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ABSTRACT

The current paper deals with the mission design of a
generic active space debris removal spacecraft. Con-
sidered debris are all on a sun-synchronous orbit. A
perturbed Lambert’s problem, modelling the transfer be-
tween two debris, is devised to take into account J2 per-
turbation, and to quickly evaluate mission scenarios. A
robust approach, using techniques of global optimisation,
is followed to find optimal debris sequence and mission
strategy. Manoeuvres optimization is then performed to
refine the selected trajectory scenarii.

Key words: Active Debris Removal; Maneuver Optimi-
sation; SSO; Pertubed Dynamics.

1. INTRODUCTION

For the past decades, technological advances and cus-
tomer needs have resulted in an increase of the space as-
sets in space. However, current mandatory space debris
mitigation policies are not sufficient to prevent the con-
gestion of some orbits. The risk of in-orbit collisions be-
tween existing debris, or with active spacecraft, increases
and this eventually results in new debris[8]. Latest de-
bris population simulations show that even with no new
launch, the debris population would increase[11]. This
is because of a collisional cascading effect, known as the
Kessler syndrome[8]. The Kessler Syndrome describes
the phenomenon that the number of debris generated by
random collisions between catalogued objects and debris
is greater than the number of debris generated by colli-
sions between catalogued objects and the natural mete-
oroid environment. The phenomenon is eventually the
most important long-term source of debris because of the
increase of the collision frequency with debris accumula-
tion rates.

The space debris environment is indeed dynamic and ver-
satile. The dynamics include several phenomenons such
as the Earth’s gravitational field and its harmonics, or the
atmospheric drag. Eventually, the average growth rate of
catalogued debris over the past 50 years has been about
300 objects per year because of the implementation of the

IADC guidelines, natural effects, and political and eco-
nomical situations[8].

Therefore, to limit the effect of the Kessler syndrome,
the number of large non-cooperative objects (e.g., non-
operational payloads, upper stage rocket bodies, broken
spacecraft) in Earth orbit should be significantly reduced.
In the order of 5 to 10 debris should be removed each year
to stabilize the debris population[3]. Recently, a consid-
erable amount of studies have been conducted to anal-
yse or to devise different alternatives to remove debris
such as: tethers or solar sails, robotic arms, foams, retro-
electric propulsion, laser, nets and many more. All those
concepts (except for lasers) require guiding an ADR plat-
form to one debris, or many in sequence. Actual transfer
cost with computation of the manoeuvres and trajectories
is required to assess and refine the definition of any ADR
platform.

The current paper focuses on the selection of debris to re-
move on sun-synchronous orbits (SSO) and, the guidance
to the selected debris using chemical propulsion. The
precise guidance in close proximity to the debris is not
considered (discussion can be found in Ref. [2]), as well
as the operations that have to be followed to remove the
debris. Several criteria are used to select a list of debris
to remove. A general approach is followed to find the
best scenarii, with the dynamics including gravitational
perturbations. The scenarii are refined using techniques
of optimal control theory for impulsive transfers. The ap-
proach is applied to a set of about 900 debris in the SSO.

2. PROBLEM STATEMENT

2.1. Context and Assumptions

Debris to remove are either the biggest ones or those on
the most crowded orbital regions. On the one hand, heavy
debris have the potential of creating many more debris.
On the other hand, debris on the most crowded orbital
regimes, or those with high area, have the highest impact
probability. Currently, the most crowded orbital regions
are defined with,

• inclination in [95, 100], [70, 75] or [80, 85], and
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Figure 1. Scheme of the transfer sequence.

secular variations on the orbital elements is,
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and, Ω stands for the longitude of ascending node
(RAAN). The unperturbed mean motion is denoted n0

while the mean motion taking into accounts secular vari-
ations is denoted n. Eventually, the dynamical equation
in Cartesian coordinates is,
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where r is the position vector in a Earth centred frame,
uz is the unit vector normal to the equatorial plane, and
z = rT uz .

