESOC Space 
Debris Office. 

CORAM is designed to help the operator in the task of 
assessing the collision risk of a conjunction between two 
objects, and in proposing an optimal avoidance 
manoeuvre to reduce the collision risk to acceptable 
levels considering operational constraints. 

It is capable of reading different input formats, 
analysing a time interval and assessing the collision risk 
of each encounter in that interval. It includes algorithms 
for conjunctions at low and high relative speed, and the 
objects can be modelled as simple spheres or as a 
complex body composed of oriented boxes, following 
certain attitude laws. 

1 INTRODUCTION 

CORAM is divided in two different tools.  

x CORCOS is the tool responsible for collision risk 
assessment, input/output of scenario fi les and 
propagation. 

x CAMOS makes use of CORCOS libraries to 
compute the optimal avoidance manoeuvre needed 
by the target satelli te to reduce the collision risk (or 
increase the miss-distance) to a requested level. 

In a normal execution, an operator can use CORCOS to 
evaluate the collision risk of an encounter. If the risk is 
considered too high, CAMOS can be used to propose 
avoidance manoeuvres for the operational satellite to 
reduce the collision risk. The manoeuvres are 
automatically evaluated with CORCOS so the operator 
will  see the same output as when evaluating the risk. 

2 CAPABILITIES 

The CORAM SW package is capable of reading the 
input orbit files in several formats: state vector at an 
epoch, ephemeris file for an interval, a TLE file or a 
CSM file. 

In addition, it is possible to provide a covariance matrix 

at an epoch that will  be propagated if necessary to use a 
realistic position uncertainty to calculate the collision 
risk. Some input formats will  provide their own 
covariance matrix (like the CSM file) or an ESOC in-
house look-up table can be used to provide an initial 
estimation, like in the TLE case. 

CORAM is powered by several propagators, which will  
be selected depending on the input format. A force-
model based propagator using a Runge-Kutta 7(8) 
integrator is used for CSM and state vector, and also for 
covariance matrix propagation; the well-known SGP4 
propagator is used for TLE. Finally a Lagrangian 
interpolator is used for ephemeris input format.  

The force-model propagator can be configured to 
incorporate several perturbations like Earth 
geopotencial, third bodies, atmospheric drag, solar 
radiation pressure, etc.  

Both impulsive and low-thrust manoeuvres can be 
configured by the operator or added by CAMOS during 
the optimisation process. The force-model propagator 
can manage these manoeuvres, both for the state vector 
and for the covariance matrix, with thruster error 
modelled as an uncertainty in the acceleration and the 
direction of the manoeuvre, impacting the evolution of 
the covariance information. 

3 ALGORITHMS USED IN THE 
COLLISION RISK ASSESMENT 

Depending on the scenario configured by the user, in 
SDUWLFXODU��WKH�REMHFW¶V�JHRPHWU\��VSKHULFal or complex) 
and the relative speed of the collision, there are several 
algorithms available to the user. 

3.1 Spherical geometry 

If  both objects are spherical, there are several well-
known algorithms that can be used: 

x Alfr iend & Akella [1], a well-known method to 
compute coll ision risk that performs the two-
dimensional integration of the hard body 
projection in the encounter plane. 

x 3DWHUD¶V� PHWKRG� >3] performs the contour 
integration of the projection, computing the same 
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result in a faster way. 
x Maximum Probabili ty, assuming spherical 

covariance, using the maximum likelihood 
approach [2]. Fig. 2 shows the existence of such a 
maximum for every encounter distance. 

x Covariance scaling, where the covariance is scaled 
for both objects in a given interval and for every 
scale factor, the covariance is evaluated using the 
method in [3]. This method preserves the shape 
and orientation of the covariance matrix of each 
object and it is useful when the covariance is not 
well-known. 

During CORAM development, these algorithms, 
and some other finally discarded (Chan, Alfano 
and Foster), have been tested to check the 
performance, both in terms of run-time and 
accuracy (see Fig. 1). Additionally, extensive 
analysis of performance under different conditions 
of geometry and covariance values was executed 
(see Fig. 2). 

 

Figure 1: Comparative results of some collision risk 
algorithms for spherical case. 

 

Figure 2: Evaluation of performance for different 
encounter geometries and orbital accuracy 

3.2 Complex geometry 

If  one of the objects, or both, are complex (composed of 
oriented boxes), a new method to calculate the collision 
risk has been devised. 

