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ABSTRACT

We consider the space-debris orbital inversion problem
via the concept of Bayesian inference. The methodol-
ogy has been put forward for the orbital analysis of solar-
system small bodies in early 1990’s [7] and results in a
full solution of the statistical inverse problem given in
terms of a posteriori probability density function (PDF)
for the orbital parameters. We demonstrate the applica-
bility of our statistical orbital analysis software to Earth-
orbiting objects, both using well-established Monte Carlo
(MC) techniques (for a review, see e.g. [13] as well as re-
cently developed Markov-chain MC (MCMC) techniques
(e.g., [9]). In particular, we exploit the novel virtual-
observation MCMC method [8], which is based on the
characterization of the phase-space volume of orbital so-
lutions before the actual MCMC sampling. Our statisti-
cal methods and the resulting PDFs immediately enable
probabilistic impact predictions to be carried out. Fur-
thermore, this can be readily done also for very sparse
data sets and data sets of poor quality - providing that
some a priori information on the observational uncer-
tainty is available. For asteroids, impact probabilities
with the Earth from the discovery night onwards have
been provided, e.g., by [11] and [10], the latter study in-
cludes the sampling of the observational-error standard
deviation as a random variable.
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1. INTRODUCTION

We consider the space-debris orbital inversion problem
via the concept of Bayesian inference. The methodol-
ogy has been put forward for the orbital analysis of solar-
system small bodies in early 1990’s [7]. In the Bayesian
formalism the parameters to be solved for are treated as
random variables and the entire orbital solution, includ-
ing uncertainty information, is contained in the resulting
posterior orbital-element distribution. Furthermore, all 6
dimensions are treated rigorously, that is, without pre-
defining the shape (such as Gaussian) of any parts of the

posterior distribution.

Several Bayesian methods for asteroid orbit computation
have been developed during the last two decades and the
latest developments, with particular application to ESA’s
Gaia mission, are summarized in [8]. These include well-
established Monte Carlo (MC) techniques, such as statis-
tical ranging, as well as recently developed Markov-chain
MC (MCMC) techniques. In particular, we exploit the
novel virtual-observation MCMC method [8], which is
based on the characterization of the phase-space volume
of orbital solutions before the actual MCMC sampling.
All Bayesian orbit-computation methods that have been
developed for asteroids are included in the open-source
package OpenOrb which is covered by a GNU GPL v3
license [3]. OpenOrb is widely used in the asteroid com-
munity, e.g., as a part of the Pan-STARRS1 Moving Ob-
ject Processing System and the Canadian NEOSSat mis-
sion launched on Feb 25, 2013.

2. STATISTICAL INVERSION PROBLEM

In orbit computation, the general observation equation
describes the relation between observed positions and
computed positions:

ψ = Ψ(P ) + ε+ ν . (1)

The vector ψ contains the observed positions which are
typically given as Right Ascension (RA) and Declina-
tion (Dec) pairs for the observation dates. P contains
the six orbital elements—such as the Cartesian position
and velocity in three-dimensional space—at a specified
epoch t0. The nonlinear function Ψ(P ) gives the light-
time-corrected topocentric positions computed from the
orbital elements for the observation dates. ε and ν de-
scribe the random and systematic errors, respectively. For
most modern asteroid applications, the systematic error is
small enough to be incorporated into the typically much
larger random error. In what follows, the systematic error
is assumed negligible, that is, ν ∼ 0.

The problem of computing positions Ψ, that is,
ephemerides, based on a set of orbital elements P is



called the direct problem of orbit computation. The in-
verse problem is to find the orbital elements P given a
set of observed positions ψ. In the statistical inverse the-
ory, the (a posteriori) orbital-element probability-density
function (PDF) pp is proportional to the a priori (ppr) and
observational error (pǫ) PDFs:

pp(P ) = C ppr(P ) pǫ(∆ψ(P )) . (2)

C = (
∫

p(P,ψ) dP)−1 is the normalization constant,
where the joint PDF is p(P,ψ) = ppr(P ) pǫ(∆ψ(P )).
Whereas pǫ is evaluated for the O−C residuals ∆ψ(P )
and is usually assumed to be Gaussian due to the central
limit theorem, [7] experimented with non-Gaussian noise
statistics. They concluded that a significant improvement
in the results, outweighing the more cumbersome analy-
sis, could not be obtained.

