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ABSTRACT

This paper discusses probability concepts for
computing short-term and long-term collision rislatt
account for correlation effects in geosynchronolst o
(GEO). The focus is on covariance-based methods,
which have realistic computer resources requiresent
For near-coplanar encounters, a collision prolgbili
formulation for position and velocity errors anchgeal
orbital motion was developed based on the theory of
dynamical probability continua that has been used f
debris cloud risk assessment. A method for assgssin
long-term risk with the purpose of selecting cadiis
avoidance action thresholds on short-term risk is
described. This methodology accounts for GEO-
specific correlating effects and maintains consisfe

of uncertainty modeling between short- and longater
risk assessment.

1. INTRODUCTION

As the population of objects in geosynchronoustorbi
(GEO) has been growing, interest in quantitative
assessment of collision risk posed to operational
satellites has been increasing. Short-term risk

assessment generally involves a predicted encounter

between an operational satellite (the “primary”dan
another object (the “secondary”). Determinatiorthaf
collision probability associated with the encourtan

be used to support decisions regarding a collision
avoidance action. Long-term collision risk asse=#m
i.e., collision probability over the duration ofrassion,

can be used to select action thresholds on encounter

collision probability [1].

Geosynchronous orbits have unique correlational
properties which must be accounted for in accurate
collision probability assessment. These correlatiare
due to common orbital period and low inclinatios, a
well as the dominant orbital perturbations. For -non
operational satellites, longitude drifts slowly dtee
tesseral harmonics and SRP. Luni-solar gravity €aus
right ascension of ascending node (RAAN) and
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inclination to move together. SRP and luni-solar
gravity cause eccentricity and argument of peritgee
move together. Operational satellites actively mant
longitude and inclination via station keeping
maneuvers. Risk assessment methods that do not
account for these correlational effects may notdyie
accurate results for GEO. As an example, for a-flux
based method to be accurate, it would require gty
resolution, three-dimensional spatial and temporal
binning of spatial density and velocity, and theriimg
would have to be implemented in the GEO rotating
frame to retain longitude correlation. This paper
discusses probability concepts for computing short-
term and long-term collision risk that account for
correlation effects in GEO.

2. GENERAL FORMULATION OF COLLISION
PROBABILITY

A general formulation of collision probability inles

a mapping Nb between an input space of N-
dimensional vectorsx and an output space of 3-
dimensional vectory. This mapping is illustrated in
Fig. 1. An instance of the vectgris defined as the
position vector at closest approach over a timeruai
[0,t]. The vectorx consists of uncertain variables.
These may include a position vectorvelocity vector
v, solar radiation pressure coefficient, maneuvees
and AVs, classical orbital elements, etc. In the output
space there is a region: Yf closest approach vectors
that result in a collision. In the input space éher a
region X that maps to ¥. The probability of collision
is then obtained by integrating the probability sign
function (PDF) ok, f«(x), over X.

pe = [ f,()av, (1)
XC
The variables in vectorx are selected to be
uncorrelated. The mapping ® between the input
space and output space will include all correlation
properties. (For a primer on the theory of uncartai
variables and PDFs, see [2]). The most direct veay t
implement this general formulation is via Monte IGar
analysis. For each Monte Carlo iteration, each nemb



of x is randomly sampled according to its PDF. A
precision trajectory is then generated using a -high
fidelity propagator, and a close approach analisis
performed to obtain the position vectgrat closest
approach over the time interval [0,t] (the globlalsest
approach over the time interval, not a local close
approach). If the resulting value pfs contained in ¥,
then a collision counter is incremented. After thi
iterations are finished, the collision probabilifg
computed by dividing the collision counter by tigat
number of Monte Carlo iterations. The advantage of
this method is that it is relatively simple to fartate
and implement. It also places minimal restrictiams
the selection of wuncertain variables iR The
disadvantage of this method is that the resolutbn
collision probability value is limited by computer
resources (memory and speed). For example, in order
to be able to resolve a collision probability vabfel0

¢ at least 10to 10 Monte Carlo iterations will be
needed. The rest of this paper will focus on more
specialized methods that use covariance for asgpssi
collision probability, since these methods have amor
realistic computer resource requirements.

