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ABSTRACT

A method for the identification of orbital conjunctions
and the computation of the collision probability between
two space objects is presented. The method is based on
the Taylor expansion of both the time and the distance of
closest approach between the two orbiting objects with
respect to their uncertain initial positions and velocities.
The collision probability is then computed via Monte
Carlo simulations, taking advantage of the availability
of analytical information to speed up the analysis. The
efficiency of the proposed approach is further improved
by adopting two advanced Monte Carlo techniques: Line
Sampling and Subset Simulation. The resulting method
applies on a wide range of orbits since no simplifica-
tions on the conjunction event are assumed. Test cases
are run on LEO and GEO encounters. The standard and
advanced Monte Carlo methods are compared in terms of
collision probabilities and computational efficiency.

Key words: Orbital conjunctions; Differential algebra;
Collision probability; Line Sampling; Subset Simulation.

1. INTRODUCTION

Collision probability plays an important role in the col-
lision risk assessment between spacecraft and orbital de-
bris. Its value is used to discriminate future conjunctions
and determine how likely a collision between the two ob-
jects can occur. Different methods exist for the computa-
tion of this quantity. Most of these approaches [4, 1, 12]
have the following assumptions in common:

• position uncertainties of the two objects are not cor-
related;

• both objects move along straight lines at constant
velocities during the conjunction. This is true when
its duration is limited to a few seconds;

• the uncertainties in the velocities can be neglected.
This is valid since typical velocity errors are of the
order of few m/s and the conjunction duration is lim-
ited;

• position uncertainty during the encounter is constant
and equal to the value at estimated conjunction. This
is a consequence of the previous assumption;

• the position uncertainties of the two objects are
represented by three-dimensional Gaussian distribu-
tions.

According to these assumptions, the error covariance ma-
trix of the positions of the two objects, mapped at the time
of closest approach t∗, can be combined into a 3 × 3 co-
variance matrix C . The collision probability is obtained
by integrating the probability density function over the
hard-body volume Vc. The volume integral reduces to a
bidimensional integral on the B-plane.

Methods tailored for long-term encounters are present in
literature [13, 7]. An approach that uses a set of consecu-
tive linear segments to compute collision probability can
be found in [2, 10].

Collision probability can be also computed by means of
Monte Carlo (MC) simulations. The initial conditions of
the two objects are sampled from their uncertainty dis-
tribution and propagated from t0 to the time of closest
approach. For each couple of final positions, the relative
distance d∗ at the closest approach is computed and com-
pared with the collision threshold D, which is defined as
the diameter of the sphere enclosing the two objects. The
collision probability is equal to the ratio between number
of samples for which d∗ < D and the total number of
samples. The advantage of this approach lies in its gen-
erality, since assumptions of analytical methods can be
dropped and it allows computations for complex object
shapes.

Monte Carlo methods were also used to study the impact
of non-Gaussian error volumes on collision probability
computation [9]. Its drawback though is the high com-
putational effort: each trajectory has to be propagated to
the time of the close encounter. In recent times, to cope
with this issue, techniques such as importance sampling
[8] and adaptive splitting [11] have been applied to the
problem of computing collision probability.

This paper aims at solving the above issues by merging
the advantages of Monte Carlo methods and Differential
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Algebra (DA). While retaining the main advantages of
Monte Carlo simulations (i.e. no limiting assumption are
made on object dynamics and encounter geometry), the
proposed approach gains efficiency in terms of computa-
tional effort. The method is thus suitable for both long-
term and short-term encounters, addressing the effect of
velocity uncertainties. Consequently, it can be applied to
the challenging problem of geosynchronous orbits, where
relative velocity between the spacecraft is low.

