
 
PROBABILITY CONCEPTS FOR GEO COLLISION RISK ASSESSMENT*

 
Alan B. Jenkin(1)  

 
 (1)The Aerospace Corporation, El Segundo, CA 90245, USA, Email: Alan.B.Jenkin@aero.org 
 

                                                 
* �©  The Aerospace Corporation 2009 

ABSTRACT 
 

This paper discusses probability concepts for 
computing short-term and long-term collision risk that 
account for correlation effects in geosynchronous orbit 
(GEO). The focus is on covariance-based methods, 
which have realistic computer resources requirements. 
For near-coplanar encounters, a collision probability 
formulation for position and velocity errors and general 
orbital motion was developed based on the theory of 
dynamical probability continua that has been used for 
debris cloud risk assessment. A method for assessing 
long-term risk with the purpose of selecting collision 
avoidance action thresholds on short-term risk is 
described. This methodology accounts for GEO-
specific correlating effects and maintains consistency 
of uncertainty modeling between short- and long-term 
risk assessment. 
 
1. INTRODUCTION 

 
As the population of objects in geosynchronous orbit 
(GEO) has been growing, interest in quantitative 
assessment of collision risk posed to operational 
satellites has been increasing. Short-term risk 
assessment generally involves a predicted encounter 
between an operational satellite (the “primary”) and 
another object (the “secondary”). Determination of the 
collision probability associated with the encounter can 
be used to support decisions regarding a collision 
avoidance action.  Long-term collision risk assessment, 
i.e., collision probability over the duration of a mission, 
can be used to select action thresholds on encounter 
collision probability [1]. 
 
Geosynchronous orbits have unique correlational 
properties which must be accounted for in accurate 
collision probability assessment. These correlations are 
due to common orbital period and low inclination, as 
well as the dominant orbital perturbations. For non-
operational satellites, longitude drifts slowly due to 
tesseral harmonics and SRP. Luni-solar gravity causes 
right ascension of ascending node (RAAN) and 

inclination to move together. SRP and luni-solar 
gravity cause eccentricity and argument of perigee to 
move together. Operational satellites actively control 
longitude and inclination via station keeping 
maneuvers. Risk assessment methods that do not 
account for these correlational effects may not yield 
accurate results for GEO. As an example, for a flux-
based method to be accurate, it would require very high 
resolution, three-dimensional spatial and temporal 
binning of spatial density and velocity, and the binning 
would have to be implemented in the GEO rotating 
frame to retain longitude correlation. This paper 
discusses probability concepts for computing short-
term and long-term collision risk that account for 
correlation effects in GEO. 
 
2. GENERAL FORMULATION OF COLLISION 
PROBABILITY 

 
A general formulation of collision probability involves 
a mapping MIO between an input space of N-
dimensional vectors x and an output space of 3-
dimensional vectors y. This mapping is illustrated in 
Fig. 1. An instance of the vector y is defined as the 
position vector at closest approach over a time interval 
[0,t]. The vector x consists of uncertain variables. 
These may include a position vector r, velocity vector 
v, solar radiation pressure coefficient, maneuver times 
and 'Vs, classical orbital elements, etc. In the output 
space there is a region YC of closest approach vectors 
that result in a collision. In the input space there is a 
region XC that maps to YC. The probability of collision 
is then obtained by integrating the probability density 
function (PDF) of x, fx(x), over XC. 
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The variables in vector x are selected to be 
uncorrelated. The mapping MIO between the input 
space and output space will include all correlational 
properties. (For a primer on the theory of uncertain 
variables and PDFs, see [2]). The most direct way to 
implement this general formulation is via Monte Carlo 
analysis. For each Monte Carlo iteration, each member 
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of x is randomly sampled according to its PDF. A 
precision trajectory is then generated using a high-
fidelity propagator, and a close approach analysis is 
performed to obtain the position vector y at closest 
approach over the time interval [0,t] (the global closest 
approach over the time interval, not a local close 
approach). If the resulting value of y is contained in YC, 
then a collision counter is incremented. After all the 
iterations are finished, the collision probability is 
computed by dividing the collision counter by the total 
number of Monte Carlo iterations. The advantage of 
this method is that it is relatively simple to formulate 
and implement. It also places minimal restrictions on 
the selection of uncertain variables in x. The 
disadvantage of this method is that the resolution of 
collision probability value is limited by computer 
resources (memory and speed). For example, in order 
to be able to resolve a collision probability value of 10-

6, at least 107 to 109 Monte Carlo iterations will be 
needed. The rest of this paper will focus on more 
specialized methods that use covariance for assessing 
collision probability, since these methods have more 
realistic computer resource requirements. 
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Figure 1. Mapping from input space of uncertain, 
uncorrelated variables to closest approach vectors. 
 
