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ABSTRACT

The paper detals the semi-analyticd method
implemented in the STELA software for the state
transition matrix propagation. STELA (Semi-Analyticd
Tod for End of Life Analysis) is the CNES reference
tool for longterm orbit propagation.

The use of a semi-analyticd method for state transition
matrix propagation is particularly suited to perform orbit
determination for a very large number of objeds, using
spacedebris caalogue, which will continue to grow up
by the next decales. The advantages of using smplified
force models in the computation of state transition
matrix are presented.

1 INTRODUCTION

SpaceDebris miti gation has become a major concern for
many spaceagencies aroundthe world. Very long term
orbit propagation techniques (up to one hunded yeas)
as well as the ability to ded with increasing number of
space debris are required for studies in the frame of
Space Situational Awareness Semi-analyticd methods
are now commonly used since they represent a fair
compromise between predsion, needed to get
representative results, and computational efficiency.

Long term orbit propagation techniques using semi-
anayticd methods have been implemented in the
STELA software, which is presented in the second
sedion of this paper. It allows the propagation of a state
vedor in an efficient way over very long time scdes.
The latest STELA version propagates the orbita
elements and their sensitivity (through a set of
variational eguations) at the same time. The transition
matrix of the orbital state is computed foll owing a semi-
analyticd approach that is explained in the third sedion.
Pradicd examples of the benefits of semi-analyticd
methods for state transition matrix propagation are
given in the fourth sedion of the paper. It is particularly
suited to perform orbit determination using a space
debris caalogue, with a very large number of objeds,
since it alows the orbit determination process to run
much faster.
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2 STELA SOFTWARE

2.1  General infor mation

STELA (Semi-Analyticd Tod for End of Life
Analysis) isthe CNES referencetod for longterm orbit
propagation. It has been developed to assess the
compliance of disposal orbit against the French Space
Operations Act, in line with IADC (Inter-Agency Space
Debris Coordination Committe€ remmmendations,
through the removal of non-operationa objeds from
popuated regions. More information on the use of
STELA in the frame of the French Space Operations
Act are presented in [1] and [2]

The STELA propagator is aso currently used in Space
Situational Awarenessapplicaions: as an ealy warning
and crisis management tool, CNES has developed and
implemented an algorithm to deted and monitor the
short and middle term uncontrolled re-entry of space
objeds, OPERA. This algorithm takes STELA as the
dynamicd model, and uses it during the filtering stage
of the orbit determination process as well as once the
state vedor has been estimated to propagate the space
objed upto re-entry. A pradicd applicaion of OPERA
is presented in the fourth sedion of this paper. See[3]
to have more detail s on OPERA methoddogy.

STELA propagator is also used in the MEDEE software
to propagate the spacedebris popuation over long time
scdes. MEDEE is the CNES orbital debris evolutionary
model [4].

2.2 Dynamical model

The ideathat underlined the STELA development was
to take into acourt only the perturbations that have a
significant effed on long term orbit evolution, with
acaracy sufficient to assess the compliance with the
French Space Operations Act. Therefore, three
dynamicd models have been established, ead one
adapted to one orbit type: Low Earth Orbit (LEO),
Geostationary (GEO) or Geostationary Transfer Orbit
(GTO). To ensure reasonable CPU integration times,
the long time scde analysis is based on the numericd
integration of equations of motion, where the short



periodic terms have been removed by means of an
analyticd averaging for conservative perturbations and
numericd averaging for disdpative perturbations. This
alows the use of a very large integration step size,
typicdly 24h reducing significantly the total time of
computation. As an example the typicd computation
time is abou one minute for a 100 yea propagation.
The averaging approach follows methods developed in
the theory of mean orbital motion ([5]) and derived for
orbits with very small eccaentricities, removing all
divisions by the eccentricity in the mean equations of
motion ([6]). The correspondng perturbation equations
have been written, namely the Planetary Lagrange
equations for perturbations deriving from a potential
(internal gravity field, moonsun perturbations), and the
Gauss equations (for the atmospheric drag and solar
radiation presaure). In both cases, the averaged forces
(over the rapid variable) are inserted into the equations
of motion, which are, consequently, mean equations of
motion. The mean potential U (except for the J2
coefficient where a term propartional to J22 is explicitly
added) is computed once for al in an analyticd way,
from the expresson of the osculating potential U:
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The mean effed of disspative perturbations on eadh
orbital parameter is evaluated through a numericd
Simpson quadrature method considering n constant
intervals in true or ecceatric anomaly (depending on the
perturbation) alongone orbit.

