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ABSTRACT

We present an orbit determination method based on ge-
netic algorithms. Contrary to usual estimation methods
mainly based on least-squares methods, these algorithms
do not require any a priori knowledge of the initial state
vector to be estimated. These algorithms can be applied
when a new satellite is launched or for uncatalogued ob-
jects that appear in images obtained from robotic tele-
scopes such as the TAROT ones.

We show in this paper preliminary results obtained from
an SLR satellite, for which tracking data acquired by the
ILRS network enable to build accurate orbital arcs at a
few centimeter level, which can be used as a reference
orbit ; in this case, the basic observations are made up
of time series of ranges, obtained from various tracking
stations. We show as well the results obtained from the
observations acquired by the two TAROT telescopes on
the Telecom-2D satellite operated by CNES ; in that case,
the observations are made up of time series of azimuths
and elevations, seen from the two TAROT telescopes.

The method is carried out in several steps: (i) an analyt-
ical propagation of the equations of motion, (ii) an esti-
mation kernel based on genetic algorithms, which follows
the usual steps of such approaches: initialization and evo-
lution of a selected population, so as to determine the best
parameters. Each parameter to be estimated, namely each
initial keplerian element, has to be searched among an
interval that is preliminary chosen. The algorithm is sup-
posed to converge towards an optimum over a reasonable
computational time.

Key words: orbit determination, analytical propagation,
genetic algorithms, space debris.

1. INTRODUCTION

The main goal of this study consists in finding a way, to
compute an orbit from tracking data, when no a priori in-

formation on the trajectory is available at all. In that case,
classical methods such as least-squares can not be used
any more (since in that case the function to be minimized
can not be linearized in the neighborhood of the a priori
values of the parameters). Moreover, the usual methods
may suffer from many drawbacks which can frequently
make them be unappropriated: the well-known Gauss,
Laplace, Escobal... approaches are not valid for all dy-
namical configurations in case of singularities due to or-
bital planes alignments ; they are often merely based on
keplerian modelings, and can hence not be applied over
time scales longer than a couple of hours, since in that
case a propagator has to account for the main perturba-
tions, at least for the secular ones ; and from time to time,
these methods can provide results extremely far from the
expected results, and can not be used without great man-
ual care, as ”good-enough” a priori, that is close enough
to the expected values so as to algorithms based on itera-
tive approaches can converge.

On the contrary, even if other kinds of difficulties have
to be managed, methods based on genetic algorithms are
supposed to be valid for all dynamical configurations,
since the algorithm itself is independent from the orbit
propagator used to compute the cost function. With an
efficient dynamical modeling, they can be used over dif-
ferent periods of time, from a couple of minutes (for Too-
Short Arcs, TSA) up to a couple of days or weeks.

The starting point is the system of the equations of mo-
tion, that can be written in an usual way:

d2r

dt2
= F (r, ṙ, t, σ)

r(t0) = r0 ṙ(t0) = ṙ0

and where the initial positions and velocities to be esti-
mated ”from scratch” at an epoch t0 are denoted r(t0)
and ṙ(t0). The right-hand side describes the force model
through the vector F , that is characterized with a set of
parameters σ (namely, for instance, the gravity field pa-
rameters). Genetic algorithms allow a way to find satis-
fying initial conditions r(t0) and ṙ(t0), without testing
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all the possibilities in a space of dimension 6, once the
frame is roughly defined.

We provide here the preliminary results we obtain with
two kinds of data: (i) range measurement on the Lageos-1
satellite, tracked by the International Laser Ranging Ser-
vice, the ILRS (Pearlman, 2002) network, (ii) azimuth
and elevation time series for the geostationary satellite
Telecom-2D.

2. ORBITAL MODELING

To keep a reasonable computation time for the propaga-
tion step, we use an analytical approach to get orbital
element time series. For the same purpose, and to get
an orbital modeling close enough to a numerical refer-
ence, we account for the main perturbations of the tra-
jectory, but only the J2 parameter (Other terms can be
included if required by the dynamics of the trajectory).
Since we intend to test many different dynamical con-
figurations, the modeling is supposed to be valid what-
ever the values of the eccentricity or the inclination, small
(even equal to zero), or large: the model is written in
a set of equinoctial elements (Deleflie, 2013), namely:
a, ξ = Ω + ω + M , e cos(Ω + ω), e sin(Ω + ω),

ix = sin
i

2
cosΩ, iy = sin

i

2
sinΩ, where a, e, i, Ω,

ω, M stand for the classical keplerian elements. For the
set Ē of equinoctial elements, the general form of the so-
lution we use is the following:

E(t) = Ē(t) + L(Ē)
∂W

∂Ē
(Ē(t)) (1)

where the notation Ē stands for the averaged part of the
motion, governed only by secular or long periodic effects,
and where, as a consequence, the quantities E(t)− Ē(t)
correspond to the short periodic part of the theory ; this
part is governed by the Lagrange Planetary Equations
(written though a matrix 6× 6 L(Ē)), and the additional
function W generating the short periodic part of the mo-
tion. Under the assumption of a small eccentricity (but
the function can as well be written in a close form to be
valid for all values of the eccentricity), which is the case
for the two examples shown in that paper, this function
W reads (when only the terms independent from the ec-
centricity are kept):