3. COVARIANCE-BASED PROBABILITY OF 
COLLISION  

 
Covariance-based methods for determining collision 
probability during an encounter assume a position error 
PDF that is Gaussian. For example, the position PDF 

for the secondary satellite, � �rf r  is 
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where G denotes a Gaussian PDF with mean Nr  (the 

nominal predicted position) and covariance  (the 

position error covariance). The covariance can be 
computed via any of several methods. One way is to 
propagate the covariance at the orbit determination 
epoch to the current time via the state transition 

matrix

rrC

� �tvr
NN
,, 00) , which maps perturbations in 

the initial state vector > 000 vrx  @to the current 

state vector > @vrx  , and is well documented in 

the astrodynamics literature. 
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where 
N

r 0 and 
N

v0  are the nominal position and 

velocity at orbit determination epoch. The size of the 
covariance can be understood in terms of its 3-sigma 
error ellipsoid, the surface of which is described by the 
equation 
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A high value of collision probability (e.g., > 0.001) 
means the miss distance will be low and the error 
covariance ellipsoid is small. A low collision 
probability value (e.g., < 10-6 ) can mean one or both of 
two possibilities. If the error covariance ellipsoid is 
small, then the miss distance will be high. If the error 
covariance ellipsoid is large, then a low probability 
value means the position knowledge is poor. In the 
latter case, the actual risk will be low only if the 
covariance at that encounter is accurate, i.e., not 
conservatively large. In other words, the position could 
truly be anywhere within the covariance region in 
accordance with the Gaussian probability density 
function (PDF). The true collision risk could be higher 
than indicated by the probability value if the predicted 
miss distance is low and the covariance is 
conservatively large. This may be an issue for models 
of covariance that only contain the secular variation 
with time and do not include the periodic variation. 
 
Another important consideration is that low collision 
probabilities at many encounters with large covariances 
can sum to a large collision probability over mission 
timeframe and constellation members. Therefore, 
repeated occurrences of low collision probabilities 
should not be interpreted as an indication of low 
overall collision risk. 
 
4. SHORT-TERM RISK ASSESSMENT 

 
GEO encounters can generally be classified as either 
non-coplanar encounters or near-coplanar encounters. 
(This discussion does not include secondary objects in 
non-synchronous orbits or GEO-transiting orbits). A 
non-coplanar encounter will occur if either satellite has 
drifting inclination and RAAN. Encounter velocities 
can range up to 1.7 km/s. The cross-track component of 
velocity dominates over the other two components. 



Encounter time is short. The majority of encounters 
experienced by a GEO satellite over its mission time 
frame will be non-coplanar. A near-coplanar encounter 
will most likely occur when both satellites are in orbits 
with near-zero inclination. In this case the encounter 
velocity will generally be low (on the order of 1 m/s).  
All three velocity components may be commensurate. 
The encounter time may be extended. 
 
For non-coplanar encounters, the motion between the 
primary and secondary can be modeled as rectilinear, 
and the position error covariance during the encounter 
can be modeled as static. There are several 
formulations in the literature that handle the static 
Gaussian/rectilinear motion case [3-6]. These methods 
effectively involve projecting the position error 
Gaussian PDF into the encounter plane, which is 
orthogonal to the relative velocity between the primary 
and secondary. The collision probability is then 
determined by integrating the PDF over the satellite 
collision cross-section AC in the encounter plane. These 
formulations are very computationally efficient. 
 
The static Gaussian/rectilinear formulation may be 
applicable to a near-coplanar encounter if the 
covariance is small compared to the relative range of 
motion between the two satellites. This may be the case 
when both orbits can be produced by a high-accuracy 
orbit determination method. Otherwise, the relative 
motion will not be rectilinear, and the covariance will 
not be static. If the covariance is large, many cycles of 
the relative trajectory may remain in the general region 
of the covariance error ellipsoid. In addition, the 
propagated position error PDF will no longer be 
Gaussian if enough time passes for it to spread around 
part of the orbit arc. A formulation is presented here 
that can be applied to non-coplanar encounters with 
improved generality. The formulation is based on the 
theory of dynamical probability continua that has been 
used to assess risk posed by debris clouds formed by 
breakups [7]. This is motivated by the fact that a 
position error PDF will follow the same orbital motion 
as a debris cloud. The development will start with the 
case in which there are only initial velocity errors, 
since this follows the formulation for debris clouds. 
Then the formulation will be expanded to include 
initial position errors. 
The formulation starts with a mapping from an initial 
velocity space at orbit determination epoch to position 
space at a current time t. This mapping is illustrated in 
Fig. 2 and is represented by the propagator function 

