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ABSTRACT

A break-up in Low Earth Orbit (LEO) is simulated for
10 objects having area-to-mass ratios (AMR’s) ranging
from 0.1-10.0 m?%kg. The Constrained Admissible
Region Multiple Hypothesis Filter (CAR-MHF) is
applied to determining and characterizing the orbit and
atmospheric drag parameters (CdA/m) simultaneously
for each of the 10 objects with no a priori orbit or drag
information. The results indicate that CAR-MHF shows
promise for accurate, unambiguous and autonomous
determination of the orbit and drag states.

1 INTRODUCTION AND BACKGROUND

The vast majority of space objects (SO’s) orbiting the
earth are uncontrolled. Of the SO’s in Low Earth Orbit
(LEO), some as yet undetermined number of these have
dynamic perturbation components that are not
completely predictable and, when combined with their
dim, time-varying visua magnitudes, make them
difficult to track consistently. Additionally, when a new
break-up occurs there are numerous “new” observation
tracklets that must be associated, and the orbit and drag
states determined for the tracked objects. Initialy
sparse tracking data make follow-up determination of
the orbit and atmospheric drag parameters a challenge,
and even when tracked consistently, erroneous
assumptions regarding the statistical distribution of the
errors can exacerbate the challenge of data association
and subsequent attempts to accurately compute
conjunction assessments.

Previous work [1] demonstrated the viability of using a
Constrained Admissible Region-Multiple Hypotheses
Filter (CAR-MHF) to perform initia state estimation
(ISE) using sparse data collected on a high area-to-mass
ratio (HAMR) SO orbiting in a near geosynchronous
orbit (GEO).

This work applies the CAR-MHF to simulated tracking
data representative of a break-up in LEO to determine
its viability for usein that orbit regime. Optical tracking
data from a ground station are simulated for 10 objects
originating from a single host object, and CAR-MHF is
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used to initialize tracks and associated hypotheses
which include orbit and drag parameters. The
subsequent data (i.e. obtained on follow-up passes over
the ground site) are associated to determine the orbit
states.  The resulting estimated orbit and drag
parameters, and data association statistics, are compared
to the known “truth” orbits and the results presented.
The approach accommodates the orbit determination of
spatially and temporally distributed objects having a
range AMRs.

2 CONSTRAINED ADMISSIBLE REGION
MULTIPLE HYPOTHESIS FILTER

The CAR-MHF agorithms support initialization of
orbit and parameters states without any specific a priori
state information beyond general orbit constraints (e.g.
neighbourhood of LEO regime). A probabilistic data
association scheme is applied for one or more
measurements at a given time to hypothesized orbits to
determine which hypotheses are the most likely
candidates. CAR-MHF has been described in more
detail in [2, 3]. This section provides a summary of the
conceptual background and the implementation relevant
to thiswork.

Milani [4] initialy used the Admissible Region to aid in
determining orbits of asteroids, and DeMars et a. [3]
extended it for determining orbits for Earth-orbiting
objects. Figure 1-aillustrates an example of the range,
range-rate solutions for a set of near GEO semi-major
axis (left) and eccentricity (right) constraints, where a
Keplerian orbit is assumed. Each line represents
solutions for a specific constraint value. Figure 1-b
presents an example of the super-position of a single set
of semi-major axis and eccentricity constraints (left) and
the region of intersection (right) for each of the
constraints. This is the ‘CAR’ which, when discretized,
results in the set of range and range-rate pairs, these
pairs are then combined with angle and angle rate
measurements to derive the hypothesized states.
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Figure I-a. Range vs. Range-rate near GEO semi-major
axis (left) and eccentricity (right) constraints.
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Figure 2-b. Intersection of a given set of near GEO
semi-major axis and eccentricity constraints (left) and
the remaining Constrained Admissible Region (right).

The measurements and their associated a priori
uncertainties (derived from the measurement noise) can
be combined with the hypothesized range and range-rate
pairs, and a priori covariances derived from their
discretized spacing, to form a six element state and
associated  covariance. These  hypothesized
measurement states, along with their mean, can be
mapped via the Unscented Transform (UT) to form a set
of hypothesized and mean Cartesian positions and
velocities and their associated a priori covariances [5].
This process is illustrated in Figure 2.
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Figure 2. A sigma point transform is used to map the
angle, angle rate, range and range-rate to Cartesian
position and velocity coordinates for each hypothesis.