First, the objects dynamics are numerically propagated
taking into account the main sources of perturbations
(geopotential acceleration, atmospheric drag, solar radia-
tion pressure, and third body). Since this propagation is
performed in the DA framework, an arbitrary order Tay-
lor expansion of the flow is obtained. The stationarity
of the square distance during the close approach is then
imposed and partial inversion techniques are used to ob-
tain the Taylor expansion of d∗ and t∗ with respect to the
initial uncertainties. The polynomial approximation of
d∗ allows to rapidly estimate the distance of closest ap-
proach for each couple of virtual objects by means of fast
polynomial evaluations.

The paper is organized as follows: in Sect. 2 some hints
on how a numerical integration of the dynamics is per-
formed in the DA framework are given. The procedure
for the computation of the Taylor expansion of the time
and distance of closest approach is described in Sect. 4.
The Monte Carlo methods are described in Sect. 5, and
details on the advanced methods of Line Sampling (LS)
and Subset Simulation (SS) are given in Sect. 5.1 and 5.2
respectively. Numerical results and experiments are pro-
vided in Sect. 6.

2. DIFFERENTIAL ALGEBRAIC TECHNIQUES

The dynamical model and the integrations performed
within this paper take advantage of the tool COSY-
Infinity [5], which implements differential algebra. Dif-
ferential algebraic techniques allow the derivatives of any
function to be computed up to an arbitrary order with lim-
ited effort in a computer environment [6].

Differential algebra finds its main application in the fast
computation of high order Taylor expansions of the flow
of ordinary differential equations (ODEs). In particular,
any integration scheme is based on algebraic operations,
involving the evaluation of the ODE right hand side at
several integration points. If all operations are carried
out in the DA framework, then it is possible to obtain the
arbitrary order expansion of the flow of a general ODE
with respect to the initial conditions [14]. Without loss of
generality, consider the scalar initial value problem

{

ẋ = f(x, t)

x(t0) = x0

(1)

with its associated phase flow ϕ(t;x0) and the forward

Euler’s schemes

xi = xi−1 + f(xi−1)∆t. (2)

If the initial condition x0 is initialized as a DA variable,
considering the constant part and the first derivative, i.e

[x0] = x0 + δx0, (3)

then, at the first time step we have

[x1] = [x0] + f ([x0]) ·∆t. (4)

The output of the first step is the k-th order Taylor expan-
sion of the flow ϕ(t;x0) in x0 for t = t1. The result of the
final step is the k-th order Taylor expansion of ϕ(t;x0) in
x0 for t = tf , where several non-zero coefficients corre-
sponding to high order terms in δx0 appears. In addition,
when the final time is initialized as a DA variable

[tf ] = tf + δtf , (5)

the high order expansion of the flow with respect to final
time is gained too. This consideration is crucial for the
procedure illustrated in Sec. 4.

An advantage of the DA-based approach is that there is no
need to write and integrate variational equations to obtain
the high order expansion of the flow but it is sufficient to
replace the operations between real numbers with adjoint
operations on DA numbers.

3. DYNAMICAL MODEL

The numerical propagator AIDA (Accurate Integrator for
Debris Analysis) have been developed by the authors and
is used to compute the objects position and velocity at a
given time instant. AIDA is based on Differential Alge-
bra and is written in COSY-Infinity. The perturbations
modeled in AIDA are

1. atmospheric drag, using density model NRLMSISE-
00 that includes anomalous oxygen,

2. geopotential acceleration, using EGM2008 model,

3. solar radiation pressure with dual-cone shadow,

4. Sun and Moon gravitational attraction.

The following assumptions are made for the analyses car-
ried out within this paper: the degree and order of the
gravitational spherical harmonics is set to 10; the atmo-
spheric drag is supposed to affect object dynamics for al-
titudes below 2000 km; Sun and Moon position, required
by third body and solar radiation pressure computations,
are obtained from NASA DE405 ephemeris.

The numerical integrator used in AIDA is a DA version
of the Dormand and Prince (8-th order solution for prop-
agation, 7-th order solution for step size control) imple-
mentation of Runge-Kutta integrator.