� � � tvPtr srs ,0 �   (5) 

In the figure, P denotes the primary and S denotes the 
secondary. The initial velocity errors are assumed to 
apply to the secondary. For Gaussian velocity errors, 
the initial velocity PDFs for both primary and 
secondary can be represented by one initial velocity 

PDF with covariance equal to the sum of the velocity 
covariances of the two satellites. The mapping between 
initial velocity space and current position space will be 
bijective (one-to-one) as long as the current position 
PDF has not wrapped around the Earth and overlapped 
upon itself. Therefore, as the primary satellite traces a 
path in current position space, it will trace an 
equivalent path in initial velocity space. The advantage 
of considering the primary path in initial velocity space 
is that the PDF in that space is time invariant. The 
primary will have a time-varying collision cross-
section ACv0 that will sweep out a volume Vv0 over a 
time interval [0,t]. The collision probability is then 

obtained by integrating the PDF � �
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s

 over Vv0. 
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The integral has been formulated to include integration 
over the collision cross-section ACv0 in the case the 
PDF varies over the collision cross-section, which 
would occur if the satellite is large and the orbit 
determination is highly accurate. 
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Figure 2. Mapping from initial velocity space to 
current position space. 
 
To make the integral implementable, it is necessary to 
relate displacements in initial velocity space to 
displacements in current position space. This can be 
accomplished by considering differential increments in 
position and cross-sectional area, which are illustrated 
in Fig. 3. 
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Figure 3. Differential increments in initial velocity 
space and current position space. 



 
The first step is to obtain the first variation of the 
position of the secondary due to perturbations in the 
initial velocity and time. This can be obtained by 
differentiating the propagator function that maps initial 
velocity space to current position space.  
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The velocity partial derivative is the velocity to 
position component of the state transition matrix. 
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The time partial derivative is simply the velocity of the 
secondary if it has an initial velocity vS0. 
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where vs is computed by the propagator function from 
initial velocity space to current velocity space. 
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The constraint that relates the two spaces is that the 
positional displacement of the secondary matches the 
displacement of the primary. 
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This can be rearranged as follows. 
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Due to the constraint in Eq. 11, vs is now the velocity 
of the secondary if it is at the same location as the 
primary at time t. Note that vs is not in general the 
nominal predicted velocity of the secondary. This 
formulation will therefore account for the fact that the 
position error field moves relative to the nominal 
predicted position of the secondary. This is analogous 
to the motion of fragments in a debris cloud relative to 
the debris cloud center. 
 
Differential volumes swept out by displacements in 
initial velocity and current position space are needed to 
reformulate the integration of Eq. 6 in current position 
space. They can be formulated as follows. 
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From advanced calculus, Eqs. 12-14 can be combined 
to relate the differential volumes via the Jacobian of the 
mapping from initial velocity to current position space. 
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Solving Eq. 15 for 
0svVG and substituting in Eqs. 13 

and 14 yields 
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By substituting Eq. 17 into Eq. 6, the integral can now 
be expressed in current position space. 
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where vs is obtained from Eq. 10. To evaluate the 
integral, it is necessary to solve for vs0 from rp. This is 
accomplished by inverting the propagator function. 
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This must be done numerically via differential 
correction. If the integrand in Eq. 18 does not vary 
significantly across the collision cross-section AC, (i.e., 
satellite is not large relative to the position error 
covariance), the area integral can be removed. 
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The formulation can now be expanded to include initial 
position errors by treating the velocity error 
formulation as a conditional probability  with condition 
that the initial position is fixed at r0. The total collision 
probability is then obtained by integrating over the 

position error PDF � �
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Equations 20 and 21 can be combined to yield an 
expression in terms of the joint initial position-velocity 
PDF. The dependence of other quantities in the 
integrand on r0 is explicitly shown. 
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where 
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If the integrand in Eq. 22 does not vary significantly 
across the collision cross-section AC, the area integral 
can be removed. 
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(26) 
Equation 26 involves numerical evaluation of a four-
dimensional integral. Implementation is still feasible 
(in comparison to a direct Monte Carlo method), but 
the run time will be much higher than for the static 
Gaussian/rectilinear formulation. Ideally, covariances 
should be small enough (due to accurate orbit 
determination) so that only a small fraction of 
encounters require this method. 
 