To secure the invariance of the orbital-element PDF pp
in transformations between different types of orbital el-
ements (e.g., from Cartesian to Keplerian), the analysis
can be regularized by Jeffreys’ a priori PDF ppr,J [6]:

ppr,J(P ) ∝
√

detΣ−1(P ), (3)

Σ−1(P ) = Φ(P )TΛ−1Φ(P ),

where Σ−1 is the information matrix evaluated for the lo-
cal orbital elements P , Φ contains the partial derivatives
of the observed coordinates (usually RA and Dec) with
respect to the orbital elements, and Λ is the covariance
matrix for the observational errors. Finally, the a posteri-
ori orbital-element PDF is given by

pp(P ) ∝
√

detΣ−1(P ) exp

[

−
1

2
χ2(P )

]

, (4)

χ2(P ) = (∆ψ(P ))TΛ−1∆ψ(P ).

The a posteriori PDF pp can also include an informative a
priori PDF ppr,inf , which is included as a separate factor
in Eq. (4)

pp(P ) ∝ ppr,inf(P )
√

detΣ−1(P ) exp

[

−
1

2
χ2(P )

]

.

(5)

The informative a priori PDF can, for example, be used
to set constraints on the a posteriori PDF, or to combine
inversion results obtained for different observation sets
(an orbital-element PDF computed from radar observa-
tions as an a priori PDF for the inverse problem of optical
astrometry, or vice versa).

The orbital-element PDF pp obtained can be transformed
to the joint PDF of any other parameter set (F (P ) =

(F1(P ), . . . , FK(P ))T ) by the following relation given
in [7]:

p(F ) =

∫

dP pp(P ) δD(F1−F1(P )) . . . δD(FK−FK(P )) ,

(6)

where δD is Dirac’s delta function. For example, Eq. (6)
can be used to transform the orbital-element PDF from
one set of elements to another (e.g., from Cartesian ele-
ments to Keplerian elements), or to propagate the orbital-
element PDF to the ephemerides PDF.

3. NUMERICAL ALGORITHMS

In the following, we will describe some of the numer-
ical algorithms which can be used to solve the orbital
element PDF. We focus on the methods most useful for
the short-arc problem, where the observations are either
sparse and/or limited in their amount. For asteroids, this
is typically the case after the discovery. For space debris,
it is more a question of re-discovery, which may happen
recurrently after several revolutions, if the separate data
sets cannot be linked to belong to the same object, thus
leading to cataloguing (see 4. Discussion).

All of the algorithms make use of Monte Carlo (MC)
sampling of the phase-space volume of acceptable orbits:

• There is no need for any a priori assumption about
the mathematical form of the a posteriori probabil-
ity density, e.g. Gaussian. In fact, for short-arcs it
is typical that solution space exhibits varying mor-
phologies, which can be highly non-Gaussian.

• Information on observational errors can be readily
incorporated, see Eq. (2).

• A priori information can be readily incorporated, see
Eq. (5).

• The PDF computation can be carried out in different
orbital parameters, e.g. Keplerian or Cartesian.