The variational equations have been implemented from
the GTO dynamicd model (which is more complete and
generic than LEO and GEO model, with no eccentricity
limitation). Therefore, we will not present the LEO and
GEO model here, see [1] for more information. The
GTO mean dynamicd model implemented in STELA is
giveninTab. 1.

Table 1: Mean dynamical model

Perturbation GTO orbit type

Earth’s gravity | Complete 7x7 mode (Including J22.
field Teszrd termstaken into acourt only
when tesseral resonances are deteded)

Solar and Lunar | Yes (upto degree5)

gravity

Atmospheric Y es (M SIS00 atmospheric mode, rotating
drag atmosphere)

Solar radiation | Yes (including cylindricd Earth shadow)
presaure (SRP)

Note that the effed on orbit eccetricity vedor of
additional zonal terms of the geopaential has to be
considered when the inclination is close to the criticd
inclination (63.4 deg for prograde orhits).

The equations have been written in a generic way that
adlows low and high eccentricity values and any
inclination except 180 deg. The set or orbital elements
is:
a

Q+w+M
ecos(Q + w) ()]
esin(Q + w)
sin 1/ cosQ

With a standing for the semi-major-axis, e the
eccantricity, i the inclination, Q the Right Ascension of
Ascending Node,  the Argument of Perigeeand M the
mean anomaly.

Osadlating elements are needed for comparison with
resuts coming from numericd integration as well asin
the drag force perturbation computation or to retrieve
the “true” spacecaft position. Therefore, an explicit
analyticd transformation from mean to osaulating
elements and conversdy has been developed through
the sd of orbital elements E. The GTO model of short
periodic terms contains the perturbations as desaibed in
Tab. 2.

Table 2: Shat period model

GTO orhit type

Short  periodic J2, Solar and Lunar gravity
terms (degree?)

More information on STELA and its validation are
givenin[1].

3 VARIATIONAL EQUATIONS

The latest STELA version (v2.4.2) propagates the
orbital elements and their sensitivity at the same time,
througha se of variational equations that are detailed in
this section.

We can write the following ordinary differentia
equation (ODE)

dE
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With E being the se of orbital mean elements and f is
the mean elements rate taking into acourt the
dynamicd model desaibed in Tab. 1.

The variational equations give the influence of the
initial condtions E(ty) and force model parameters ky
and k, on the current state E. kg and k, are multiplying
fadors for drag force and sdar radiation pressue
respedively, commonly used in an orbit determination



processas corredion fadors for drag and sdar radiation
pressue coefficients.
The variational equations are:

i( dE )_6_f dE
dt \E(ty)/ = OE 0E(te)
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Note that second se of equationsis nat needed if we are
interested only in the influence of initial condtions E,.

The variational eguations are sdved throughou the
orbit propagation to presave consisency. The
dimension of the state vedor is then 54 (6 orbital
elements plus 48 partial derivatives). We can arrange

. _— oE of
the propagated partial derivatives 35 T

form amatrix @ referred to as the state transition matrix
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The sdvefor vedors have the following initial
condtions:

oK
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With g identity matrix and {0} null matrix (explained
considering that a change in the force model parameters

does not affed the initial value of mean orbital
elements).

3.1 Force model parameters

The f derivatives with resped to a force model
parameter are straight forward (assuming a non-zero
value):
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3.2 Disgdpative perturbations

For disspative perturbations the Gauss equations G are
usal and the mean elements rate is evaluated througha
numericd quadrature method aong the orbit (using
either v, u or M, respedively true, eccaitric and mean
anomaly). Cdling F the disspative accéeration we
have:

v
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M

We can permute the partia derivative sign and
integration sign since the quadrature is dore on a finite
number of intervals, we obtain:

v
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The Gauss equations G have been compute analyticdly,
sowe can easily compute their first derivatives as well.
The disspative accaeration partial derivatives may be
more tedious to compute analyticaly. Let us consider
the drag accéeration:

- 1 S —
Farag = —Ep;CdVrVr @0)

With:

p: Atmospheric density

S: Crosssectional area

m: Spacecaft mass

Cd: Drag coefficient

Vr: Spacecaft velocity relative to the atmosphere

The main uncertainty in the computation of the drag
acceeration partial derivatives comes from the
derivatives of the atmospheric density that canna be
derived analyticdly in most of the case Then, a finite
differencetechnique has to be adopted.