The process just described results in a set of
hypothesized orbit states. =~ However, if ballistic
coefficient (BC) is also hypothesized, these
hypothesized values must also be added to the overall
set of hypotheses. This is done via a set of user-defined
values specifying a set of hypothesized SRP and/or BC
values. As with the hypothesized states, the a priori

covariances associated with these state components are
derived from the spacing between the hypothesized
values.

3 SIMULATION OF LEO BREAK-UP

A break-up was simulated consisting of 10 “pieces”
emanating from a single LEO satellite position at a
specific time. A nominal orbit having a semi-major axis
of 7000 km, eccentricity of 0.01, and inclination of 45
degrees was used. A dispersion of 10 m/s (1-6) for the
Av’s was added to the nominal orbital velocity for
modelling the break-up, in addition to randomly
selecting initial BC (i.e. CdA/m) values over the
interval 0.01-10.0 m’kg. The BC of each satellite
fragment was kept constant in time for this simulation.
This purpose of using this simple non-energy preserving
break-up model was to validate CAR-MHF suitability
for LEO data processing, and to assess data association
and processing performance.

A “truth” trajectory was generated using a 6x6 EGM 96
Earth gravity model, sun and moon third body
gravitation, and drag acceleration. The low degree and
order Earth gravity were used for this initial
demonstration study to expedite processing. Filter and
“truth” models used for the measurement simulation
were consistent.  Right ascension and declination
measurements were simulated in tracklets spanning
several minutes and the measurement intervals
separated by about 60 seconds for a sensor location in
New Mexico. The measurements were corrupted with a
one arc-sec (1- 6) additive Gaussian white noise error.

A plot of the dispersing objects at a specific moment in
time, primarily in the in-track component, is shown in
Figure 3, and the BC values that were generated for the
10 debris objects are provided in Table 1. Measurement
tracklets consisting of a set of topocentric right
ascension and declination angles for a sensor located in
New Mexico, USA, were simulated over a span of 3
days, with visibility constraints applied.
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Figure 3. Snapshot in time of the 10 simulated LEO
debris objects dispersing in the in-track direction.



Another assumption made in this study is that the
probability of detection for any given object within the
visibility constraints is equal to one. In addition to the
range of BC’s, Table 1 aso includes the starting number
of hypotheses, number of hypotheses at convergence,
the time (i.e. in simulation time, not computer run time)
and number of observation updates to convergence. All
but one of the objects converged to a single hypothesis
in less than 2 hours (44-56 measurement updates), while
object #8 took nearly 8 hours and 163 measurements to
converge. This is the result of the BC value being
nearly 5 m?kg which is nearly mid-way between the
two hypothesized AMR values of 0.01 m%kg and 10
m?/kg that were used. It was simply the result of the
MHF needing more time and data to decide on the final
value due to the filter having farthest to go for
convergence to that particular value.

Table 1. Drag and hypothesis history for the 10
simulated LEO debris objects.
CdA/m Start End Conv. Conv.
Object # | (m"2/kg) |Hypoth. #{Hypoth. # Obs. # Hours
1  8.691 134 1 56 1.8
2| 0405 142 1 56 1.8
3 0.017 130 1 47 1.7
a  6.308 134 1 44 1.7
5 2.564 136 1 47 1.7
6|  1.205 138 1 a3 1.7
7| 3107 122 1 47 1.7
gl 4471 124 1 163 7.8
3  0.300 140 1 56 1.8
10]  7.661 148 1 43 1.7

4 CAR-MHF PROCESSING

The CAR-MHF processing is illustrated in Figure 4.
The CAR process initiates a set of filters when no
existing estimates are available to process. Existing
estimates may be available from previous CAR
generations. The CAR initiates a set of hypotheses
based on an un-associated tracklet of data and user
supplied hypothesis constraints. Each hypothesis is
propagated to the next measurement time. At that point,
a probabilistic data association process is applied to one
or more data pairs that might occur at a single time. If
any measurements are associated to any hypotheses
(based upon a Mahalanobis Distance criterion), all
hypotheses are updated for the associated measurement,
and those updated are weighted based on their statistical
likelihood as presented in [3]. In the case of an update,
the hypothesis weights are adjusted accordingly and
pruned based on user-selected criteria.  If no update
occurs, the hypotheses weights remain unchanged.
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Figure 4. CAR-MHF process flow.