MC (Statistical) Ranging. The starting motivation for
the Ranging algorithm [12] is to obtain a solution even
with a minimum number of observations. This is ac-
complished by assuming six observational parameters,
the minimum needed to solve for the six orbital param-
eters. This corresponds to sampling the orbital-element
PDF in the phase-space of the observations, a natural
choice, since the orbital solution space is known to be
highly complex for short arcs and thus difficult to sample
directly. The first four parameters are two sets of angular
coordinates, obtained from optical observations, usually
the first and the last are chosen, in case more than two
observations are available. Two more parameters are ob-
tained by assigning values for the topocentric distance for



the two observation dates chosen. By combining these
topocentric positions with the heliocentric locations of
the observatory at the observation dates, two heliocentric
positions equaling six constants of integration are known.
These positions can then, in turn, be converted to orbital
elements using either a two-body or an n-body solution
to the two-point boundary-value problem.

The actual MC sampling goes as follows:

• Random angular deviations (∆α′
A, ∆δ′A, ∆α′

B,
∆δ′B) are used to obtain a new set of angular co-
ordinates, mimicking the observational errors in RA
and Dec observations

• A topocentric distance (ρ′A = ρA,j + ∆ρ′A) is ran-
domly assigned for the first observation date and an-
other random value is assigned for the difference be-
tween the topocentric distances at the two chosen
observation dates (∆ρ′AB = ∆ρAB,j + ∆(∆ρ′AB)).
(This is because the two distance are highly corre-
lated for close-by observations. Alternatively, sepa-
rate random values for the distances can also be as-
signed.)

• Each candidate set of orbital element computed
from the above positions is tested against the entire
set of available observations, first, by using a ∆χ2

criterion, and second by using cut-offs for the maxi-
mum observational residuals accepted (e.g. 3σ).

• Finally, the procedure is repeated until an predefined
number of sample orbits have been accepted.

MCMC Ranging. In the Markov-Chain Monte Carlo
(MCMC) version of Ranging [9], the MC random sam-
pling above is replaced by guided sampling in terms of
proposal densities: The Metropolis-Hasting (M-H) ac-
ceptance ratio for the proposed orbit is

ar =
pp(P

′)Jj
pp(P j)J ′

, (7)

where P j and P ′ denote the current and proposed or-

bital elements in a Markov chain, and Jj =

∣

∣

∣

∣

∂Q
j

∂P j

∣

∣

∣

∣

and

J ′ =
∣

∣

∣

∂Q′

∂P ′

∣

∣

∣
are the Jacobians between spherical coordi-

nates and orbital elements (see e.g. [9] for details). The
proposed elements P ′ are accepted (P j+1 = P ′) with a

probability min(1, ar). If the proposed elements P ′ are
not accepted then P j+1 = P j . A Markov chain is thus
essentially a sequence of random numbers that follow an
arbitrarily complicated distribution. Note that for map-
ping multi-modal distributions, multiple Markov chains
can be utilized. Note also that the convergence of the
algorithm should be closely monitored with proper diag-
nostics (see [10]), and the orbital solutions obtained in
the ”burn-in” phase of MCMC should be excluded from
the final a posteriori PDF.

Virtual-observation MCMC. When the observational
arc grows longer and orbital-element PDF more confined,
the above Ranging algorithms can be expected to slow
down. To overcome this, another MCMC algorithm has
been put forward by [8], which abandons the observation-
space sampling and suggests to use a two-fold orbital-
element sampling approach as follows. In the first part,
the phase-space is characterized by NV sets of virtual or-
bital elements, obtained by creating virtual observation
sets

ψv = ψ + ǫv. (8)

and minimizing

χ2
v(P ) = (ψv−Ψ(P ))T(Λ+Λv)

−1(ψv−Ψ(P )) , (9)

where the sum Λ + Λv reflects the presence of both real
and virtual astrometric noise.

In the second part of the algorithm, we utilize the Nv vir-
tual orbital solutions obtained in the first part in an M-H
sampling by using the difference between two randomly
chosen sets of virtual orbital elements as a symmetric pro-
posal:

∆P (jk) = P (j)
v − P (k)

v , j, k = 1, 2, 3 . . . , Nv; j 6= k .
(10)

These difference guide the sampling in the phase space
and make it possible for the Markov chain to perform
”jumps” from one phase-space region to another, effi-
ciently mapping any nonlinearities in the a posteriori
PDF.