4. EXPANSION OF TIME AND DISTANCE OF
CLOSEST APPROACH

The aim of this procedure is to obtain the Taylor expan-
sion of time t∗ and distance d∗ of closest approach with
respect to the uncertainties in the initial conditions of the
two objects

[t∗] = t∗ +
(

δx1
0, δx

2
0

)

[d∗] = d∗ +
(

δx1
0, δx

2
0

)

,
(6)

where x
1
0 and x

2
0 are six elements vector, i.e. gathering

initial position and velocity of each object in ECI refer-
ence frame (any set of orbital elements in any arbitrary
reference frame can be used). Their uncertainties esti-
mated from available Two-Line Elements sets or com-
puted from orbit determination processes.

The procedure for the time and distance of closest ap-
proach identification and expansion is divided in the fol-
lowing steps:

1. compute first guesses of t∗ and d∗. For example,
this can be achieved with the technique described in
[3], where all stationary points of the relative dis-
tance are obtained though rigorous global optimiza-
tion, using SGP4/SDP4 propagator;

2. use AIDA to propagate the uncertain initial condi-
tions from t0 to the first guess of t∗. The result is
the Taylor expansion of final positions and veloci-
ties with respect to initial conditions and final time:

[r1
f ] = r

1
f +M

r
1

f

(

δt∗, δx1
0

)

[r2
f ] = r

2
f +M

r
2

f

(

δt∗, δx2
0

)

;
(7)

3. compute the partial time derivative of the squared
relative distance

[d2] =
(

[r1f ]− [r2
f ]
)

·
(

[r1f ]− [r2
f ]
)

(8)
[

∂d2

∂t

]

= c0 +M ∂d2

∂t

(

δt∗, δx1
0, δx

2
0

)

(9)

and use partial inversion techniques to obtain δt∗ as
function of this derivative;

4. impose the derivative to be zero to compute the map
that describes the change in t∗ due to variations in
x
1
0 and x

2
0

[t∗] = t∗ +Mt∗(δx
1
0, δx

2
0); (10)

5. plug map (10) into final position maps of Eq. (7) to
obtain the map of the distance of closest approach as
function of both x

1
0 and x

2
0.

Given any set of initial conditions sampled from their un-
certain distribution, the associated t∗ and d∗ are obtained

by means of the fast evaluations of the resulting polyno-
mials, drastically reducing the computational effort. In
fact, the stationarity conditions of the closest approach
are imposed right after partial inversion and the resulting
map for t∗ is directly plugged into the Taylor expansion
of d∗. Thus, the values of d∗ obtained by evaluating the
resulting polynomials are the minima of the relative dis-
tance for each couple of virtual objects.

5. COLLISION PROBABILITY COMPUTATION

Fast polynomial Monte Carlo methods for collision prob-
ability computation can be developed based on the avail-
able Taylor expansion of d∗ and t∗. More specifically,
the sets of initial conditions are sampled from their uncer-
tainty distribution. Then, the values of d∗ for each couple
of virtual objects are computed evaluating the available
polynomials. The number of samples Nc for which the
collision condition, i.e. d∗ < D, is verified are divided
by the total number of samples NT to compute the colli-
sion probability

P (d∗ < D) =
Nc

NT

(11)

Using this approach no assumptions on the close ap-
proach are made, so the method is suitable for both long-
term and short-term encounters. In addition, it drastically
reduces the computational time with respect to standard
Monte Carlo methods, where, for each couple of initial
conditions, numerical propagations have to be performed.
Nevertheless, similarly to standard Monte Carlo methods,
the number of samples required to compute typical val-
ues of collision probability (i.e. of the order of 10−4 or
lower) with a decent accuracy is of the order of 106. Thus,
advanced Monte Carlo methods are used in this work to
increase the efficiency and accuracy of collision proba-
bility computation. More specifically Subset Simulation
(SS) and Line Sampling (LS) have been tested.