Conceptually, the data and hypothesis update approach
enables multiple data to inform the filter which
hypotheses are the most likely states. Each filter update
further refines the hypotheses, rejecting the least likely,
so ultimately the surviving hypothesis (or couple of
hypotheses) is the converged state. This process is
depicted in Figure 5, where it should be noted that the
Mahalanobis distance metric is the basis for the data
association. Each hypothesis state and covariance at the
measurement time is mapped to measurement space
(“C” and “P” in Figure 5) and compared to the
measurement at that time (“O” in Figure 5). The k?
parameter is a chi-squared statistic that is compared
against a user-specified probability limit for the purpose
of data association determination (and holds for
distributions that are sufficiently Gaussian).
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Figure 5. Conceptual depiction for multiple hypothesis
and multiple data association processing.

Figure 6 shows an example for the discretized CAR for
one of the simulated debris objects presented in orbital
parameter space. The “dots” in the top, middle and
bottom plots are each of the state hypothesis orbital
components, plotted as eccentricity, inclination and
right ascension of ascending node versus semi-major
axis, respectively. There are additional corresponding
hypotheses for argument of perigee and mean anomaly,
and any drag hypotheses that the user has defined for
the processing.
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Figure 6. Sample hypotheses for one LEO debris object:
semi-major axis, eccentricity, inclination and right
ascension of ascending node.

Before moving on to analysis results, it should be noted
that SRP and drag parameters can either be
hypothesized, estimated, or both hypothesized and
estimated. There may be situations where a parameter
(e.g. SRP) might not be “observable” over a particular
span of measurements, and so it might make more sense
to initidly hypothesize the parameter only, and
eventually estimate it when subsequent data are made
available.

Figure 7 shows an example from one of the smulated
debris objects of the hypothesis history in terms of
observation number. Hypotheses are “pruned” based on
the weights that are adjusted to each of the hypotheses
when a measurement update occurs, and the weights are
based on the likelihood that a measurement is associated
with a given hypothesis. The hypothesis pruning will be
a function of measurement density, geometry, and the
parameters being estimated, among other things.
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Figure 7. Hypothesis number history vs. observation
update number for one LEO debris object.

5 ANALYSISRESULTS

The CAR-MHF processing was applied to the 10
simulated debris objects, where a CAR (set of
hypotheses) was initiated when a “tracklet” of data were
encountered that had not previously been associated. A
summary of the hypotheses histories was presented in
Table 1 above, and all tracks converged to a single
hypothesis.

Since the “truth” orbit and drag parameters were known
for each of the 10 objects, they could be compared to
the filter estimates at any given time. Figures 8 shows
the total position error (red squares) and 3-sigma filter
uncertainty (blue diamond’s) for each of the 10 objects
indicated by the integers 1 to 10 on the x-axis of the plot
at the end of 1-day of processing. The position errors
range from 2-5 meters, and these errors are bounded by
filter uncertainties that are on the order of 8-9 meters.
The corresponding drag parameters estimation errors
and 3-sigma uncertainties after 1-day are given in
Figure 9 for each of the 10 objects. The larger errors
correspond to the objects having lower BC values, and
this indicates longer time spans of data are needed for

these to converge adequately.
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Figure 8. RSS of position errors (red squares) and 3-
sigma estimation uncertainties (blue diamonds) for each
of the 10 LEO debris objects after 1 day of processing.
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Figure 9. Drag errors (red sguares) and 3-sigma
estimation uncertainties (blue diamonds) for each of the
10 LEO debris objects after 1 day of processing.