Due to the symmetry of the proposal, the M-H acceptance
ratio (7) reduces to

ar =
pp(P

′)

pp(P j)
. (11)

4. DISCUSSION

To test the MCMC methods described in the previous
chapter for geocentric orbits, we have applied the algo-
rithms to the near-Earth object 2006 RH120, so far the
only discovered natural Earth satellite (NES; see [4], [5]).
The few-meter-diameter asteroid was captured in 2006
and was observed for about a year, which it spent orbit-
ing the Earth before it was ejected from the Earth-Moon
system. Figure 1 shows the acceptable values of the geo-
centric distance at the discovery moment, while Figure
2 portrays the evolution of orbital uncertainties with in-
creasing observational data.

According to [5], for all simulated NESs, after less than
one day (or two subsequent nights of observations) all ac-
ceptable orbits are bound to the Earth at the observational



MCMC ranging estimate for the geocentric distance of 2006 RH120

at the discovery date using discovery observations only
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Figure 1. The distribution of geocentric distance at epoch 2006-09-14TT for 2006 RH120.
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Figure 2. The distribution of geocentric eccentricity e⊕ and inclination i⊕ for the epoch 2006-09-14TT dramatically
converges as a function of the observational timespan. The widest distribution covers a timespan of about 1.5 hours
and includes all seven observations from the discovery telescope (Catalina Sky Survey’s Mt. Bigelow station) only. The
second distribution (close-up in the small frame) adds two observations from the Catalina Sky Survey’s Siding Spring
station and extends the observational timespan to about 7.5 hours. The third and fourth distributions are based on 12 and
26 observations spanning 25 and 56.2 hours, respectively. (Figure from [5])
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Figure 3. The evolution of the orbital uncertainty for a synthetic NES as a function of an increasing observational
timespan and number of observations; (left) 3 detections during one hour, (right) 6 detections during 25 hours. The black
line shows the true orbit in the XY and XZ planes in an ecliptic coordinate system that is co-rotating with the Sun so that
the Earth is always in the center (0,0,0) and the Sun is always at about (1,0,0). The gray shaded area shows the extent
of all acceptable orbits and the black dots mark the locations of the synthetic NES at the observation dates. All orbits
have been followed for 500 days into the future starting from the inversion epoch and cut-offs based on, e.g., maximum
geocentric distance are not used. (Figure from [5])



mid-epoch (see Fig. 3 for an example). This implies that
the rapid convergence of the orbital solution seen in the
case of 2006 RH120 is typical for all NESs. Less than
a week of astrometry is required to obtain an accurate-
enough orbit that can be utilized for planning detailed
follow-up observations or an initial trajectory for a space
mission.

Our statistical methods and the resulting orbital element
PDFs immediately enable probabilistic analysis for space
debris, such as population studies or impact predictions
to be carried out. Furthermore, this can be readily done
also for very sparse data sets and data sets of poor quality
- providing that some a priori information on the obser-
vational uncertainty is available. To carry out population
studies, a catalogue of individual space debris objects is
needed, which in turn would require linking of individual
space debris detections to specific objects. This is a de-
manding task and currently only around 16,000 objects
have been catalogued. Efficient numerical methods de-
veloped for linking of asteroid observations ([1] and [2])
can be applied to space debris to improve the situation.
In a similar manner, impact probabilities with the Earth
can be estimated for individual space debris objects, as
has been done for asteroids from the discovery night on-
wards, e.g., by [11] and [10], the latter study includes the
sampling of the observational-error standard deviation as
a random variable.

Regarding the orbit-computation algorithms, several im-
provements are due before fully applying them to lower-
orbiting objects. In particular, we need to implement
high-order terms of the Earth’s gravitational potential as
well as non-gravitational forces, such as the atmospheric
drag and solar radiation pressure. Also, the use of more
efficient, e.g. analytical algorithms for orbit propagation
is a subject of further studies.
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