This demonstrates that orbits in the SSO regime will tend
to drift slightly with time (mainly for the longitude of
ascending node). The secular effect of both Ω and ω will
tend to increase with the inclination and the eccentricity.
It is important to note that the average change per orbit of
a, e and i is null, but these quantities still change slightly
over one revolution.

2.4. Transfer model: Lambert’s Problem with Earth
Oblateness Perturbation

The transfer from debris Di to debris Dj 6= Di is com-
puted using a perturbed Lambert’s problem solver. The
original unperturbed Lambert’s problem is the problem
of finding the arc of conic, using Gibbs’ theorem, of a
given duration tj − ti, solving a two-points boundary
value problem[4]. The solution gives the osculating or-
bital parameters at departure time ti that leads to the or-
bital position of Dj at final time tj under perturbed Ke-

plerian dynamics (see eq. 5). The initial ∆Vi
1 and final

∆Vj , hence a transfer cost ∆V i,j = ∆Vi + ∆Vj , can be
evaluated.

As was depicted in the section 2.3, depending on the or-
bital regime the dynamics can be prone to secular effects.
Therefore, the original unperturbed Lambert’s problem
solvers is ill-suited for Earth-bound transfers between ob-
jects in the SSO.

However, it is possible to model J2 perturbation effec-
tively, and devise a pertubed Lambert’s problem solver.
Given the general dynamics described by Eq. (5), con-
sider successive change of variables (Sundman transfor-
mation, KS transformation):

dt = rds r = L(u)u

The dynamical equations become

ü + ǫu = Q(u)

where ǫ represents a normalized energy, and Q is the per-
turbation term in the KS space. It is important to note
that this ordinary differential equation is the one of an
oscillator. Using classical results of calculus, the solution
is the combination of the homogeneous solution (solution
without the right hand part) and a particular solution. The
homogeneous solution is obviously the solution with no
perturbation, and the particular solution can be computed
analytically using variation of parameters to account for
the perturbation terms. The unperturbed Lambert’s prob-
lem can then be adapted to the perturbed dynamics[6].
Using this approach, we have a fast and fairly accurate
Lambert’s problem solver able to quicly evaluate a trans-
fer between debris.

Table 1 compares the different method and implementa-
tion for J2-perturbed Lambert’s problem solvers. Several
cases are presented. For each case, the initial velocity V0

and position R0 are propagated during T with a J2 model
providing a final position Rf and velocity Vf . Then, the
Lambert’s problem is solved between R0 and Rf , with
a time of flight T , for each method (unperturbed, per-
turbed). The reference is given by a numerical, which
consists on numerical integration and on using a state
transition matrix to find the initial velocity V0 for the
final position vector R(T ) to match Rf .

1∆Vi is the immediate change of velocity at time ti: ∆Vi =
v(t+

i
) − v(t−

i
), and ∆Vi = ‖∆Vi‖



Table 1. Comparison of perturbed Lambert’s problem methods. Case 1 : R0 = [6478, 0, 0]km, Rf =
[10970.928, 1435.480, 4304.951]km, and T = 1800.0009s[6]. Case 2: same object on a SSO at two different epochs,
T = 1800s. case 3: Case 2 with 1 revolution and T = 10000s. Case 4: case 2 with 2 revolutions and T = 20000s. case
5: Case 2 with 10 revolutions and T = 60000s. ǫV0

and ǫVf
are the error in velocity for V0 and Vf , respectively.

Case Method Initial velocity Final Velocity |ǫV0
|, |ǫVf

|
V0, m/s Vf , m/s m/s

1 Reference 7000.0 1000.0 3000.0 -444.7 532.3 1595.3 -
Unperturbed 6996.6 999.9 2998.7 -443.8 532.4 1596.5 3.6, 1.4

Perturbed-Lambert 7000.0 1000.0 3000.0 -446.3 532.1 1594.3 0.0, 0.3

2 Reference 700.9 2181.9 7063.3 -6988.9 1631.9 -2110.4 -
Unperturbed 702.6 2184.7 7058.9 -6994.4 1625.7 -2113.4 5.3, 8.8

Perturbed-Lambert 700.9 2181.9 7063.3 -6988.9 1632.0 -2110.1 0.2, 0.3

3 Reference -679.2 2828.9 7611.5 -7806.3 2336.3 -905.1 -
Unperturbed -674.4 2835.4 7606.7 -7817.1 2316.6 -905.0 9.3, 22.6