5.1. Subset Simulation

Subset Simulation is an adaptive stochastic simulation
method that can compute small probabilities as product
of larger conditional probabilities

P (d∗ < D) = P (F ) = P (Fm)
m−1
∏

i=1

P (Fi+1|Fi) ,

(12)
where m is the number of conditional levels and Fi+1

indicates the region conditional to Fi [15]. The method
is initialized with a standard Monte Carlo simulation with
few samples. The samples are sorted according to their
associated value of d∗. The ones for which the relative
distance d∗ is lower are used to generate other samples
using Monte Carlo Markov Chains. These new samples
all belong to conditional level F1 which is conditional to
the initial volume F0. This new set of samples is sorted



again and the samples with the lower d∗ are identified
and then used as seeds to generate new Markov Chains.
This iterative process terminates when the threshold that
identifies the new conditional level is below a collision
threshold D.

5.2. Line Sampling

The main idea behind Line Sampling is transforming an
high-dimensional problem into many 1D problems along
an “important direction” α [16]. This important direction
is defined as

α = − ∇d∗

(

x
1
0,x

2
0

)

‖∇d∗ (x1
0,x

2
0)‖2

, (13)

where the elements of the gradient of d∗ can be obtained
as the first order coefficients of the expansion of d∗. Each
sample is used to define the equation of a straight line
passing though it and parallel to α. The high-dimensional
space is explored moving along this straight line, i.e. us-
ing only one parameter c. If the line intersects the failure
region (d∗ < D), two boundary value ck1 and ck2 are iden-
tified for the sample k. The 1D probability becomes

P̂ 1D,k(d∗ < D) = Φ(ck1)− Φ(ck2), (14)

where Φ(.) is the standard normal cumulative distribu-
tion function. If the straight line does not intersect the
failure region, the associated one-dimensional probabil-
ity is zero. The collision probability is then computed as
the mean value of all one-dimensional probabilities. The
variance of P (d∗ < D) can be computed as well.

6. NUMERICAL RESULTS

The algorithms for the calculation of collision probability
described above have been tested with the three conjunc-
tions listed in Table 1. The cases are sorted in decreasing
relative velocity, and long-term and short-term encoun-
ters are considered.

Table 1. Test cases

Case
NORAD

Orbit t∗
d∗ ∆v

CAT ID [km] [km/s]

A
20735 LEO

2013/2/21 21:51:38 0.186 8.854
08544 LEO

B
11750 LEO

2013/2/23 20:10:06 0.265 4.841
23604 LEO

C
18575 GEO

2013/2/26 21:54:13 3.417 0.774
37238 GEO

The collision probabilities obtained for test cases A, B,
and C are listed in Table 2, together with the total num-
ber of samples NT used for the computation, the com-
putational time tc, and the coefficient of variation (c.o.v.)

δ. Both uncertain initial positions and velocities are con-
sidered, assuming they are Gaussian. All simulations are
performed on an Intel Core i5 2500 3.30 GHz, 8 Gb RAM
processor running Sabayon Linux 10. The Taylor expan-
sion of the dynamical flow is computed up to order 3.

Table 2. Collision probability with collision threshold
D = 100 m

Case P (F ) NT
tc δ

[s] -

MC 3.80E-5 1E6 114.61 0.162

A LS 3.89E-5 5000 11.64 0.031

SS 3.77E-5 11600 11.98 0.315

MC 8.00E-6 1E6 120.43 0.354

B LS 1.36E-5 5000 10.16 0.037

SS 1.15E-5 13200 13.21 0.411

MC 2.00E-6 1E6 128.33 0.707

C LS 1.36E-6 5000 8.48 0.184

SS 1.37E-6 16400 16.61 0.822

The same number of samples is used for MC and LS,
while the number of samples of SS changes due to its
iterative procedure. The collision probabilities seem in
good accordance in all test cases, although the accuracy
of standard Monte Carlo simulation tends to decrease for
collision probabilities below 10−5, as can be seen from
test cases B and C. This is due to the fact that, for lower
probabilities, fewer samples are found with d∗ lower than
the threshold D. In addition, the computational time of
MC is almost 10 times larger than the ones of LS and SS,
which range from 8 to 16 s.

