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ABSTRACT

This paper presents a preliminary investigation of some
possible strategies for the disposal of spacecraft on
Highly Elliptical Orbits at the end-of-life. The effect of
luni-solar perturbations is analysed through a simplified
phase space model. This allows identifying the
conditions for re-entry in the Earth’s atmosphere. As a
second strategy, Moon resonances are studied to
increase the orbit perigee and transfer the spacecraft on
weak capture orbits.

1 INTRODUCTION

In this work, we consider the exploitation of luni-solar
perturbations for the disposal of Highly Elliptical Orbits
(HEO) about the Earth. Such orbits are widely exploited
because they are convenient not only for
telecommunication purposes, but also for astrophysics
missions, such as INTEGRAL, and XMM-Newton.
Indeed, they guarantee spending most of the time at an
altitude outside the Earth's radiation belt to avoid noise,
and thus enabling long periods of uninterrupted
scientific observation. Moreover, some HEO, such as
Molniya and Tundra orbits, ensure a maximum time of
flight in the coverage regions of the ground stations
situated at the sub-apogee point, enhancing
communication links. If the inclination is properly
selected, HEO can minimise or nullify the duration of
the spacecraft motion inside the eclipses. Because of
their importance, it is crucial to clear these regions at the
end-of-mission.

The dynamics of HEO with high apogee altitude is
mainly influenced by the effect of third body
perturbation due to the gravitational attraction of the
Moon and the Sun. The variation of the orbit over time
can be described through the variation of Keplerian
elements double averaged over one orbit evolution of
the s/c and over one orbital revolution of the perturbing
body [1]. The luni-solar attraction induces long-term
and secular variation in the eccentricity, inclination,
argument of the node and argument of perigee.

In this paper two strategies are proposed to achieve the
end-of-life disposal of HEO. A first strategy aims at
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lowering the perigee altitude so that the spacecraft can
perform a controlled re-entry into the atmosphere. The
natural libration in inclination and eccentricity (and thus
perigee altitude) whose evolution depends on the value
of the argument of the perigee with respect to the Earth-
Moon plane is exploited [1]. Av manoeuvres can be
designed to enlarge the amplitude of the oscillation of
eccentricity, so that the re-entry altitude can be reached.

The second strategy considers a weak capture trajectory
at the Moon computed assuming the Circular Restricted
Three-Body Problem (CR3BP) approximation [3].
Hyperbolic invariant manifolds associated with
Libration Point Orbits (LPO) at the Lagrangian point
either L; or L, can be used to design such an orbit. To
target a lunar weak capture an increase of apogee
altitude of the HEO and a decrease of its inclination are
needed to exploit the lunar perturbation. This will allow
raising the perigee altitude to the minimum distance the
hyperbolic manifold can take with respect to the Earth.
Deep or shallow resonances with the Moon mean
motion are studied to achieve an increase of the perigee.
A series of small Av manoeuvres are allowed at the
perigee to meet successive resonances.

In the design of the two strategies, the third body effect
of the Moon is treated either in terms of long-term and
secular variation of the orbital elements, or as CR3BP.
While in the first case the orbital elements can be
assumed constant over one revolution of the spacecraft,
when capture trajectories are targeted, the semi-major
axis is not constant anymore, on the other end it
increases through Moon fly-bys. One approach or the
other is selected based on the distance from the Moon.

A test case scenario is designed based on the orbit of the
INTEGRAL mission that has currently been extended to
31 Dec. 2014. Based on the natural evolution of the
orbit under perturbations, a preliminary analysis is
performed to assess the required fuel consumption for
the disposal manoeuvre at different times.

2 LUNI-SOLAR PERTURBATIONS

The dynamics of HEO with high apogee altitude is
mainly influenced by the effect of third body



perturbation due to the gravitational attraction of the
Moon and the Sun and the effect of the Earth oblateness.
Cook’s formulation gives the secular and long-periodic
perturbation due to luni-solar perturbation obtained
through averaging over one orbit revolution of the
satellite [4]. It assumes circular orbit for the disturbing
bodies and considers only first terms of a/g, , where a

and a, are respectively the spacecraft and the

disturbing body semi-major axis [5]. However, they do
take into account the obliquity of the Sun and the Moon
over the equator and the precession of the Moon plane
due to the Earth oblateness (in a period of 18.6 years
with respect to the ecliptic). Alternatively, Chao gives
another form of the averaged equations obtained from
an expansion of the disturbing function from third-body
perturbations [6]. The numerical propagation of the
orbit of INTEGRAL considering secular and long term
perturbations due to J, and luni-solar perturbations,
from Oct. 2002 to January 2021, is compared against the
actual ephemerides of INTEGRAL (from NASA
Horizon) in Figure 1.
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Figure 1. Orbit ewlution of INTEGRAL between 2002
and 2021 Blue line ephemerides (Horizon, NASA), red
and green: nunerical propagaton with J, and luni-
solar effed with Cook[1] and Chao’s formulation[6].