This formulation is applicable for general initial 
position and velocity PDFs. However, for GEO 
encounters, the PDF will be Gaussian and contain the 
combined errors from the primary and secondary. 
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(27) 
where the combined covariance is the sum of the 
covariances of the primary and secondary. 
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The formulation represented by Eqs. 23-25 and 22 or 
26 has several advantages. It applies to general orbital 
motion and is not restricted to rectilinear or linear 
motion. As a result, the method can be used to compute 
collision probability over longer periods of time (weeks 
to months) as the position error field spreads out along 
the orbit arc around the Earth. However, it may be 
advisable to augment the formulation with SRP 
coefficient as an uncertain variable, since recent results 
by Chao [8] show that SRP coefficient uncertainty has 
a significant effect on GEO propagation error. A caveat 
on the method is that the integration in current position 
space is only equivalent to integration in initial velocity 
space as long as the path of the primary in initial 
velocity space does not significantly retrace itself. If 
retracing occurs, the integration in current position 
space will overbook the accumulation of probability in 
initial velocity space, so the consequence will be an 
overestimate (conservative). However, the effect of 
retracing is expected to be limited by secular growth of 
the position error covariance ellipsoid, which is caused 
by the component of the initial velocity error 
covariance in the orbit-tangential direction.  
 
5. NUMERICAL EXAMPLE OF A NEAR-
COPLANAR ENCOUNTER 

 
A hypothetical example of a near-coplanar encounter 
was generated in order to partially demonstrate the 
method. The initial orbital elements at common epoch 
are shown in Table 1. Figure 4 shows the range 
between the primary and secondary over the 10-day 
forecast period. 
 
Table 1. Initial orbital elements at common epoch for a 
hypothetical near-coplanar GEO encounter. 
Satellite a e i : Z M

km deg deg deg deg

Primary 42165.5 0.002 0.0242 83.889646 89.865869 265.135957

Secondary 42165.9 0.002 0.0270 83.899620 99.865874 255.158225  
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Figure 4. Range between primary and secondary over 
10-day forecast. 
 



A version of program DEBRIS [7] modified with a 

he initial velocity error covariance was determined to 
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The Clohessy-Wiltshire transition matrix formulation 

Gaussian velocity error PDF in place of a fragment 
velocity distribution was used to generate a 10-day 
forecast of collision probability. This code effectively 
evaluates Eqs. 19, 10 and 20. The propagator functions 
(Eqs. 5 and 10) model Keplerian + secular J2 motion. 
While this is acceptable for the purpose of 
demonstrating the method, for real-world applications 
luni-solar gravity, SRP, and tesseral harmonics should 
be included. A collision radius of 10 m was selected, 
which yields a circular cross-sectional area AC of 314 
m2. Only initial velocity errors were modeled because 
development of a version of DEBRIS with initial 
position errors is still in progress. The run took 11.13 
CPU seconds on one processor of an UltraSPARC 3i. 
 
T
least-squares best fit a secular model of position errors 
versus. time that was used in the study by Jenkin and 
Peterson [1]. This secular model is a fit to TLE data 
residuals and is an average over GEO objects The 
model gives three-sigma position errors (km) in the 
TNW frame (T = tangential, N = in-plane normal to 
tangential, W = cross-track) versus time t (days). 
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was used to map the initial velocity error covariance to 
position error covariance at current time. 
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The resulting three-sigma TNW position errors, which 
contain secular and periodic components, were 
extracted and differenced with the secular model values 
to form the residuals that are minimized in the 
determination of the velocity error covariance. The 
resulting initial velocity error covariance, expressed in 
the TNW frame in units of (km/s)2, is 
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igures 5-7 show the three-sigma TNW position errors 

  

F
from both the secular model and the velocity error 
covariance model (Eq. 30). It can be seen that, for the 
T component, the secular trend in the velocity error 
covariance model fits the secular model relatively well 
except toward the end of the 10-day interval. The fit is 
not as good in the W component, and especially not in 
the N component. Increasing the N-component of the 
velocity error covariance to improve the N component 
fit introduces a very large amplitude in the periodic 
portion of the T component. Therefore, the velocity 
error covariance by itself is not sufficient. The position 

error covariance is needed to improve the N component 
fit and should be included in real-world applications 
via Eq. 22 or 26. 
 

 
Figure 5. Three-sigma T-component of position error. 
 

 
Figure 6. Three-sigma N-component of position error. 
 