There is no particular difficulty in the computation of
the partial derivatives of sdar radiation pressue
acceeration.

3.3 Conservative perturbations

For consavative perturbations the Planetary Lagrange
equations L and the mean potential U defined in Eq. 1
are used to compute the orbital element derivatives:

dE ou
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Consequently for consavative perturbations we have:



or _oLou %0

dE ~ OE OE " 9E2 (12)

The Lagrange equations L and the mean potential U
have been computed analyticdly, so we can easily
compute their first and second order derivatives with
resped to orbital elements as well.

3.4 Implementation in STEL A software

STELA uses the se of equinoctial elements E. The
correspondng Lagrange and Gauss equations have been
written as well as their derivatives. Tab. 3 gives the
dynamicd model implemented in STELA for variational
equations.

Table 3: Dynamical model for variationd equéations

Perturbation Variational equations model

Earth'sgravity | Zonal termsupto J7 (Including J22)

field

Solar and Lunar | Yes (upto degree4)

gravity

Solar radiation | Yes (conservative perturbation, no
presaure (SRP) | shadow)

Atmospheric Y es (Finite diff erence for atmospheric
drag density variations)

Solar radiation pressue is modelled as a potential to
saze computation time. Further improvement may
change this to take into acwurt the edipseperiods, even
though the current implementation is acarate enough
for our main application (see next section). There is no
theoreticd difficulty into considering a disspative sdar
radiation pressue in the variational equations.

Drag is the only dissipative perturbations taken into
acourt in the current variational eguations force model.
The MSIS-00 model is used to compute the atmospheric
density. MSIS-00 is not an analyticd model. As a
consejuence, a single-sided finite difference technique
is used to compute the atmospheric density derivatives
with resped to position. The derivatives of drag
acceeration (taking into acmurt a rotating atmosphere
and the projedionin alocd orbital frame) are computed
with resped to Cartesian coordinates and then converted
to derivatives with resped to equinoctial elements using
the Jambian matrix of the Cartesian to equinoctial
transformation. It would aso have been possble to
perform the finite difference technique on the whole
drag accderation computation (and not only on
atmospheric density computation) to obtain the drag
partial derivatives, but it seemed less acarrate since the
small deltas to consider, espedally for velocity, might
be hard to justify.

One can note that all the partial derivatives with resped
to the fast variable (0+Q+M) will be zero since we are
considering perturbations that have been averaged over
one orbit (the mean element rates do not contain the fast
variable). No partiad derivatives of short period
perturbations have been considered yet. As a
consgjuence, the adua model alows mapping
deviation from one time to another on mean elements
only. The osaulating state transition matrix canna be
computed here. It is not a problem in our main
application (see next section) since the state transition
matrix is used in an orbit determination scheme in mean
elements. However, further improvements may include
the short periodic motion partial derivatives since there
isnotheoreticd difficulty in their computation.

The seami-analyticd scheme adoped for the state
transition matrix propagation allows a large integration
step. Since the variational equations are sdved
throughou the orbit propagation, the natural choice is
the STELA’s default integration step: 24H. Tab. 4 isan
example of the impaa of the dynamicd model for state
transition matrix propagation on computation time. The
dynamicd model considered in the transition matrix
propagation can be adapted (i.e. simplified) by the use
to save computation time. The test case is a GTO
propagation over 10 yeas (Intel Core i3, 2.1Ghz, 3.4Go
RAM, Windows XP).