Note that no manoeuvres have been applied in the
simulation, whereas the actual evolution of INTEGRAL

may contain some correction manoeuvres. The perigee
altitude varies from over 13000 km in 2006 to a
minimum of 2756 km on Oct. 2011. Also the inclination
oscillates between a maximum of 87° to 48° [7].

Under the further assumption that the orbital elements
do not change significantly during a full revolution of
the perturbing body, the variation of the orbit over time
can be approximately described through the variation of
Keplerian elements double averaged over one orbit
evolution of the s/c and over one orbital revolution of
the perturbing body (either the Moon or the Sun) to give
[1].
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where a, € i, 2, w, and h, are respectively the
osculating semi-major axis, eccentricity, inclination,
argument of the ascending node, argument of the
perigee, and perigee altitude measured in a reference
system lying in the perturbing body-Earth plane, with
the x-axis which follows the motion of the perturbing
planet on this plane, s, is the gravitational constant

of the Earth and g, is the gravitational constant of the
disturbing body, either the Sun or the Moon and n the

orbital speed «, U /& . Note that the evolution of the

argument of nodes is decoupled from the other orbital
elements. The luni-solar attraction induces long-term
and secular variation in the eccentricity, inclination,
argument of the node and argument of perigee. From
Eq. (1) it is clear that the both the inclination and the
perigee altitude increase if #z/2<w<z and

3/2r<w<2x and they decrease if 0<w< /2 and
7 <®w<3[27x . For a given value of i, the maximum

change is for @ = 7/4+Kkz/2 with k an integer number.

Considering an  eccentricity in the interval
[0.79 0.88], which is the one INTEGRAL covers, @
decreases if i and w belong to the intervals shown in

Figure 2. In the case of INTEGRAL, from Jan. 2015 to
about middle of Feb. 2019 w is in the range



corresponding to the decrease of the inclination and the
perigee altitude. During these years, ® will decrease
until about Mar. 2017, and increase thereafter.
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Figure 2. Rangeof inclination and argurrent of perigee
(in the Earth-Moon orbital plane) for different values of
the eccentricity, associated with a decrease of the
argument of the perigee.

These and other considerations were, for example, taken
into account for optimising the operational orbit of the
INTEGRAL mission [8]. In a similar way luni-solar
perturbations, coupled with the J, perturbation, may
play a role in speeding the orbital decay of certain
classes of HEO, by lowering the perigee altitude or in
the other way around be exploited to increase the
perigee altitude.

3 KOZAI ANALYTICAL THEORY FOR
THIRD BODY PERTURBATION

The analytical theory on secular perturbations of orbits
at high inclination and eccentricity by Kozai is here
applied to analyse the secular evolution of an highly
eccentric and inclined Earth centred orbit under the
effect of the Moon perturbation [1]. The third body
effect of the Sun and Earth oblateness are neglected. By
developing the disturbing function in terms of
a:a/ 8, , the ratio of the semi-major axis of the

spacecraft and the Moon, and using Delaunay’s
transformations, the dynamics equations can be
described through a time-independent Hamiltonian. The
evolution of the orbit under lunar perturbation can be
plotted on the (2w, €) plane, where @ is the argument
of perigee measured from the Earth-Moon plane. The
initial condition of the spacecraft’s orbit in terms of &, €,
i, and w, defines a contour line in the (Za), e) plane,
which represents the trajectory of the long term
evolution of the spacecraft. Figure 3 represents the
phase space trajectories for « =0.23, which correspond
a semi-major axis of 87736.34 km and a, =381400 km

the mean distance Earth-Moon. The black line

approximates the trajectory of an INTEGRAL-like
spacecraft with respect to the Earth-Moon plane by
considering its ephemerides on 01/06/2013. Note that,
in this simplified model, we assume the Moon to be at
zero inclination with respect to the ecliptic plane. Future
work will consider the actual inclination of the Moon
with respect to the ecliptic. One equilibrium solution
exists in correspondence of w=7/2 and for initial
condition around the stationary point, such that in the
case of INTEGRAL, the trajectory is librational. This
means that the evolution of @ and eccentricity is
bounded. The evolution of the inclination is determined
by eand w from ®= (l—e2 )cos2 i which is a constant
of the phase space (see Figure 4). As « increases or ©
decreases, the stationary solution moves to higher

eccentricities. This can be seen in Figure 5 with red
lines.
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Figure 5. (2w, €) pha® space ewlution under third-

body perturbation. Blue lines. ©®=0.03804, red
lines: ®=0.01513 which correspondsto anincrease of
eccentricity of 0.1 with respect to INTEGRAL’’s.