While in the spherical case the hard-body object 
(collision volume) can be computed as another sphere 
whose radius is the sum of the radii  of the two original 
spheres, in the complex case this hard body computation 
is more complicated. It is accomplished by assuming 
constant attitude and calculating the Minkowski sum [8] 
of the two objects, and then projecting it onto the 
encounter plane. Additionally, the collision volume 
shall be translated to the B-plane, by means of the 
projection of the vertices of such volume. 

The encounter plane is then discretized and sampled. A 
z-buffer grid [9] is constructed where every cell of the 
grid is a true/false indicator of WKH�³VKDGRZ´�RI�WKH�KDUG�
body onto the encounter plane. Every grid contains a 
small  amount of contribution of the collision risk and 
the last step is to compute the risk associated to every 
shadowed grid and sum them up. 

 

Figure 3: Representation of Encounter plane with the 
projection of the boxes forming the coll ision volume (one 

satellite built by three boxes, and the other based on a unique 
box), and the Z-buffer evaluation. 

The need of considering the actual objects geometry 
instead of assuming spherical case is very much 
dependent on the miss-distance and the values of the 
covariances of the orbital data. Following examples 
provide some graphical representation of a head-on 
encounter of two satelli tes (one satelli te buil t by three 
boxes, and the other based on a unique box). Geometry 
of the encounter is shown in Fig. 4. Dashed line 
indicates the equivalent cross-section area assuming 
spherical geometry whereas the green circle is the 
nominal encounter point. 

In the case of accurate orbital data (small covariance 
values, about 1 m), the miss-encounter would be 
perfectly estimated with a high accuracy, only 
considering the actual geometries of the objects. 
Otherwise, the integration of the risk along the spherical 
projection would provide a very low collision risk. This 
case is represented in Fig. 5. The computed collision 
probabilit y with the complex-geometry algorithm here 
described is 0.9959, whereas the coll ision risk computed 
by algorithms based on spherical assumptions is 
1.49·10-14.  



 

In the case of larger uncertainties in the orbital position 
of the two objects (about 100 m), the probabili ty density 
function is spread across larger areas of the B-plane, 
providing very similar results when integrating the risk 
along the actual object geometries than integrating the 
risk along the equivalent circle. The computed risk is 
2.14·10-3 for the two cases. 

3.3 Minkowski sum 

To easily compute the Minkowski sum of two complex 
objects, it is better to divide the objects in convex 
shapes and compute the sum by pairs, for all 
combinations and then reconstruct the final object. 
However, the actual 3D object calculation is not 
required, only its projection onto the encounter plane. It 
is possible to skip the 3D reconstruction of the 
Minkowski sum and calculate the projection directly. 

For that, the Minkowski sum is computed for every two 
boxes (or box-sphere) of the objects but only for the 
vertex points, without reconstructing any information 
about the faces. The resulting sum wil l be also convex. 

Those points are then projected onto the encounter 
plane, and the convex hull that the points form is 
calculated. This convex hull is the contour of the 
projected Minkowski sum, represented convex closed 
irregular polygon. 

The entire z-buffer is checked to evaluate what cells of 
the grid are inside the polygon. Only cells not 
previously shadowed by other polygon are checked by 
means of a fast point-in-polygon algorithm. 

These steps are repeated for every box-box pair of the 
complex objects, and the resulting z-buffer grid is 
evaluated to calculate the collision risk. 

In order to do that, it is possible to use Alfr iend & 
Akella or Patera methods on each cell. It can be easily 
done by replacing every cell by an equivalent circle in 
the encounter plane and applying a collision risk method 
to them. The final sum provides the total collision risk. 

The z-buffer offers several advantages: 

x It is relatively fast. 
x It solves the problem of self-shadowing, where 

different parts of the objects can be accounted 
several times in the computation of the collision 
risk. The z-buffer cells have only two states (in 
shadow / not in shadow) it is not possible to have 
overlapped sections counting twice. 

x It can be easily extended to include other basic 
shapes, as long as they are convex or could be 
divided in convex shapes. 

x Allows calculating the cross-section of a complex 
body from a certain point of view, which can be 
used to estimate the area exposed to atmospheric 
drag or solar radiation pressure.  

 

 

Figure 4: Example Encounter geometry (top figure) and 
B-plane representation (bottom figure). 

 

Figure 5: Probabilit y density function for the case of 
very good orbital data accuracy (~1 m) along the B-

plane. 

 

Figure 6: Probabilit y density function for the case of 
low orbital data accuracy (~100 m) along the B-plane. 



 

3.4 Low-speed encounters 

Previously commented methods are in principle 
applicable only to high-speed encounters, where a linear 
relative motion and constant orientation, cross section 
and position uncertainties during the encounter can be 
assumed. 