Output space

Input space

X = uncertain input variables

N : y = position vectors at closest
(N-dimensions)

approach over time interval [0,t]
(3-dimensions)

Figure 1. Mapping from input space of uncertain,
uncorrelated variables to closest approach vectors.

3. COVARIANCE-BASED PROBABILITY OF
COLLISION

Covariance-based methods for determining collision
probability during an encounter assume a positioor e
PDF that is Gaussian. For example, the position PDF

for the secondary satellitef, (r)is
f[ (L) = G(LLN ’Crr )
1 —le-r e ()
e
(27)%|detC, |2

where G denotes a Gaussian PDF with mggn (the

()

nominal predicted position) and covarianE?z;r (the

position error covariance). The covariance can be
computed via any of several methods. One way is to
propagate the covariance at the orbit determination
epoch to the current time via the state transition

matrixCD([oN ,\_/ON ,t) , which maps perturbations in
the initial state vecto X, = [[0 \_lo]to the current

state vectol X = [[ \_/], and is well documented in
the astrodynamics literature.

q@):[c" Cfv}

C, C,
= (D([oN Yo, ’t)cxo(DT (LON Yo, ’t)

where 'y and V, are the nominal position and

3)

velocity at orbit determination epoch. The sizetlo#
covariance can be understood in terms of its 3-gigm
error ellipsoid, the surface of which is descriltgdthe
equation

%(L_LN )TCrr_l(L_LN)_% (4)

A high value of collision probability (e.g., > 0.00
means the miss distance will be low and the error
covariance ellipsoid is small. A low collision
probability value (e.g., < 10) can mean one or both of
two possibilities. If the error covariance ellipdois
small, then the miss distance will be high. If #reor
covariance ellipsoid is large, then a low probapili
value means the position knowledge is poor. In the
latter case, the actual risk will be low only ifeth
covariance at that encounter is accurate, i.e.,
conservatively large. In other words, the positionld
truly be anywhere within the covariance region in
accordance with the Gaussian probability density
function (PDF). The true collision risk could begher
than indicated by the probability value if the poted
miss distance is low and the covariance is
conservatively large. This may be an issue for nsde
of covariance that only contain the secular varati
with time and do not include the periodic variation

not

Another important consideration is that low cobisi
probabilities at many encounters with large covers
can sum to a large collision probability over nossi
timeframe and constellation members. Therefore,
repeated occurrences of low collision probabilities
should not be interpreted as an indication of low
overall collision risk.

4. SHORT-TERM RISK ASSESSMENT

GEO encounters can generally be classified as either
non-coplanar encounters or near-coplanar encounters
(This discussion does not include secondary objects
non-synchronous orbits or GEO-transiting orbits). A
non-coplanar encounter will occur if either satellas
drifting inclination and RAAN. Encounter velocities
can range up to 1.7 km/s. The cross-track compafent
velocity dominates over the other two components.



Encounter time is short. The majority of encounters
experienced by a GEO satellite over its missioretim
frame will be non-coplanar. A near-coplanar enceunt
will most likely occur when both satellites aredrbits
with near-zero inclination. In this case the endeun
velocity will generally be low (on the order of Ush

All three velocity components may be commensurate.
The encounter time may be extended.

For non-coplanar encounters, the motion between the
primary and secondary can be modeled as rectilinear
and the position error covariance during the entsun
can be modeled as static. There are several
formulations in the literature that handle the istat
Gaussian/rectilinear motion case [3-6]. These nugho
effectively involve projecting the position error
Gaussian PDF into the encounter plane, which is
orthogonal to the relative velocity between theraniy

and secondary. The collision probability is then
determined by integrating the PDF over the satellit
collision cross-sectioA¢ in the encounter plane. These
formulations are very computationally efficient.