W = µ(−J2)
R2

0

n̄a3
× (2)

3
(

1− i2x − i2y
)

(

(i2x − i2y)
1

2
sin 2ξ − ixiy cos 2ξ

)

so that the temporal variation of each parameter reads,
after projection into a more common set of keplerian-like
orbital elements:
a(t) = ā+ 3

2J2
Re

ā
sin2 ī cos 2(ω̄ + M̄)

h = e cosω, k = e sinω, e(t) =
√

h2(t) + k2(t)

h(t) =
R2

e

ā2 J2

(

3
4 sin

2 ī
(

7
6 cos 3(ω̄ + M̄)

−
5
2 cos(ω̄ + M̄)

)

+ 3
2 cos(ω̄ + M̄)

)

k(t) =
R2

e

ā2 J2

(

3
4 sin

2 ī
(

7
6 sin 3(ω̄ + M̄)

−
5
2 sin(ω̄ + M̄)

)

+ 3
2 sin(ω̄ + M̄)

)

i(t) = ī+
R2

e

ā2
J2

3
8 sin 2̄i cos 2(ω̄ + M̄)

Ω(t) = Ω̄ +
R2

e

ā2
J2

3
4 cos ī sin 2(ω̄ + M̄)

ω(t) +M(t) = ω̄ + M̄ +
R2

e

ā2
J2

9
4 sin

2 ī sin 2(ω̄ + M̄)

with the secular part Ē(t) which is governed by the
traditional secular variations induced on each angular
elements (and mainly by the J2 parameter), as a function
of initial mean semi-major axis, eccentricity and inclina-

tion: Ω̇ = −
3
2

(

Re

a

)2
n̄J2

cos i
(1−e2)2

ω̇ = −
3
4

(

Re

a

)2
n̄J2

1−5 cos2 i
(1−e2)2 ,

Ṁ = −
3
4

(

Re

a

)2
n̄J2

1−3 cos2 i
(1−e2)3/2

and where n̄ stands for the mean motion determined
through the third Kepler law.

Hence, the whole analytical modeling is governed by
the set of mean initial conditions Ē(t0), whereas it is
the corresponding osculating initial conditions E(t0) that
are adjusted by the genetic algorithm, and that can be
directly compared to the reference orbits of Lageos-1
and Telecom-2D. The relation between these two sets is
merely obtained by setting the time t to the initial epoch

t0 in Eq. (1) so that E(t0) = Ē(t0) +L(Ē)∂W
∂Ē

(Ē(t0)).

3. MULTI-OBJECTIVE GENETIC ALGORITHM
(MOGA) USED

We give here further information about the way the algo-
rithm is designed and parameterized.

3.1. Description

The main goal consists in estimating the best set of
osculating initial conditions, ”best” being defined as a
couple of criteria (see also hereafter) to be minimized or
maximized. These criteria are defined as functions of the
initial conditions, and they are optimized through a large
number of iterations that make the process converge to a
set of optima.

The Multi-Objective Genetic Algorithm (MOGA) used
here is the ǫ-MOEA (Deb et al., 2003). Between two suc-
cessive iterations, some vectors of initial conditions are
replaced by other ones and the best ones are archived.
The evolution through the iterations of the set of ini-
tial conditions is governed by mutations (random small
changes in vectors of possible initial conditions) and by
crossover (mix two vectors of possible initial conditions)





also, we search for an optimal sub-network of SLR sta-
tions so that the number of SLR stations involved in the
computation has to be maximized. Without this second
objective, the MOGA would probably tend to use a mini-
mal set of stations to get better results regarding the initial
conditions.

The RMS of differences between the tracking data and
their theoretical equivalent computed with the reference
orbit (obtained from post-fit adjustment of a numerical
integration with the CNES Gins software) is at the level
of 2.15 cm. The adjusted initial conditions, seen as refer-
ence ones, are the following:

• aref
0 = 12270.009 km

• eref
0 = 0.004261

• Iref
0 = 109.801◦

• Ωref
0 = 203.323◦

• (ω0 +M0)
ref = 76.616◦

The best results found by the MOGA are the following:

• a0 = 12274.840 km: ∆a = 4.831km

• e0 = 0.004408: ∆e = 0.000147

• I0 = 109.839◦: ∆I = 0.038◦

• Ω0 = 203.306◦:∆Ω = 0.017◦

• ω0 +M0 = 76.538◦: ∆(ω +M) = 0.078◦

Figure 2 shows the time series of each orbital element,
over the given period of time: semi–major axis, eccen-
tricity, inclination, longitude of the node, perigee, mean
anomaly. The black curves correspond to the reference
orbit obtained with the Gins s/w. The red curves cor-
respond to the analytical propagation of the model pre-
sented above, but with the reference initial conditions.
It appears that at this scale, the analytical simplified
model that we use is suitable to handle the dynamics of
the trajectory (at the level of the results). Finally, the
green curves show the best trajectory that is found by
the MOGA. The differences between the two sets of ini-
tial conditions (∆a, ∆e, ∆i, ∆Ω, ∆ω, ∆M above) are
quite small with respect to each value to be determined
(3 10−4 on a, 3% on e, 3 10−4 on i, relatively), but in-
duce as well a difference that is not compensated during
the propagation. We should keep in mind that (i) this
level of precision is good enough to use these initial val-
ues as a priori values in a least-squares adjustment ; (ii)
genetic algorithms have anyway a good capability over
the global scale, but locally they can be less accurate than
other approaches ; (iii) better results are likely to be ob-
tained when changing the parameterization of the MOGA
(in a forthcoming paper).
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Figure 2. Time series of each keplerian orbital elements
(a, e, i,Ω, ω,M), computed for the Lageos-1 satellite, in
the inertial frame, where the equations of motion are
propagated. X-axis: time (portion of day of 7th April
2012). Black curves correspond to the reference orbit
(computed with the Gins CNES s/w) ; the red ones cor-
respond to the trajectories obtained with our analytical
modeling and with the reference initial conditions pro-
vided by Gins ; the green ones correspond to the trajec-
tories obtained with our approach (with initial conditions
estimated with the genetic algorithm).



4.2. angular data: the geostationary satellite
Telecom-2D

The other example that we tested is based on the assimila-
tion of classical data obtained after astrometric reductions
from images acquired by the two TAROT telescopes, re-
spectively located in France and Chile, on the geosta-
tionary satellite Telecom-2D. We used data provided by
CNES, which has an agreement to benefit from 15% of
the available time each night, for space debris activities.
Thanks to an upper reachable magnitude of the order of
15 within the GEO region, and the measurement accuracy
of the order of 700 m in GEO, the data acquired by the
TAROT telescopes enables to build orbits of geostation-
ary satellites operated by CNES. They have an aperture
of 25 cm and a field of view of 1.86◦ × 1.86◦. The effi-
ciency of the telescopes is very high (except for weather
considerations: close to 100% at Calern, France, 85% at
La Silla, Chile).

The data set is made up of time series of azimuth and
elevation, and includes nine days of angular data (MJD
56 147 to 56 156 included, in Aug. 2012) from the two
TAROT-telescopes. The total number of measurements is
86 (27 for Chile and 59 for France).

The reference orbit was computed with the CNES s/w
Romance. In terms of latitude and longitude in the geo-
centric terrestrial frame, this reference orbit is shown Fig-
ure 3 (black curves). The adjusted initial conditions, seen
as reference ones, are the following:

• aref
0 = 42165.980 km

• eref
0 = 0.0001906

• Iref
0 = 5.583◦

• Ωref
0 = 61.480◦

• (ω0 +M0)
ref = 256.934◦

These parameters correspond to a reference mean longi-
tude of −7.75◦.

The MOGA searches for the best vector of initial condi-
tions, and two objectives are considered (both to be min-
imized): the RMS of differences between predicted mea-
surements and the real data for elevation and azimuth.
For the best solution found, the RMS of differences are
respectively 0.0485◦ for elevation, and 0.0742◦ for az-
imuth. The corresponding adjusted best initial elements
are:

• a0 = 42171.560 km: ∆a = 5.580km

• e0 = 0.0000923: ∆e = 0.0000983

• I0 = 5.578◦: ∆I = 0.005◦

• Ω0 = 62.897◦:∆Ω = 1.417◦
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Figure 3. Time series of latitude and longitude for the
Telecom-2D satellite (top) ; the X-axis is time (number
of days from 8th August 2012, and covering a period w/o
any maneuver). The third plot is the ground track tra-
jectory. Black curves correspond to the reference orbit
(computed with the Romance CNES s/w), an the red ones
to the trajectories obtained with our approach.

• ω0 +M0 = 257.180◦: ∆(ω +M) = 0.246◦

It seems (Figure 3, red curves) that the analytical model-
ing is also suitable to describe geostationary orbits (even
if adding the effect of resonant tesseral parameters would
be helpful for the time evolution of the longitude).

5. CONCLUSIONS

In this paper, we combined a MOGA and an analytical
satellite motion theory to roughly adjust an orbit on track-
ing data, without any a priori knowledge of the values
of the initial conditions to be retrieved. We tested the
method on two kinds of data. Some further developments
will be enhanced in the future (i) the analytical model-
ing will be improved by adding some significant terms in
the model (ii) the parameterization of the MOGA will be
refined, with a reduced set of chromosomes, and by em-
pirically decreasing the mutation probability throughout
the iterations; we will implement as well a better stop-
ping condition to reduce the CPU required time. We will
then test the capabilities of the algorithm in downgraded
conditions (data sparse in time, very few number of data).
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