In a low-speed encounter, however, the conjunction 
parameters may change in time and it is not possible to 
evaluate the risk just at the time of closest approach, it is 
necessary to take into account the whole encounter 
interval. 

An interval-VOLFLQJ�PHWKRG� EDVHG� RQ� 3DWHUD¶V�ZRUN� >4] 
has been employed. The method divides the collision 
interval in slices, and the collision risk is evaluated for 
every slice. For each slice, the same assumptions as in 
the high-speed encounter are valid (constant covariance 
and orientation, linear motion) and the slices can be 
made as small as necessary for these assumptions to be 
correct. 

To calculate the collision risk of each slice, any other 
high-speed collision risk algorithm can be used, with a 
scaling factor to take into account only the contribution 
of the slice, and not the whole encounter. This means 
that this method can be used with spherical objects and 
also for complex geometry objects. 

The instantaneous risk (red curve in Fig. 7) computed at 
each slice may be larger than the final computed risk 
along the interval, since it accounts at every slice as if  
the out-of B-plane component of the miss-distance is 
null . Once this fact is properly accounted to evaluate the 
instantaneous Pc rate (green curve), the cumulated risk 
can be derived. 

3.5 Monte Carlo 

In addition to the analytical or semi-analytical methods 
described previously, CORAM can also simulate the 
encounter using a Monte Carlo approach, valid for low-
speed and high-speed encounters and with any geometry 
combination. This simulation, however, is much slower 
than other methods and the main use is to check the 
results of other methods or to avoid the propagation of 
the covariance matrix. An example of Monte Carlo use 
in included in Fig. 1 with the rest of algorithms. 

The collision detection problem involving complex 
geometries has been solved using the separating axis test 
[5], a very fast test valid for arbitrarily oriented boxes. 

The user may select the number of steps for the Monte 
Carlo simulation, or alternatively, the user may 
configure the accuracy and confidence value to estimate 
the number of runs automatically. 

 

Figure 7: Example of accumulated collision probabilit y 
along an encounter interval in the case of low-speed. 

4 OPTIMAL AVOIDANCE MANOEUVRE 
COMPUTATION 

The computation of the optimal avoidance manoeuvre is 
performed by CAMOS, the SW utility devoted to 
manoeuvre optimisation. CAMOS uses most of the 
functionalities developed for CORCOS: 

x Trajectory initialisation (state vector and 
covariance). 

x Orbit acceleration modelling and propagation. 
x Object properties initialisation. 
x Encounter time search and refinement. 
x Collision risk computation, both for low and high 

speed encounters. Only the analytical methods are 
used, due to the requirements of the optimisation 
algorithm described in the following paragraphs. 
Monte Carlo cannot be used by CAMOS, while 
complex geometries can be used only if the 
probabilit y function is evaluated just as output (not 
as cost function or constraint). 

Operationally, CAMOS is usually run once a close 
encounter between two objects has been analysed by 
CORCOS, and the obtained collision risk is high 
enough to deserve the study of an avoidance strategy. 

CAMOS can be run in two modes: 

x Parametric analysis mode. This mode can assess 
one or several strategy analyses, where strategy 
analysis should be understood as a one-
dimensional or two dimensional parametric 
execution of a manoeuvre optimisation problem. 
This mode allows the user to evaluate, e.g., the 
effect of the manoeuvre execution time on the 
collision risk, with optimised manoeuvre direction 
for each selected value of the manoeuvre 
execution time in the grid. As example, Fig. 8 
shows the effect of a 1-cm/s manoeuvre on the 



 

distance of closest approach (DCA) as function of 
the execution time. 

 

Figure 8: Example of parametric analysis results 

x Evaluation mode. It runs just one case within one 
strategy, and produces specific output files to 
allow CORCOS to evaluate the selected case (with 
the newly designed manoeuvres) with risk 
computation methods not available to CAMOS. 
The user will  usually run CAMOS in evaluation 
mode for the most interesting case or cases found 
by running CAMOS previously in parametric 
mode. Only one case can be evaluated at a time. In 
addition, this mode can produce optional 
information on the evolution vs. time of certain 
trajectory functions, like longitude, latitude, eclipse 
or location over the South Atlantic region. As 
example, Fig. 9 shows the evolution of the 
longitude of a GEO satelli te. 

 

Figure 9: Example of evaluation mode results 

In both execution modes CAMOS produces tailored 
gnuplot scripts for the representation of the obtained 
data. 