Table 4: Dynamical model and computation time

Dynamical model for variational Computation time

equations

None: STELA simple orbit 12s

propagation (dimension of state

vedor is 6)

Earth’s gravity field only 19s

Earth, Moonand Sun gravity only 27s

Complete withou drag 28s

Complete (same asin Tab. 3) 36s

One can see that computing the state transition matrix
from the variational equations triples the computation
time with resped to a simple orbit propagation. It is
worth nating that it is much faster than using a finite
difference technique. Indeed, for a singe-sided finite
difference technique, one has to perform a nominal
propagation then apply one small delta on eat one of
the six initial orbital elements and two force model
parameter kg, It represents nine simple orbit
propagations. For a doule-sided difference technique
(plus or minus a small delta for eah parameters) it
represents 16 simple orbit propagations. The gain of
using the variational equations is obvious in
computational efficiency, not to mention that the semi-
analyticd approad yields expressons that are generally



more acairate than the finite-differencing approaches.
As expeded, drag perturbation is the most time-
consuming perturbation since a finite difference scheme
is necessay to compute the atmospheric density
variation. In this case Moon and Sun gravity
perturbation also took same computationa time since
the full model (up to the fourth degree in the
development) was considered. One can note that sdar
radiation pressue has no impad on the computation
time sinceit is modelled as a potential in the variational
equations.

Validation of the implementation of the variationa
equations in STELA sdtware has been dore mainly
through comparison with resuts coming from finite
difference techniques. The use of the state transition
matrix in the OPERA sdftware (see next section) also
gives us confidence about our model.

4 PRACTICAL EXEMPLES

State transition matrices are commonly useal in orbit
determination processes or for covariance matrix
propagation. The best example of the benefits of using
the STELA sdftware, and consequently a semi-
analyticd scheme for state transition matrix
propagation, is given by the OPERA sdftware presented
heredter. Another exampleis given for covariance
matrix propagation to ill ustrate the posshiliti es of
STELA implementation, althoughthisisaie have not
been studied extensively yet.

4.1 Covariance matrix propagation

State transition matrices can be used to propagate a
covariance matrix P (modelling injedion or estmation
errors):

P(t) = 2(O)P(to)P(6)" (13)

For validation purpose we computed the R quantity
defined by Rice[7]

RO =[S T Gcan,*(0) (19

With &.,, standing for a state transition matrix in
Cartesian elements. Rice interprets R as a measure of
“error growth rate”, correspondng to the linea
propagation of a covariance matrix whom only non-zero
values are on the position comporents of state (in
Cartesian elements):

_(d%l; 03
The test case given by Riceis alow circular equatorial
orbit propagated with only the J2 perturbation. Fig 1. is
aplot of the R values computed from:

1) Numericd propagation. The orbit is propagated with
a Cowell numericd propagator using a small step size
(60s). The state transition matrix is computed from
single-sided finite diff erencing technique to evaluate the
state transition matrix @,z (8s a resuts, 7 orbit
propagations are performed)

2) Semi-analyticd propagation of the orbit and state
transition matrix @ using the STELA sditware. The
transition matrix computed by STELA isin equinoctial
elements, then it is converted in cartesian elements
using the Jaombian J of the cartesian to equinoctia
transformation:

Dear() = JOT. (). ] (to) (16)
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Figure 1. Rvaluetime history, Ricetestcase

One can see the very good match over severa days
between R values from numericd and semi-analyticd



propagation. Computed values are consisient with [7].
The bottom plot ill ustrates the diff erence between mean
and osaulating state transition matrix (let us remind that
no short periodic motion is considered in the STELA
variational equations).

Even thoughthis issue has not been extensively studied
here, covariance matrix propagation using semi-
analyticdly computed state transition matrix in
equinoctial elements is promising, since studies show
that working natively in equinoctia element space
rather than in Cartesian representation has a significant
impad on the consisttncy between propagated
covariance and adual state error distribution [8].