 
Figure 7. Three-sigma W-component of position error. 
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igures 8-11 show results from the DEBRIS run.F

Figure 8 shows the path of the primary satellite in 
initial velocity error space while it is inside the six-
sigma error ellipsoid. Figure 9 shows the probability 
accumulation rate versus time over the 10-day interval. 



It is seen that the peaks are interrupted by gaps where 
the probability rate drops to zero. To see this in more 
detail, Fig. 10 shows a window of the same plot from 
3.75 to 4.75 days. This effect is caused by contraction 
of the position error covariance N and W components 
due to periodic variation (see Figs. 6 and 7). As these 
covariance components contract, the primary at first 
experiences an increase in probability density, but then 
experiences a decrease as the three-sigma error 
ellipsoid is drawn in to the secondary nominal position. 
Figure 11 shows the cumulative collision probability 
versus time. It is seen that the total encounter 
probability accumulates continuously across the 10-day 
forecast period. Attempting to compute collision 
probability at only the conjunctions (local minima in 
range) would not yield an accurate result. 
 

 
Figure 8. Path of the primary in initial velocity space. 
 

 
Figure 9. Collision probability accumulation rate 
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Figure 10. Collision probability accumulation rate 
versus time over the time interval from 3.75 to 4.75 
days. 
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Figure 11. Cumulative collision probability versus 
time. 
 
6. LONG-TERM RISK ASSESSMENT 

 
Determination of the long-term collision risk over 
mission life can be used to select an action threshold on 
encounter collision probability [1]. For this purpose, 
the long-term risk assessment should be based on 
uncertainty modeling that is consistent with the short-
term risk assessment. Therefore, statistically 
representative position and velocity error covariances 
should play a role in long-term collision probability 
determination. Additional uncertainties that play a role 
are future population growth, repeated station keeping 
maneuvers by operational satellites, and satellite 
failures. One way to model these latter uncertainties is 
by using historical data from recent years to represent 
future trends during the next few years. This is an 
indirect, data-driven method that does not explicitly 
model uncertain, uncorrelated input variables. 
 
The following method for assessing long-term collision 
risk accounts for both classes of uncertainties. It is an 
extension of the method used in [1]. A historical 



database of orbit determination products is established 
that contains state vectors (e.g., TLEs) and 
corresponding position and velocity error covariances. 
A conjunction simulation tool (e.g., Collision Vision 
[1]) is used with the database to determine 
conjunctions over a long time interval (e.g., one year). 
During the conjunction simulation, the state vectors 
and covariances are propagated over a short time 
interval (e.g., 10 days) and then refreshed from the 
database to account for maneuvers, rectify propagation 
errors, etc. The covariance propagation should include 
periodic variation and not only secular variation to 
prevent underestimating risk. The refresh time interval 
should be the same as the forecast interval over which 
the action threshold will be applied so that the position 
error covariance growth will be accurately represented. 
For each resulting non-coplanar conjunction, the 
encounter collision probability is computed using the 
static Gaussian/rectilinear motion formulation. Clusters 
of near-coplanar conjunctions are grouped into near-
coplanar encounters, and the position and velocity 
error/general motion formulation is used to compute 
collision probability. The resulting collision 
probabilities from all encounters are then combined. 
Direct summation of the collision probabilities will be 
accurate if the sum is small (e.g., < 0.1). Otherwise, 
they should be combined via the formulation for 
general independent events. 
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7. CONCLUSIONS 

 
This paper presented probability concepts for 
computing short-term and long-term collision risk that 
account for correlation effects in GEO. The focus was 
on covariance-based methods, which are less 
demanding on computer resources than a direct Monte 
Carlo approach. For computing short-term collision 
probability, the static Gaussian/rectilinear motion 
formulation can be used to compute collision 
probability for non-coplanar encounters. Periodic 
variation of covariance should be included to prevent 
underprediction of risk when predicted miss distance is 
low. For near-coplanar encounters, a collision 
probability formulation for position and velocity errors 
and general orbital motion was developed based on the 
theory of dynamical probability continua that has been 
used for debris cloud risk assessment. This formulation 
can be used to predict out for longer periods (weeks to 
months) as the position error field spreads around 
GEO. Long-term collision probability can be used to 
select action thresholds on short-term probability. 
Long-term collision probability can be determined by 
using a conjunction simulation with a database of 
historical state vectors and covariances, along with the 

short-term risk methods, to generate a statistically 
representative set of encounter collision probabilities. 
This methodology accounts for GEO-specific 
correlating effects and maintains consistency of 
uncertainty modeling between short and long-term risk 
assessment.  
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