The configuration of each strategy analysis is flexible: 

x Manoeuvres can be modelled as impulsive or not 
impulsive 

x Manoeuvre directions can be provided in different 
reference systems: 

o Mean Earth equator of epoch J2000.0 

o True equator and equinox of date 

o Mean equator and equinox of date 

o Local orbital (radial, in-track, cross-track) 

o Local intrinsic (along-velocity, momentum, 
binormal) 

x Each manoeuvre parameter (manoeuvre central 
time, size, azimuth and elevation) can be defined 
as fixed, a parameter of the strategy analysis, or an 
optimisation parameter 

x Bounds can be set on manoeuvre parameters, and 
specific direction constraints can be configured 

x Within the optimisation, the cost function can be 
selected as the collision risk, total delta-V or 
distance of closest approach (separation vector 
modulus, or its projection in along-track, cross-
track or radial direction) 

x Constraints can be set-up in the resulting 
trajectory: longitude and latitude for GEO 
satelli tes, and orbital period and ground track drift 
for LEO satellites. 

 

CAMOS uses a gradient optimisation package called 
OPTGRA (see [7]), developed by ESA/ESOC/Flight 
Dynamics, to find the optimum manoeuvre parameters 
in each configured problem. The algorithm can deal 
with equality and inequality constraints. It looks for the 
optimum solution by moving the initial optimisation 
parameters tangential to the constraints, and in the 
direction of steepest descent of the cost function. 

Since gradient methods are local optimisation 
techniques, the solutions found by the algorithm must 
be understood as local optima and, therefore, must be 
analysed critically by the analyst in search of the global 
optimum. For example, manoeuvre execution times 
have an effect on collision risk that can have a certain 
sinusoidal component (with its period equal to the 
orbital period). In that case, the gradient optimisation 
algorithm would select the local optimum closest to the 
initial manoeuvre time. In any case, since the tool 
allows analysing several strategies in one run, each with 
different selection of strategy or optimisation 
parameters, the presence of such local optima can be 
investigated by selecting the manoeuvre time as a 
strategy parameter instead of an optimisation parameter. 

5 OUTPUT FROM CORAM 

Output from CORAM includes a set of text files with all 
the relevant information to aid the operator to evaluate 
the encounter and plan any necessary action. In 
particular, an extensive summary file analyses every 



 

encounter found with information about the collision 
risk, covariance matrices, encounter geometry and 
information about each object. 

In addition to the summary file, a set of data files are 
created, depending on the scenario analysed, that may 
include gnuplot scripts to plot encounter geometry 
during a period of time for low-speed encounters, 
graphical representations of the b-plane, z-buffer and 
complex geometries in space. 

6 TEST CASES 

Two cases are provided in this section. The first one for 
the case of two spherical objects and a high speed 
encounter is intended to show the general capabilit ies of 
CORCOS and CAMOS. The second one is an example 
of a low-speed and complex geometry scenario. 

6.1 Complete Test Case for Spherical Objects 
and High Speed Encounter 

This section shows a test case of CORCOS and 
CAMOS capabili ties. A collision scenario is presented, 
and CORCOS is used to calculate its properties. Then 
CAMOS will  compute an optimal avoidance 
manoeuvre, showing the strategy analyses and 
optimisation settings, and finally CORCOS will  re-
analyse the new scenario. 

A perpendicular, high-speed encounter between two 
LEO spherical satelli tes is analysed, where a chaser 
body on a MEO polar orbit (i=90 deg, Rper=8000 km, 
Rapo=10400 km) approaches a target in an equatorial 
orbit with Rper=8000.01 km and same apogee. The 
trajectory data is defined by state and covariance files at 
TCA and a very simple propagation model, only central 
gravity potential, is used for simplicity in the test case. 

6.1.1 CORCOS initial assessment 

The input files used by CORCOS and CAMOS define 
the state vectors and covariances of both objects, and 
configure the scenario. In this case, the orbits are the 
same but perpendicular, having the same period, and 
they are defined at TCA. This means that there will  be a 
close approach every half orbit.  

The analysis done by CORCOS computes all the 
encounters in the analysed period of time, shown in Tab. 
1. Four encounters are found, two per orbit. 

Table 1: Initial coll ision risk assessment of the test case 

Time since initial 
epoch 

Miss 
distance 

Collision 
risk 

77 min 52 m 5.17·10-5 

154 min 103 m 6.74·10-5 

231 min 117 m 5.07·10-5 

308 min 206 m 1.39·10-6 

 

6.1.2 CAMOS optimization 

In order to show the capabili ties of CAMOS, two 
different strategy analyses are presented hereafter. Both 
cases deal with the same encounter event, namely the 
first one described in Tab. 1. 