4.2 Orbit Determination

As an ealy warning and crisis management tool, CNES
has developed and implemented an algorithm to deted
and monitor the short and middle term uncontrolled re-
entry of space objeds, OPERA. In order to cover a
space objeds popuation as large as possble, CNES
makes use in addition to the French space debris
caaogwe, of the United States Strategic Command
(USSTRATCOM) pulic caalogue (https//www.space
tradk.org). To forecast the uncontrolled re-entry of a
gred number of objeds, which are orbiting in the lower
region of Low Earth Orbit as well as on GTO, it is
required to dispose of an eccentricity / inclination
singuarity-freeorbital propagator, with a high degreeof
computational efficiency. STELA propagator in library
mode has been chosen, and is used during the filtering
stage of the orbit determination processas well as once
the state vedor has been estimated to propagate the
spaceobjed up to re-entry. Note that when the lifetime
estimated by OPERA is under a threshold value (a
week, for example); the data are transmitted to an
operational entity that monitors the re-entry using a
predsenumerica propagator. The OPERA algorithm is
divided into 5 steps:

1) External Data Filtering: from the external caaogue
the TLE time seaies have to be filtered (Outliers
detedion and suppressin, orbital maneuvers to deted
controlled spacecaft, etc.)

2) Initial Condtions Estimation: a first guess of
ressanable quality is neeaded in the nonlinea orbit
determination. The ballistic coefficient initial guess
estimation comes from energetic considerations related
to the deaeaserate of semi-major-axis.

3) State Transition Matrix computation with method of
variational equations of section 3: being able to map
deviations on the state vedor from one time to another
is neaded in the differential corredion estimation
problem

4) Orbit determination with differential corredion: an
orbit determination algorithm in which the orbital

elements from the caalogue are diredly considered as
measurements has been developed (use of mean
elements)

5) STELA propagation up to re-entry: once the
unknown initial state has been estimated, the state
vedor is propagated up to re-entry in order to evaluate
if the spacecaft is re-entering within the targeted
timeline (typicdly afew months).

A predse desaiption of OPERA, its methoddogy and
asumptions as well as acaracy resuts are given in [3]
and won't be disauss here. Let us remind that once
initial condtions of a reasonable quality have been
estimated, the nonlinea estimation problem can be
lineaized using a Taylor’s series expansion about the
reference trgjedory and bemmes a lesstsquares
estimation problem. It is worth noting that OPERA
algorithm is optimized from a computation time point of
view by the implementation of the differential
corredion algorithm in mean elements, both for the
obsevations as for the unknowvn state vedor. As a
consequence we nead to be able to translate the
obsevations (TLEs) from TLE mean elements to
STELA mean elements. For orbit with small
eccantriciti es the best way to do sois to use SGP-SDP
theory to convert TLE mean elements to osaulating, and
then to use STELA short periods model to conwvert
osaulating elements to STELA mean elements.
However, the SGP-SDP conwersion to osallating
parameters is not valid for high eccentricities due to
limitations in the SGP4-SDP4 short period model. Then,
for such orbits, it is better to assume that STELA mean
elements are equals to TLE mean elements withou
using osaulating conversion. In addition to this, we have
to be able to compute the state transition matrix to relate
the mean obseavation made at different times to the
unknown initial state that we are willi ng to estimate. In
the first OPERA version the state transition matrix was
computed numericdly by performing severa
propagations applying small deltas to the initial state.
What we are interested in this paper is the gain brough
by the use of variational equations, implemented in the
last STELA release for the state transition matrix
computation. Note that the state transition matrix is
compute on a fixed-step (typicdly 24H) integrationtime
grid; a Lagrange interpolation is then performed to
compute the state transition matrix at measurements
(TLE) epoch. The orbit determination process stops
when the weighted root mean square of the residual
state vedor does not change enoughfrom one iteration
to another or is below athreshold value.

As an example, we consider the objed n°29518in the
USSTRATCOM pulic caaogue. It is a rocket part in
GTO that encourtered an uncontrolled re-entry on
November 7th, 2012 Fig. 2 shows the semi major axis



evolution from May 15" 2012 up to re-entry (TLE
history).
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Figure 2: Semi major axis ewlution from objed 29518

The blue areain Fig.2 shows the one-month saeening
period usel heredter. We performed several re-entry
predictions using the OPERA sdftware: the impads of
the method to compute the state transition matrix (finite
difference or sami-analyticd) as well as the force model
(full or simplified) are presented. Only the force model
for state transition matrix propagation changes: we
always consider a full model (desaibed in Tab. 1) for
orbit propagation. Tab. 5 gives the test case initia
condtions and assumptions.