The static Gaussian/rectilinear formulation may be
applicable to a near-coplanar encounter if the
covariance is small compared to the relative range of
motion between the two satellites. This may bectse
when both orbits can be produced by a high-accuracy
orbit determination method. Otherwise, the relative
motion will not be rectilinear, and the covarianvei
not be static. If the covariance is large, manyeyof
the relative trajectory may remain in the geneggiaon
of the covariance error ellipsoid. In addition, the
propagated position error PDF will no longer be
Gaussian if enough time passes for it to spreadnaro
part of the orbit arc. A formulation is presenteetén
that can be applied to non-coplanar encounters with
improved generality. The formulation is based oa th
theory of dynamical probability continua that hazb
used to assess risk posed by debris clouds formed b
breakups [7]. This is motivated by the fact that a
position error PDF will follow the same orbital et
as a debris cloud. The development will start \thig
case in which there are only initial velocity esor
since this follows the formulation for debris cleud
Then the formulation will be expanded to include
initial position errors.
The formulation starts with a mapping from an aliti
velocity space at orbit determination epoch to tpasi
space at a current time t. This mapping is illustrated in
Fig. 2 and is represented by the propagator functio
ro(t)=P (Ve t) (5)
In the figure, P denotes the primary and S denibtes
secondary. The initial velocity errors are assurteed
apply to the secondary. For Gaussian velocity syror
the initial velocity PDFs for both primary and
secondary can be represented by one initial vglocit

PDF with covariance equal to the sum of the vejocit
covariances of the two satellites. The mapping betw
initial velocity space and current position spack ve
bijective (one-to-one) as long as the current posit
PDF has not wrapped around the Earth and overlapped
upon itself. Therefore, as the primary satelligcés a
path in current position space, it will trace an
equivalent path in initial velocity space. The autege

of considering the primary path in initial velocgpace

is that the PDF in that space is time invariante Th
primary will have a time-varying collision cross-
section A, that will sweep out a volumeyover a
time interval [0,t]. The collision probability ishén

obtained by integrating the PDE, (\—/50) over V.
=s0
jf v dV
(6)
= [f.. dA: dv,,
Primarypath ACVO

sweptduring[0,t]
The integral has been formulated to include intiégna
over the collision cross-sectionc# in the case the
PDF varies over the collision cross-section, which
would occur if the satellite is large and the orbit
determination is highly accurate.

Current position space

Figure 2. Mapping from initial velocity space to
current position space.

To make the integral implementable, it is necessary
relate displacements in initial velocity space to
displacements in current position space. This can b
accomplished by considering differential increments in
position and cross-sectional area, which are st

in Fig. 3.

Initial velocity space Current position space

Figure 3. Differential increments in initial velocity
space and current position space.



The first step is to obtain the first variation tife
position of the secondary due to perturbationshia t
initial velocity and time. This can be obtained by
differentiating the propagator function that mapisial
velocity space to current position space.

st R, OB
ov

ovg +

s )
S

The velocity partial derivative is the velocity to
position component of the state transition matrix.

oR
=, (v, .t) ®)
S
OV,
The time partial derivative is simply the velocif/the
secondary if it has an initial velocity,.

oP. or
==V, 9)
ot ot
where_v is computed by the propagator function from
initial velocity space to current velocity space.

v, =PR,vy.t) (10)
The constraint that relates the two spaces is ttmat

positional displacement of the secondary matches th
displacement of the primary.

V=41,

11
5555:®,V(v50,t)5y50+\_/sé’[ ()
This can be rearranged as follows.
D\, t)ov, =lv, -V |
otov, = —wja

=V
Due to the constraint in Eq. 11, ig now the velocity
of the secondary if it is at the same location lees t
primary at time .t Note that_y is notin general the
nominal predicted velocity of the secondary. This
formulation will therefore account for the fact thhe
position error field moves relative to the nominal
predicted position of the secondary. This is analsg
to the motion of fragments in a debris cloud refatio
the debris cloud center.

Differential volumes swept out by displacements in
initial velocity and current position space aredexkto
reformulate the integration of Eq. 6 in currentifios
space. They can be formulated as follows.