4 STRATEGY FOR AN EARTH RE-ENTRY

The analysis of the (2w, €) phase space can be

exploited to analyse possible strategies for HEO
spacecraft disposal at the end-of-life. The initial
conditions of the spacecraft identify a trajectory in the
phase space, hence is possible to design manoeuvres to
move to another trajectory in the phase space. In case
we want to target a re-entry, the spacecraft needs to
transfer on a phase space trajectory that, at a certain
time, reaches a critical eccentricity, in correspondence
of which the perigee enters the Earth’s atmosphere:

ecrit = 1_(REarth + hp, drag )/a (2)

A manoeuvre (or series of manoeuvres) which modifies
only @ and e and i so that ® remains constant allows
transferring on a different line of the same phase space
(for re-entry we would aim at a larger line). A
manoeuvre (or series of manoeuvres) which changes
only the semi-major axis would allow moving the
stationary points, and hence the centre of libration of the
phase space line. In order to assess the manoeuvre for
re-entry in the phase space, we selected four initial
conditions, positioned respectively at the minimum and
maximum eccentricity and at the minimum and
maximum 2@ . From each of these points, an
optimisation procedure was used to determine the true
anomaly for the manoeuvre along the orbit f and the Av

magnitude and direction (AV,&, ﬁ) such that, in the

following evolution the condition e(t*) =e_ ismet

crit

min AV
{av,5.,8, t}

C:max|e(t) =g,

Tit

Gauss planetary equations for finite differences where

used to compute the change in orbital elements [9], then
the following orbit evolution was computed through
Egs. (1). A multi-start method was initiated, followed
by local constrained optimisation of the best solutions.
Figure 6 shows the phase space trajectory obtained in
each case and the corresponding manoeuvre: M; is the
manoeuvre at the mine point (green), M, is the
manoeuvre at the maxe point (magenta), M; is the

manoeuvre at the min(2@) point (red), and M, is the

manoeuvre at the max(2w) point (cyan). It is

interesting to note that in the four cases, although the
manoeuvre is different, the spacecraft reaches the same
phase space line.
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Figure 6. Phase space trajecory to decrease theperigee
to 600 km. The cross indcates where the Av
manoeawreis applied. Fromthe top: My, My, M3, M,.

This can be also seen in the 3D representation in Figure
7 where the initial phase space trajectory is the black
line and the phase space trajectory after the Av
manoeuvre is the magenta line. Note that in the case of
min€ the manoeuvre increases the inclination, hence
decreases O, in the case of maxe the manoeuvre
increases the eccentricity hence again ® is decreased.
In both cases the semi-major axis is decreased, which
also decreases the value of €_ to be reached.
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Figure 7. Phase space trajedory to decrease theperigee
to 600 km.

Table 1: Av requirements to for re-entry to 600km.

M anoeuvre Value [km/g]
M, 0.04823
M, 0.03185
M; 0.03398
M, 0.04506
M; 0.04028

The cases of mine (green line) and maxe (magenta
line) and min(2w) (red line) were then solved also by

considering the more accurate model of perturbations
(luni-solar and J,) and the result is shown in Figure 8
and Table 2. Note that, the Av requirements in the full-
dynamical case are not expected to be optimal as they
were computed with local optimisation using as first
guess the simplified model. Moreover, in the real
scenario, J, and solar perturbation play an important
role. A future work will include the J, effect and solar
perturbation in a simplified phase space model.

0.92

o
® o
@® ©

Eccentricity
o
(o4}
)]

0.84

0.82

0.8+ b
140 160 180 200 220
2%0 [deg]

092

0.9

o
@
@

0.861

Eccentricity

0.84f

0.82f

0.8¢

150 160 170 180 190 200
2*p [deg]



0.94

0.92

o
©

0.88f

0.86¢

Eccentricity

0.841
0.82¢
0.8F

140 160 180 200 220
2% [deg]
Figure 8. Phase space trajedory to decrease the perigee
to 600 km with full dynamical model.