Table 5: OPERAtest case

Objea n°29518(GTO)
ReEntry effedive date 07/11/12
Screening period 15/05/12to 14/06/12

(5 months before re-entry)
Orbit data Observations (i.e. TLE)
Solar adivity Real data (a-posteriori

measured values)

Atmospheric model MSIS-00
Drag coefficient STELA default filei.e. drag

coefficient as a function of
atitude

Tab. 6 givesthe information brought by the first TLE (at
the 15/05/12 epoch) as well as the resut of the orbit
determination process,considering a state transition
matrix computed from finite diff erence technique and
sami-analyticd method OPERA orbit determination
output is the state vedor and force model parameters at
the first TLE date. Further improvements such as the
ability to perform backwards in time propagation would
alow changing the epoch of the estimated parameters.
The orbit parameters are mean parametersin TEME
frame at first TLE epoch.

Table 6: Resuts of orbit determination

TLE Finite Semi-
difference | analytical
at epoch

Semi-major-axis, 9166659 | 9161689 9161864
km
Eccentricity 0.27649 0.27672 0.27681
Inclination, 88.3984 884015 88.3974
degrees
Areato massratio - 0.284 0.260
m?/kg
Number of - 4 5
iterations before
convergence

Tab. 7 gives theimpaad of the method and force model
for state transition matrix computation on the estimated
re-entry date and computationtime (Intel Corei3, 2.1
GHz, 3.4Go RAM, Windows XP).

Table 7: OPERAtest caseresults

State transition matrix Re-entry Computation
computation method and date time
force model

(Error)
Finite differences 151012 630s
(Numericd) 15%)
Semi-Analyticd 211012 217s
Full model (asin Tab. 3) (11%)
Semi-Analyticd 21/10112 190s
J2, 33, Drag, SRP, Sun (11%)
Semi-Analyticd 211012 162s
J2, Drag, SRP (11%)

We can see that using a semi-anayticd methodto
propagate the state transition matrix makes OPERA run
abou threetimes faster than using a finite difference
scheme (even thoughone more iteration is needed for
orbit determination convergence). Thereisnolossin the
acaragy of the re-entry date, proving that this method
fits well in OPERA algorithm. The error percentage on
the re-entry date is consisent with previous OPERA
resuts[3]. It isworth noting that the dynamicd model
for state transition matrix propagation can be
significantly reduced up to the simplest one: J2, drag
and SRP that are necessay to estimate the force model
parameters. In this casethere isnoimpad onthe re-
entry date whereas the computationtime is grealy




reduced. More generally, one can adopt avery simple
model for state transition matrix propagationin an orbit
determination process:it is a compromisebetween the
number of iterations neaded for convergence and the
computationtime for asingle iteration. More complete
investigations are still on-going to determine what force
model off ers the best compromisebetween predsion
and computational efficiency.

The implementation of variational equationsin the
STELA sdtware all owed OPERA to significantly
reduceits computation time to monitor the short and
middle term uncontroll ed re-entry of objeds from
French spacedebris and pubic caaogue.

5 CONCLUSION AND FUTURE WORK

The implementation of the variational equations in the
STELA sditware allows the propagation of the orbital
elements and their sensitivity at the same time. A
complete force model is available for the partial
derivatives computation and has been presented in this
paper. The use of a semi-analyticad theory makes the
propagation very efficient from a computation time
point of view.

The STELA propagator is usal in the OPERA sdftware
to monitor the short and middle term uncontrolled re-
entry of space objeds from public space debris
caaogwe. The state transition matrix, needed in the
orbit determination process, is now computed from the
sami-analyticd variational equations. It alows the orbit
determination processto run much faster withou losing
predsion on the estimated parameters. More complete
investigations are still on-going to determine what force
model, considered for the state transition matrix
propagation, offers the best compromise between
predsion and computational efficiency.

Some possble improvements have been identified, with
future work which could be: improvement of the force
model available in the variational equations (short
periodic motion, tesseal terms, edipse period for the
sdar radiation pressue, etc.), backwards in time
propagation, implementation of the semi-analyticd
theory in a Kalman filter estimation process,etc.

More generally, the benefits of using semi-analyticd
method for state transition matrix propagation still need
to be further analysed. In particular, covariance matrix
propagation or orbital resonance detedions are to be
investigated.
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