Perturbed-Lambert -679.2 2828.9 7611.5 -7806.4 2336.6 -904.5 0.1, 0.2

4 Reference -912.6 2936.0 7707.6 -7943.4 2466.0 -705.2 -
Unperturbed -904.3 2945.4 7702.2 -7958.5 2433.0 -704.1 13.8, 36.3

Perturbed-Lambert -912.9 2936.0 7707.6 -7943.5 2466.2 -705.1 0.1, 0.2

5 Reference 978.5 1995.1 6972.4 -6762.7 1657.7 -2427.0 -
Unperturbed 981.5 2054.7 6953.0 -6832.9 1487.2 -2359.1 62.7, 199.9

Perturbed-Lambert 975.4 1995.4 6974.0 -6762.9 1661.9 -2426.4 3.5, 4.3

3. GLOBAL SEARCH OF DEBRIS REMOVAL
SCENARII

3.1. Search Space

Let’s note D the set of debris. It is now possible to evalu-
ate complete scenarii using the perturbed Lambert’s prob-
lem solver. On a side note, this approach has been often
followed for interplanetary mission analysis (e.g., aster-
oid tour). The main transfer parameter is the number of
revolutions. In the multiple revolution Lambert’s prob-
lem, there exists a minimum time of flight for each num-
ber of revolutions. Noting Ωi(ti) and Ωj(ti), the longi-
tude of ascending node of the departing debris di and tar-
get debris dj respectively, the following heuristic is used:

Trev =
|Ωj(ti) − Ωi(ti)|

¯̇Ω
(6)

T i,j
min = NrevTper (7)

where
¯̇Ω is a parameter defining an average rate of change

of the longitude of ascending node, and Tper is an av-
erage period time. When seeking a transfer between di

and dj , all solutions that have a time of flight T < T i,j
min

would have high orbital energy, and important phasing
manoeuvres are expected. If inclination of both debris’
orbits is the same, then Nrev defines exactly the number
of revolutions necessary for a free correction of the lon-
gitude of ascending node when on an intermediate orbit
having a secular variation of the longitude of ascending

node equals to
¯̇Ω.

The decision vector that describes uniquely a transfer I is
then XI = [dI

0, d
I
f , T 0,I , τ I ], where dI

0 ∈ D and dI
f ∈ D

are respectively the initial and final debris, T 0,I is the

departure date from debris dI
0, and τ I > T de−orbit is the

transfer time from debris dI
0 to rendezvous with debris

dI
f . The date of arrival at debris dI

f is denoted T f,I =

T 0,I + τ I .

3.2. Branch and Bound Method for Debris Selection

The branch and bound method consists in enumerating all
possible solutions of a combinatorial optimisation prob-
lem. In the current paper, it is mainly used to find the
debris sequence. A global search is made on a multi-
dimensional grid D × D × T × τ (the dimension is the
one of the decision vector). Methods of global optimisa-
tion are well suited for problems with large dimensional
space. The objective of those methods is to find the glob-
ally best solution, however, those techniques tends to find
a neighborhood of the best solution rapidly rather than ac-
curately. Therefore, they are usually used to get a good
initial guess. This initial guess is then used with local op-
timisation techniques to get a refined, accurate, solution.
This approach is followed in the current paper.

3.2.1. Objective function

The main purpose of the mission is to remove mass in
orbits. The mass of space debris to remove should be
maximized, and likewise to many space missions, the fuel
requirement (total ∆V cost) should be minimized. Both
output should be included in the objective function. It is
also important to assess the impact the removing of a de-
bris has on the environment. Generally, this can only be
considered when using expensive debris population sim-
ulators. More simply, in addition to the debris mass mi,



the debris area Ai should be considered because it influ-
ences the probability of collision. Therefore, the objec-
tive function should be constructed with a combination of
those criteria, such as

Ji = α∆Vi + βmi + γAi (8)

J =
∑

i∈D

Ji (9)

where α, β, γ are weighting factors. Typically, α would
be in s/m, β in 1/kg, and γ in 1/m2. The weighting
factors have to be adjusted according to exact context of
the mission.