Table 2: Av requrementsto decrease the perigeeto 600
kmwith full dynamical model.

Manoeuvr e Value [km/g]
Ml full dynamical model 0.10746
M2 full dynamical model 0.05811
M3 full dynamical model 0.08222

Note also that the manoeuvre M, correspond to a
manoeuvre performed at the apogee of -Av, in

tangential direction to decrease the perigee of Ah,. In
this case, the required Av can be simply computed as:

AV, o = ANt 48 (11 €)/(1-9) ()

Figure 9 compares the results obtained in Table 2 to the
Av to decrease the perigee altitude of INTEGRAL
below 600 km, applying a single manoeuvre at the
apogee as in Eq. (3). The red line shows the remaining
Av capabilities assuming the spacecraft specific
impulse of 235 s [10].

Av, apo
02 N Av aval. @ Jun 2013
/f \\_\ Av aval.
,/ \\i |\,‘§1
0.15 / \\. & M3
é \‘\ o M,
A \
Z 04 : \ f
3 e o
§ . \\ i
< Y
—— L
0.05 = . >

D 1 I 1 I L : i
4500 5000 5500 6000 6500 7000 7500 800D
Time [MJD2000]

Figure 9. Av requirements to decrease the perigee with
asinge manceuvre at the apogee.

5 WEAK CAPTURE TRAJECTORIES

The second disposal strategy considered here aims at
transferring the s/c on a weak capture orbit at the Moon.
This can be designed by considering that at the same
time Earth and Moon affect the motion of the
spacecraft. In this way, the probe can be captured inside
the gravitational sphere of influence of the Moon for a
sufficiently high amount of time, without being inserted
into an orbit about it. In principle, no propellant would
be required to orbit around the Moon and then move
away from it, as there exist trajectories that naturally
achieve this purpose. The methodology implemented
here is established on the unstable invariant manifold
which arises in the neighbourhood of the collinear
equilibrium point L; in the CR3BP approximation
[11],[12],[13]. Other strategies, such as an analysis of
the orbital elements with respect to the Moon based on
the double averaged equations or the exploitation of
heteroclinic connections between L; and L, hyperbolic
manifolds, can be found for instance in [14]. We recall
that in the CR3BP model, the spacecraft is assumed
massless and affected only by the gravitational
attraction of Earth and Moon, which move on circular
orbits around their common centre of mass [3]. The
canonical synodical reference system and the set of non-
dimensional units such that x=0.01215 is the mass
parameter, the unit of length is equal to 384400 km and
the unit of velocity is 1.0231 km/s. It is well-known that
this dynamical model admits five equilibrium points,
L;-Ls and that there exists one first integral of motion,
representing the energy of the probe, namely C,.
Depending on the value of C; there might exist regions
where the motion is forbidden. In the neighbourhood of
each collinear equilibrium point (L;, L,, L;) there exist a
central and a hyperbolic invariant manifold
[11],[12],[13]. The central manifold is filled with
periodic (e.g., Lyapunov and halo) and quasi-periodic
(e.g., Lissajous and quasi-halo) orbits (plus some
chaotic regions), and to each of such bounded solutions
correspond one stable and one unstable invariant
manifold. They look like tubes of asymptotic
trajectories tending to, or departing from, the
corresponding orbit. When going forward in time, the
trajectories on the stable manifold approach
exponentially the periodic/quasi-periodic orbit, while
those on the unstable manifold depart exponentially
from it. The boundary between the Earth and the Moon
realms is represented by the Hill's sphere, whose radius

is defined as R, :(,u/3)l/3 ~ 61273 km. To design a

gravitational capture we propagate forward in time for
about 270 days the wunstable invariant manifold
associated with halo and vertical Lyapunov periodic L;
orbits until the corresponding trajectories escape either
from the Moon's realm or impact onto the Moon. A
disposal towards these paths can be convenient to
extend the mission lifetime, to perform some



observations of the lunar environment, provided that
they can orbit the Moon down to about 500 km. An
example is shown in Figure 10.
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Figure 10. Example of weak capture trajectory at the
Moon. x-y projection in the synodical reference system,
where the Moon is located at (379729.32, 0) km.