Figures 10 and 11 are the position and drag errors and
3-sigma filter uncertainties for the 10 objects after 3-
days of processing. The total position errors are seen to
converge to better than 1-2 meters, while the drag



converges to better than a percent. Notice that the
additional data have allowed the drag parameter to
converge to acceptable accuracy for al of the BC
values, including satellites with lower BC values.
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Figure 10. RSS of position errors (red squares) and 3-
sigma estimation uncertainties (blue diamonds) for each
of the 10 LEO debris objects after 3 days of processing.
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Figure 11. Drag errors (red sguares) and 3-sigma
estimation uncertainties (blue diamonds) for each of the
10 LEO debris objects after 3 days of processing.

Figures 12-15 present an example of the semi-major
axis, inclination, eccentricity and drag estimate
histories, respectively, for one of the 10 objects. Note
that alarge BC value results in a systematic decrease in
semi-major axis, and that abundant data results in a
rapid convergence of eccentricity and inclination. The
drag converges to several percent after the first day, and
to less than 1% by the end of the 3-day period.

MHF Semi-major Axis Estimation History
e -
Ta st +ix
(P2

+
7080 I
7060

7040°

akm)

70201

7000

5980,

6960,

Figure 12. Semi-major axis estimation history for one of
the LEO debris objects.
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Figure 13. Eccentricity estimation history for one of the
LEO debris objects.
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Figure 14. Inclination estimation history for one of the
LEO debris objects.
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Figure 15. Drag BC (CdA/m) estimation history for one
of the LEO debris objects.

The radia (blue), in-track (red) and cross-track (black)
1-sigma uncertainties for position and velocity are
provided in Figures 16 and 17. The radial position
converges to a few meters by the end of the 3-day



period, and the radial velocity to much better than 1 my/s.
The covariance growth between measurement periods is
evident in the plots.
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Figure 16. Radial, In-track and Cross-track 1-sigma
position estimation uncertainty history for one of the
LEO debris objects.
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Figure 17. Radial, In-track and Crosstrack 1-sigma
velocity estimation uncertainty history for one of the
LEO debris objects.

The plot of post-fit right ascension and declination
residuals is shown in Figure 18, with the values
consistent with the 1 arc-sec noise used in the
simulation of the measurements.
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Figure 18. Right ascension and declination post-fit
residual history.

6 SUMMARY AND CONCLUSIONS

A LEO break-up was simulated for 10 debris objects
having a range of BC values, and CAR-MHF was used
to initialize and characterize the orbit and drag states in
an accurate, unambiguous and autonomous fashion.
The results are viewed more as a validation of concept,
and more development is needed to accommodate actual
data.

Nevertheless, there were several things of value that can
be concluded from this analysis. The filter convergence
is sensitive to data cadences and the unique geometric
diversity of the sensor location. One does not always
have the luxury of ample data, so this can be made up
for somewhat by smart sensor placement. It was also
determined that, for CAR initialization, aquadratic fit in
the tracklet data was better for rate determination due to
the greater geometric structure resulting from the LEO
orbit as compared to a GEO orbit where a linear fit is
usualy sufficient. It was also found that for a wide
range of drag parameters, the drag needed to be
hypothesized, in addition to being estimated, to
accommodate the wide range of values and relatively
large a priori uncertainties. Also, lower magnitude drag
values required longer spans of data and time to
converge accurately. Lastly, though the data association
seemed to work fairly well for this limited data set, our
experience indicates that in a more cluttered data
environment other techniques will need to be applied,
such as perhaps adding the angle rate to the data
association processing.

Future implementations will include incorporation of
Gaussian mixture models (AEGIS) [6] to account for
non-Gaussian error  characteristics. Incorporating
feature-aided measurements (e.g. photometry), when
available, should also help with the data association and
hence improve filter accuracy and convergence. Further
analysis needs to be conducted that includes SRP to
insure it and the drag can be adequately separated in the



estimation processing. Including more accurate density
models, and determining sensitivity to density model
errorswould also be of value.

The CAR-MHF process presents a potentially valuable
tool for quickly and autonomously initializing and
characterizing the orbits for numerous unknown and/or
uncorrelated objects in LEO. This capability could be
beneficial to the study of atmospheric space
environment through dynamic characterization of
spatially distributed space objects[7].
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