3.2.2. Grid Search

To find the most interesting transfer features, a grid
search with space pruning is used because it has the ad-
vantage of providing an exhaustive search. Each debris-
to-debris transfer I depends only on the position and
velocity vectors of the initial and final debris, d0,I and
df,I ∈ D \ {d0,I}, at the initial and final dates T 0,I

and T f,I respectively. Therefore, each transfer I can be
computed separately, without knowledge of the previous
transfers, for all initial and final dates, which makes the
global search parallelisable. The debris-to-debris trans-
fers can then be evaluated using Graphical Processing
Units (GPU), or other parallel architecture, to solve the
multiple perturbed Lambert’s problems (sec. 2.4), with
limited computational time[1].

Once every possible transfers have been computed, com-
plete scenarios can be constructed, in a branch and
bounds manner, patching together the transfer segments
I and J according to their initial and final dates (T 0,J −
T f,I > Twait) if debris at the junction are the same

(df,I = d0,I′

). The total cost of the constructed debris
sequences can then be evaluated.

3.2.3. Search Space Pruning

Pruning constraints are used to speed-up overall process
by reducing the search space. These constraints should
not prevent finding good solutions, but rather quickly dis-
card the parts of the search space where good solutions
are unlikely to exist. Any rendezvous transfers can be ex-
ecuted using an inclination change manoeuvre ∆V inc, an
altitude change manoeuvre ∆V Hoh) and, a phasing cor-

rection manoeuvre ∆φ
V . ∆V inc and ∆V Hoh are very fast

to compute, in contrast with the computation of ∆φ
V (it

requires solving the Lambert’s problem). Therefore, the
pruning constraint is ∆V inc + ∆V Hoh. If it is above a
given threshold ∆V max, the debris transfer branch is dis-
carded, and so part of the search space removed. Other-
wise, the transfer is computed solving the perturbed Lam-
bert’s problem.

4. OPTIMAL GUIDANCE BETWEEN DEBRIS:
IMPULSIVE PROBLEM

In this section, the state of the spacecraft is denoted
x = [r;v;m], where r and v are respectively the posi-
tion and velocity vector in an Earth centred inertial frame,
and m is the spacecraft’s mass. At rendezvous with a de-
bris I at date tI , the position and velocity vectors of the
spacecraft match, respectively, the position and velocity
of that debris: r(tI) = rI(tI) and v(tI) = vI(tI). We
assume that the global optimisation successfully return
a scenario (debris sequence and rendezvous dates) min-
imizing the cost defined in Eq. (9). The purpose of the
optimal guidance is now to improve the solution by find-
ing an optimal sequence of manoeuvres that minimizes
the required propellant mass for the mission.

4.1. Problem Formulation

The guidance for a spacecraft equipped with a chemi-
cal propulsion system is composed of short burn arcs.
They are generally modelled as impulses since the burn
arc duration is small compared to the mission duration.
With this infinite impulse model, the dynamics do not de-
pend on the mass. But, the mass can be computed using
Toltoiskii formula,

∆V =
∑

i

∆Vi = g0Isp ln

(

m(t0)

m(tf )

)

(10)

where m(t0) and m(tf ) are the initial and final mass
respectively, Isp is the specific impulse defining the ef-
ficiency of the chemical propulsion system. The per-
formance of the mission is measured in terms of to-
tal ∆V , the optimal control problem is to minimize it.
Since the problem is defined with rendezvous and depar-
ture maneuver constraints, and the mass is not taken into
account for impulsive trajectories, the influence of one
phase (debris-to-debris segment) over an other is negligi-
ble. Optimizing the entire mission of N phases is then
equivalent to solving N independent optimisation sub-
problems.