In order to exploit the dynamics corresponding to the
hyperbolic manifolds, the initial orbit at the Earth must

fulfil three conditions: hp S [90000 150000] km, h, ~

300000 km and the hyperbolic excess velocity
computed at the boundary of the Hill's sphere, that is, at
the encounter with the Moon, must be lower than 0.5
km/s. In this work, we assume that it is possible to raise
the apogee of the orbit at the desired altitude, with
impulsive manoeuvres and by exploiting luni-solar
perturbations as shown in Section 3. It has been
computed that using a single manoeuvre at the perigee
with the available propellant in June 2013, it is possible
to increase INTEGRAL apogee to 207901 km, hence
natural perturbations should be also exploited. The other
two requirements can be met by implementing a so-
called endgame [15]. The endgame strategy has been
studied and adopted recently by several authors, for the
Earth - Moon system in particular in [16],[17]. By
taking advantage of successive perturbations of the
Moon on the probe, the energy and thus the semi-major
axis associated with the initial orbit can be changed. If
we further consider putting the s/c in mean motion
resonance with the Moon, this effect can be enhanced.
We recall that two bodies are in mean motion resonance
if their periods satisfy an I/m ratio with m, [ € N. In this
case, they encounter after / revolutions of the first body
(i.e., Moon) and m revolutions of the second one (i.c.,
s/c). Here we use only I:m resonances, where [/ <m, as
the probe is expected to move in between Earth and
Moon.

The perturbation of the Moon takes place at the apogee:
according to the angle of approach it increases or
decreases the perigee and thus the semi-major axis
corresponding to the osculating ellipse of the probe

around Earth. After the encounter, the period of the orbit
changes and another type of resonance has to be
considered. It is possible to move from one resonance to
the other either ballistically or with a small manoeuvre
whose direct consequence is to change the altitude of
the apogee. The most favourable angle of approach can
be targeted by tuning conveniently the resonance
chosen, that is, it can be deep or shallow. Figure 11
shows an example of endgame to target a weak capture
trajectory computed starting from a vertical Lyapunov
L, orbit. In this case three manoeuvres are applied to
jump on a 1:2, 1:3, 1:3 resonance sequence backward in
time for a total Av of 0.074 km/s. From the perigee of
the unstable manifold to the minimum perigee achieved,
which is about 18064 km, it takes 80 days.

08 ———T— T T
(| [ \ \ / \
0.6 - \ | |

04r

04 F

08
Bl 05 [ 0.5 1

Figure 11. x-y projection of a weak capture trajectory
(blue) at the Moon obtained by propagating the
unstable invariant manifold of a vertical Lyapunov L,
orbit and endgame strategy (red). Synodical reference
system with non-dimensional units. The black circle
represents the Hill's sphere at the Moon.

In Figure 12 and Figure 13 we show an example of
endgame to target a weak capture trajectory computed
starting from a halo L, orbit. In this case two
manoeuvres are applied to jump on a 1:2, 1:3 resonance
sequence backward in time for a total Ay of 0.062
km/s. After that, the trajectory evolves ballistically
down to a perigee of about 17552 km in about 2.5 years.

This preliminary analysis demonstrates that a wide
range of weak capture trajectories are possible and that
the cost to get to the perigee of an INTEGRAL-type
orbit is feasible (as a measure of comparison the
remaining available Av on board on 01/06/2013 has
been estimated around 0.05980 km/s). A procedure to
optimise the sequence of resonances is currently under
study. The main drawback of this disposal strategy is,
however, the inclination with respect to the Earth-Moon
plane characterising the final orbit (in the backward
propagation), which is never greater than 30°, much
lower than the one associated with INTEGRAL and
XMM-Newton. The exploitation of luni-solar



perturbations and the Earth oblateness to this aim and to
increase the orbit apogee will be investigated.
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Figure 12 x-y projedion of a weak capture trajedory
(blue) at the Moon obtained by propagaing the
undable invariant manifold of a halo L; orbit and
endgane strategy (red). Synodical reference sysemwith
nondimensonal units. The blad circle represents the
Hill's sphere at the Moon
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Figure 13 x-y projedion of the endgane strategy of
Figure 12 displayed in the inertial reference system
centred at the Earth. Non-dimensond units.

6 CONCLUSIONS

This article presents a preliminary analysis of possible
strategies for the disposal of Highly Elliptical Orbits. A
phase space analysis of luni-solar perturbation allows
designing manoeuvres for Earth re-entry, while Moon
resonances can be exploited for injection in weak
capture orbits with the Moon. Future work will deal
with the optimisation of re-entry manoeuvres
considering the full dynamical model and including
multiple Av manoeuvres. Moreover, the phase-space
will be extended for designing stable orbits targeting.
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