To compare the efficiency of the three methods, two fig-
ures of merit can be introduced. The first figure of merit
is the unitary coefficient of variation, ∆, defined as

∆ = δ
√

NT =
σ
(

P̂ (F )
)

P̂ (F )

√

NT . (15)

The unitary c.o.v. is dimensionless and independent on
NT , since δ ∝ 1/

√
NT . The lower is the value of ∆ the

higher is the efficiency of the method. In Fig. 1 the ∆
computed for the three test case are compared. Note that
in all test cases ∆ is normalized by the value computed
for the corresponding Monte Carlo simulation.

According to these results, Line Sampling is the more
efficient method, since its ∆ is two order of magnitude
lower than the one of MC and one order of magnitude
lower than the one of Subset Simulation.

The second figure of merit, η, takes into account the col-
lision probability variance σ2 and the computational time
tc

η =
1

σ2

(

P̂ (F )
)

tc
. (16)
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Figure 1. Normalized values of unitary c.o.v. ∆

Note that η does not depend on the number of samples
NT since tc ∝ NT and σ2 ∝ 1/NT . The higher is the
value of η the higher is the efficiency of the method in
terms of accuracy of the result and computational time.
The values of η for each test case are plotted in Fig. 2.
Similarly to Fig. 1 η is normalized by the value obtained
for the Monte Carlo simulation.
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Figure 2. Normalized values of figure of merit η

Once again, Line Sampling outperforms the other meth-
ods: the corresponding η are two order of magnitude
higher than the one of Monte Carlo and Subset Simula-
tion. It is worth observing that the efficiency of SS for
test case C is higher than for cases A and B. This ex-
alts the reliability of SS for the accurate computation of
very low probabilities. Unlike LS, whose performances
mainly depend on the number of samples used and the
value of collision probability itself, the efficiency of SS
depends on many parameters, such as the number of seed
to be used to generate Markov Chains, the number of
samples of each conditional level, and the parameters for
Markov Chains generation. Thus, the efficiency of SS
can be likely increased by suitably tuning the associated
parameters.

6.1. Effect of velocity uncertainty

An analysis of the collision probability for varying co-
variance matrices is performed to study the effect of ve-
locity uncertainty on the computed collision probability.
Computations are performed by Taylor expanding t∗ and
d∗ with respect to both uncertain initial positions and ve-
locity, grouped in the state vector δx1

0 and δx2
0, and with

respect to uncertain initial positions δr1
0 and δr2

0 only.
The results are compared by scaling the original covari-
ance matrix by the same factor l ∈ [0.01; 5] and using LS
to compute impact probability. The results are plotted in
Fig. 3 for the test case with higher relative velocity (case
A) and lower relative velocity (case C), with a collision
threshold D = 100 m. It is worth observing that the col-
lision probabilities listed in Tab. 2 correspond to the point
l = 1 on the solid curves.

All curves have similar behavior: no collision is found
for very small values of l since the value of the relative
distance at the closest approach is larger than the thresh-
old D. Collision probability then increases for larger l
to a maximum value before starting decreasing. Note
that the collision probabilities in the decreasing part of
the curve are underestimated and need the knowledge on
initial conditions to be refined to reduce uncertainty.