Each impulse i is described by a date ti and an impulse
vector ∆Vi (many other models are possible). Therefore,
the transfer from debris I to debris J (different of I) is
given by the sub-problem,

min
ti,ri

∑

i

∆Vi (11)

s.t.
d2r

dt2
= f0(x; t) (12)

∆Vi =
∥

∥v(t+i ) − v(t−i )
∥

∥ (13)

ψ(ti) = r(t+i ) − r(t−i ) (14)

The intermediate constraints ψ(ti) ensure the position
continuity across impulses. Obviously, it is not neces-
sary to use a Lambert’s problem solver (in which case



constraint ψ(ti) would be implicitly satisfied), but one
can also simply integrate the exact dynamics, eq. (5), be-
tween impulses.

4.2. Optimal Control

The number of impulses are determined using the primer
vector theory[9][10][12] adapted to the current perturbed
dynamics. The date and amplitude of each impulse is
found using a non-linear solver, while the primer vector
theory provides also an initial guess for the date. Even
though experience dictates that impulses be placed near
apogees and perigees, primer vector theory gives an ex-
act framework for optimisation, and in particular for the
considered perturbed dynamics.

To construct the primer vector ‖λv‖ history, consider

d2λv

dt2
= G(r; t)λv (15)

with boundary conditions,

λv(t0) =
∆V0

‖∆V0‖
, λv(tf ) =

∆Vf

‖∆Vf‖
(16)

The gravity gradient matrix G = Gkep + Gpert is given
by,

Gkep = µ

(

I3,3
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− 3

rr′
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Similarly to switching functions, the amplitude of ‖λv‖
gives the time location of optimal impulses. A trajec-
tory with impulses is then optimal when at each impulse
‖λv‖ = 1, and ‖λv‖ < 1 elsewhere. If ‖λv‖ > 1 on
a given time interval, an impulse should be added in that
region, or the current manoeuvre strategy modified.

An iterative process is put in place to solve the prob-
lem. From an initial guess, the amplitude of ‖λ‖ (t) is
computed and optimality of the solution checked. Im-
pulses are added if necessary, and optimized with a non-
linear optimizer. Upon convergence of the optimizer, the
process is restarted, first checking for the optimality of
the solution and then adding new manoeuvres if neces-
sary, and so on. An algorithm can be found in Ref. [12].
For best accuracy, the gradient of the objective function,
and the Jacobian of the constraints are computed nu-
merically using transition matrices. The initial guess is
the initial transfer trajectory with the predicted manoeu-
vres assigned with a zero amplitude (using the perturbed
problem rather than averaged equations is then of signif-
icance).

5. APPLICATION

5.1. Definition of the Mission

The vehicle is assumed a 20-ton spacecraft with complete
systems for autonomous rendezvous, such as vision based
guidance, radar, lidar, and GPS. A well qualified removal
system is assumed. Because of the strong gravity field,
and to accommodate reasonable transfer time between
space debris, the spacecraft uses solar electric propulsion
with 0.5 N and 2500 s specific impulse.

5.2. Selection of the Targets

5.2.1. Debris Population Definition

Figure 3 depicts the space debris densities for differ-
ent orbital regimes, where data were extracted from Ce-
lestrak. The most crowded region is the one with altitude
800 km, and inclination 82 degrees. Figure 4 shows the
randomly generated debris set. The mass of each debris
was generated randomly with normal distribution.

5.2.2. Pruning Values for the Global Search

Section 3 helps finding a sequence of debris using no
DSM. Impulses were only applied when leaving or ren-
dezvousing a debris. Thanks to the perturbed Lambert’s
problem, the coast dynamics allow free change of the lon-
gitude of ascending node; a set of low-cost debris sce-
nario as been obtained under those conditions. Manoeu-
vres can be added to improve the solutions and reduced
their ∆V . This manoeuvres can improve the cost quite
substantially, and indeed the pruning threshold ∆V max

has to be chosen carefully: setting it large to keep poten-
tially good solutions, but not too large to limit the amount
of data to compute. The approximate ∆V to de-orbit
an average debris of 1500 kg from the SSO with a one-
burn transfer is ∆V ≈ 220m/s. Therefore, since fuel
is spent either on a de-orbiting device, or on-board the
chaser spacecraft, to de-orbit the debris, it is assumed a
mass drop ∆Mdrop corresponding to that ∆V (for an en-
gine of specific impulse 315 s).