The first strategy is a one-dimensional parametric run 
with a 10-cm/s manoeuvre, using the manoeuvre 
execution time as analysis parameter. Two sub-
strategies are analysed, with the initial manoeuvre 
direction along and against the velocity. Fig. 10 and 
Fig. 11 show the results of the analysis on the DCA and 
probabilit y of collision (PoC) respectively. In both cases 
the manoeuvre direction is optimised to minimise the 
PoC. 

 

Figure 10: DCA as function of manoeuvre time 

 

Figure 11: PoC as function of manoeuvre time 

The second strategy analyses the effect of a 10 cm/s 
manoeuvre located in the most favourable point shown 
in Fig. 11 (around 4199.055) to investigate the presence 
of local optima in the azimuth-elevation grid. Fig. 14 
shows the results, confirming that the along and against-
velocity directions are the local optima. 



 

 

Figure 12: PoC as function of manoeuvre azimuth & 
elevation 

The impact on the risk of the subsequent encounters can 
also be analysed with CAMOS. Fig. 13 provides the risk 
at each encounter as a function of the manoeuvre time. 
It can be seen how the risk of the two encounters at the 
opposite point in the orbit (namely 2 and 4) to that 
which is intended to be reduced (encounter 1) increases 
for some manoeuvring interval. 

Figure 13: Risk for the different Encounters in the case 
of an along-track manoeuvre 

6.2 Test Case for Complex Geometries and 
Low Speed Encounters 

This test case is limited to CORCOS, as CAMOS 
capacities remain unchanged no matter the type of 
object geometry and/or relative velocity of the 
encounter. 

The test case is related to two close-to-GEO orbits with 
a minor relative inclination (0.025 degrees). One object 
is composed by three boxes, while the other is made of 
one unique box. The dynamics makes the two objects to 
approach twice per orbit, as shown in Fig. 14. This 
figure provides the miss-distance and collision 
probabilit y as computed by CORCOS for the estimated 
encounters. Twenty encounters are found in a ten-day 
time interval. 

As already mentioned in section 3.4, the collision 
probabilit y for low speed encounters is computed by 
accumulating and scaling the collision probabili ty along 

each slice of the encounter interval. The resulting 
probabilit y for all the identified encounters is provided 
in the bottom plot of Fig. 14. 

 

 

Figure 14: Miss-distance and Collision Probabilit y 
along the different encounters identified by CORCOS 

 

Figure 15: Covariance Ellipsoids at one example slice 
along the second (top) and fourth (bottom) encounters 

It is important to note the differences in encounter 



 

geometry and the knowledge of the orbits along the 
different encounters. The second encounter (green 
curves) is related to a very low miss-distance (similar to 
the fourth encounter, pink curve), but the collision 
probabilit y associated to these two events is almost one 
order of magnitude different. The geometry of the 
encounter is different and also the projected density 
function on the B-plane is very different, mainly due to 
the dispersion of the uncertainties of the orbits (see Fig. 
16). In the fourth event, the uncertainty has spread up to 
a level which makes the integration over the projected 
area larger than in the second event.  

From the top plot in Fig. 16 one could expect a lower 
risk, but it has to be considered that the risk at that event 
is the cumulated risk along the encounter interval. The 
risk along the two intervals is shown in Fig. 17. 

 

Figure 16: Density Function over the B-plane of an 
intermediate slice along the second (top) and fourth 

(bottom) encounters 

 

Figure 17: Instantaneous and accumulated collision 
probabilit y along the second (continuous lines) and 

fourth (dashed lines) encounter 

7 SUMMARY 

This paper outlines the capabili ties of CORAM as a new 
tool available to ESA/ESOC Space Debris Office to 
help the assessment of collision risk and to devise 
optimal avoidance strategies to reduce the risk to 
acceptable levels. 

The introduction of complex geometries to model the 
object shape is interesting if the orbit determination 
processes lead to small covariances and if the satelli tes 
have irregular shapes, e.g. large solar panels. In such 
cases the collision risk can be significantly different 
when compared to spherical objects. 

The abili ty to calculate the collision risk on low relative 
speed encounters allows a precise estimation of 
collision risk in scenarios like nearly co-orbiting 
conjunction partners, co-located geosynchronous 
satelli tes, formation fly ing or approach manoeuvres. 

Finally, the process of risk assessment is complemented 
with the computation of a set of avoidance manoeuvres. 
Several optimization strategies with user-configurable 
constraints allow the operator to choose the best 
PDQRHXYUH�GHSHQGLQJ�RQ�WKH�VLWXDWLRQ�DQG�WKH�VDWHOOLWH¶V�

mission requirements. 

8 REFERENCES 

1. M.R. Akella, K.T. Alf riend. (2000) ³Probabilit y of 
collision between space objectś �� -RXUQDO� RI�
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