N, = A, ovyl (13)

OV, = Ao | = oA v, (14)

From advanced calculus, Egs. 12-14 can be combined
to relate the differential volumes via the Jacomathe
mapping from initial velocity to current positiopace.

&, = 3oV, (15)

where

J=deto, (v, ,t) (16)
Solving Eq. 15 foréV, and substituting in Egs. 13
~s0
and 14 yields

oA ||5yso||=ﬁ5&uyps

By substituting Eq. 17 into Eq. 6, the integral canw
be expressed in current position space.

& 17)

Pc =
1
f, (v, ()
Primarypath Satellite “J \_/so (T)’ T
sweptduring[O0,t] posi’[ionsgp
inAc

v, (7)- v, (v, (0).7) dAdz
(18)

where v is obtained from Eg. 10. To evaluate the
integral, it is necessary to solve fag from r,. This is
accomplished by inverting the propagator function.

Ve =P, (0)) (19)
This must be done numerically via differential
correction. If the integrand in Eq. 18 does notyvar
significantly across the collision cross-sectiog A.e.,
satellite is not large relative to the position oerr
covariance), the area integral can be removed.

Pc =

Primarypath ) \—/50 (T )’ T}

sweptduring[0,t]
H\_/p(f)— \_/S(\_/So (Z'), r}‘ A.dz

(20)
The formulation can now be expanded to includeéaihit
position errors by treating the velocity error
formulation as a conditional probability with cadtioh
that the initial position is fixed ag.rThe total collision
probability is then obtained by integrating ovee th

position error PDFf[S0 ([SO )

Pc = J. pc[0 (Lo)fgso (Lso)dvgo
fo
PDF
Equations 20 and 21 can be combined to yield an
expression in terms of the joint initial positioalacity

PDF. The dependence of other quantities in the
integrand ongis explicitly shown.

(21)



pe = |

ro  Primarypath
PDF sweptduring|0,t]

\ 1
ﬁg‘,‘;‘?t'i{;ﬁ::so Ve, (Lso Vs, (Lso ’T)/‘J(LSD . (Lso ,r),rl
inAc
o(e)-vilrg v, (b, ) o) A dz v,
(22)

where

Voo = Piil(ip(t)’fso’t) (23)

J=detd,(r, v, 1) (24)

Vs = Py(Lso Ve, (Lso ’t)’t) (25)

If the integrand in Eq. 22 does not vary signifityn
across the collision cross-section,Ahe area integral
can be removed.

=]

ro  Primarypath
PDF sweptduring[0,t]

\ 1
et

H\—/p(z-)_\_/s<£so ’\—/So (Lso ’T)’TM AC dr dV[O

(26)
Equation 26 involves numerical evaluation of a four
dimensional integral. Implementation is still fessi
(in comparison to a direct Monte Carlo method), but
the run time will be much higher than for the stati
Gaussian/rectilinear formulation. Ideally, covadas
should be small enough (due to accurate orbit
determination) so that only a small fraction of
encounters require this method.

This formulation is applicable for general initial
position and velocity PDFs. However, for GEO
encounters, the PDF will be Gaussian and contan th
combined errors from the primary and secondary.

f (r Vso):G(l(so’l(SON’C

T Vg =507+ X

1 _%(l(so ~Xson )r Cvoil(l(So “Xson )
- e
(2’ [detc, |

(27)
where the combined covariance is the sum of the
covariances of the primary and secondary.

C,=C,,+C,. (28)

The formulation represented by Egs. 23-25 and 22 or
26 has several advantages. It applies to gendpahbr
motion and is not restricted to rectilinear or éne
motion. As a result, the method can be used to atenp
collision probability over longer periods of timedeks

to months) as the position error field spreadsabaihg

the orbit arc around the Earth. However, it may be
advisable to augment the formulation with SRP
coefficient as an uncertain variable, since recent results
by Chao [8] show that SRP coefficient uncertairdg h

a significant effect on GEO propagation error. Aazt

on the method is that the integration in currerditjmn
space is only equivalent to integration in initialocity
space as long as the path of the primary in initial
velocity space does not significantly retrace ftskl
retracing occurs, the integration in current positi
space will overbook the accumulation of probability in
initial velocity space, so the consequence will dve
overestimate (conservative). However, the effect of
retracing is expected to be limited by secular ghoaf

the position error covariance ellipsoid, which @aised

by the component of the initial velocity error
covariance in the orbit-tangential direction.