We choose for the global search, α = 1m−1s, β =
2000kg−1 and γ = 0m−2 (no information on surface
were generated or collected for this study). The global
search is defined with,

∆TOF = 15 min TOF ∈ [5 min; 40hours]

∆T0 = 30 min T0 ∈ [7305; 7670] MJD2000

T de−orbit = 5days Twait = 2days

This yields to a high computational complexity, which
fortunately can be tackled efficiently in little time using
GPU. The overall computational time is of the order of



Figure 3. Space debris repartition on the different orbital
altitudes.

Figure 4. Debris population. Semi-major axis versus in-
clination.

few hours. There is no need to define a very fine grid,
because at this stage we are looking for good debris se-
quences and, the solution will be refined with the local
optimisation methods.

5.2.3. Results

Figure 5 depicts the cost of all computed debris-to-debris
transfers. The ∆V cost starts from 5 m/s, which demon-
strate very good phasing conditions, to 500 m/s, as a re-
sult of pruning constraints. Figure 6 shows the debris
mass removed versus total ∆V . A trend can be observed
on figure 6, as the more mass is removed, the more ∆V is
required. However, some points seem to give a very high
mass over delta-V ratio. Obviously, at this point, the ∆V
have not been optimised. The mission has a duration limit
of one year, but among all the feasible 5-debris-removed
solutions obtained during the grid search, very few reach
that limit. That shows that more than 5 debris can poten-
tially be de-orbited.

Table 2 summarises the optimisation of two solution re-

Figure 5. Set of debris-to-debris transfers.

Figure 6. Feasible solutions of the grid search, mass ver-
sus ∆V .

sults of the global search. It illustrates the substantial im-
provement in cost after the manoeuvre optimisation. The
reason of those gains comes mainly because solutions
have many revolutions, and thus inserting intermediate
maneuvers can drastically reduces the delta-V cost of the
final maneuver. Furthermore, because of the numerical
integration during the local optimisation, all possible de-
fects owing to the analytical model used in the Lambert’s
problem vanish. Final results are thus accurate for the
considered dynamical model (J2 only, no averaging).

The second point is that the ∆V are quite low (from 200
m/s to 861 m/s), but still of the same order of magnitude
than the simulation of Ref. [5] for a different debris pop-
ulation of the same orbital regime. As we allowed the
removal from 5 to 11 debris, indeed, almost all the most
expensive transfers, around 800 m/s, refer to 11-debris
removal scenario. But, the lowest transfer scenario have
6 or more debris. Most of the total time of flight consist
in drifting phases for optimal phasing.



Solution Leg Cost, m/s Total Nb.
1 2 3 4 m/s Impulses

Nominal 1 186.4 174.7 83.9 23.0 468.1 8
Optimal 1 165.1 80.0 31.8 21.6 298.5 135

Nominal 2 191.3 188.4 166.8 179.5 726.0 8
Optimal 2 154.9 101.8 61.1 46.5 264.4 134

Table 2. Optimisation of two transfers.

5.3. Conclusion

A perturbed transfer model has been used to quickly eval-
uate transfers between debris. A grid search was con-
ducted to find the best debris-to-debris transfers, and sub-
senquently construct 5- to 10-debris sequences. It has
been shown that for a reprensetative debris population,
the cost of removing 5 debris per year can be below 500
m/s. Indeed, the natural dynamical perturbation can be
used to phase naturally with debris, and several interme-
diate maneuvers can be found to lower the transfer cost.

Low-thrust transfers should provide very interesting al-
ternative solutions, provided the thrust-levels are suffi-
cient to respect the same time horizons.
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