The dashed curves, corresponding to uncertain positions
only, tend to shift up and right with respect to solid
curves, obtained with uncertain positions and velocities.
The effect is larger for case C, which is a long-term en-
counter in GEO. In this case the uncertainty on initial ve-
locities plays a crucial role, since: in case it is not consid-
ered and l < 2, the resulting collision probability would
be underestimated

The relative distance vectors ∆r can be sampled and pro-
jected on the so called NT plane to approximate graph-
ically their distributions. By definition the T versor is
parallel to satellite velocity and N is perpendicular to the
velocity and belongs to the orbital plane. In Fig. 4 the
projections of ∆r are plotted on the nominal NT plane
corresponding to the first object of each pair, i.e. 20735
for test case A and 18575 for test case C. The grey dots
are obtained considering only initial position uncertainty,
whereas black dots are computed for uncertain positions
and velocities.Note that the two axis are not on a 1:1
scale to emphasize differences in the distributions. For
test case A no significant variation in the distribution of
grey and black dots is found, and grey dots cover the area
described by the black dots. The pattern is different for
test case C, where the area described by the grey dots is
smaller and seems slightly rotated. In addition grey re-
gion does not embrace the origin of the reference frame.

This helps explaining the results found in Fig. 3. Adding
initial velocities as uncertain parameter seems not to af-
fect the relative position distribution for test case A,
which can be classified as a short-term encounter. In-
stead, uncertainties on v

1
0 and v

2
0 affect the distribution

of ∆r for test case C, which has a low nominal relative
velocity during the close approach. The smaller extent



10
−2

10
−1

10
0

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

Scale factor [−]

C
ol

lis
io

n 
P

ro
ba

bi
lit

y 
[−

]

 

 

(a) Test case A
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(b) Test case C

Figure 3. Collision probability vs. covariance scale factor l. Solid curves are obtained by setting uncertainties on both
initial position and velocity, while dashed curves are for uncertain positions only.
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Figure 4. Relative distance vector projected on the NT plane of the first object for test cases A and C. Grey dots represents
relative distance projections computed using uncertain initial positions only, black dots take into account both uncertain
initial positions and velocities.

of the grey region, coupled with a nominal distance of
closest approach of more than 3 km, turn out to decrease
collision probability to zero: no relative position vectors
are indeed sampled in the sphere of diameter D, centered
in the origin of the reference frame. This confirms the
result in Fig. 3(b), where a non-zero collision probabil-
ity is found only for uncertain positions and velocities for
l = 0.

7. CONCLUSIONS

A method for the computation of collision probability
has been developed by merging DA expansion of time
and distance of closest approach and Monte Carlo sim-
ulation. This approach enables a significant reduction of
the computational effort, since the numerical propagation

of the orbital dynamics is substituted by polynomial eval-
uations, without loss of accuracy. The propagations ac-
counts for the main sources of perturbation, using up-to-
date models for spherical harmonics and air density. The
procedure described for the expansion of d∗ and t∗ can
be adapted to any set of initial states and using any arbi-
trary reference frame, which widens the applicability of
the method to data coming from any special perturbation
catalog.

Besides standard Monte Carlo simulations, two advanced
Monte Carlo methods are used for the computation of col-
lision probability, Line Sampling and Subset Simulation.
Both methods have better performances in terms of com-
putational time and accuracy with respect to Monte Carlo
simulation, although the better results in terms of effi-
ciency are obtained for Line Sampling. With only 5000
samples, LS can compute probabilities as low as 10−8.



Tests performed on both long-term and short-term en-
counters showed that the collision probabilities computed
with the three methods are in good accordance. Being
based on the Taylor expansion of d∗ and t∗ and since no
assumptions are made on the dynamics of the encounter,
the presented methods are also suitable for close encoun-
ters with low relative velocity. The capability of captur-
ing the effect of velocity uncertainty has been studied.
For GEO conjunctions it has been shown that the effect
of uncertain velocity can lead to underestimation of col-
lision probability.

Future studies will focus on the improvement of com-
putational performance of the method. In particular all
three methods can be parallelized with small effort. The
codes can be classified as embarrassingly parallel, since
the evaluation performed for each sample are indepen-
dent one from the other. A comparison with the probabil-
ity computed using analytical methods will be performed
to investigate the validity of their assumptions and deter-
mine the limit of their applicability.
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