5. NUMERICAL EXAMPLE OF A NEAR-
COPLANAR ENCOUNTER

A hypothetical example of a near-coplanar encounter
was generated in order to partially demonstrate the
method. The initial orbital elements at common époc
are shown in Table 1. Figure 4 shows the range
between the primary and secondary over the 10-day
forecast period.

Table 1. Initial orbital elements at common epoch for a

hypothetical near-coplanar GEO encounter.
Satellite a e i 2 @ M
km deg deg deg deg

Primary 42165.5 | 0.002 | 0.0242 | 83.889646 | 89.865869 265.135957

Secondary | 42165.9 | 0.002 | 0.0270 | 83.899620 | 99.865874 255.158225
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Figure 4. Range between primary and secondary over
10-day forecast.



A version of program DEBRIS [7] modified with a
Gaussian velocity error PDF in place of a fragment
velocity distribution was used to generate a 10-day
forecast of collision probability. This code effieely
evaluates Egs. 19, 10 and 20. The propagator tucti
(Egs. 5 and 10) model Keplerian + seculambtion.
While this is acceptable for the purpose of
demonstrating the method, for real-world appliaagio
luni-solar gravity, SRP, and tesseral harmonicaukho
be included. A collision radius of 10 m was seldcte
which yields a circular cross-sectional area & 314

m?. Only initial velocity errors were modeled because
development of a version of DEBRIS with initial
position errors is still in progress. The run tabk13
CPU seconds on one processor of an UltraSPARC 3i.

The initial velocity error covariance was determined
least-squares best fit a secular model of posgioars
versus. time that was used in the study by Jenkth a
Peterson [1]. This secular model is a fit to TLEada
residuals and is an average over GEO objects The
model gives three-sigma position errors (km) in the
TNW frame (T = tangential, N = in-plane normal to
tangential, W = cross-track) versus time t (days).

30, =28.08+2.16t + 0.03*
30, =17.94+0.21

30,, = 7.59+ 0.45

The Clohessy-Wiltshire transition matrix formulatio
was used to map the initial velocity error covac@mo
position error covariance at current time.

T
Crr (t): q)rv(YSON ’t)CWOq)rV (\—ISDN ’t) (30)

The resulting three-sigma TNW position errors, Whic

contain secular and periodic components, were

extracted and differenced with the secular modkles

to form the residuals that are minimized in the

determination of the velocity error covariance. The

resulting initial velocity error covariance, expsed in

the TNW frame in units of (km/%)is

(29)

7.922068E11 1.640428E09 0
Crvyymaw = | 1640428509 1.089637E07 0 (31)
0 0 9.118412E08

Figures 5-7 show the three-sigma TNW position errors
from both the secular model and the velocity error
covariance model (Eq. 30). It can be seen thatther

T component, the secular trend in the velocity rerro
covariance model fits the secular model relativedfl
except toward the end of the 10-day interval. Tihisf
not as good in the W component, and especiallymot
the N component. Increasing the N-component of the
velocity error covariance to improve the N compdnen
fit introduces a very large amplitude in the peidod
portion of the T component. Therefore, the velocity
error covariance by itself is not sufficient. Thesftion

error covariance is needed to improve the N compbne
fit and should be included in real-world applicaso
via Eq. 22 or 26.
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Figure 7. Three-sigma W-component of position error.

Figures 8-11 show results from the DEBRIS run.
Figure 8 shows the path of the primary satellite in
initial velocity error space while it is inside theix-
sigma error ellipsoid. Figure 9 shows the probspbili
accumulation rate versus time over the 10-day \ater



It is seen that the peaks are interrupted by gdprev

the probability rate drops to zero. To see thisniore g 2510

detail, Fig. 10 shows a window of the same plotrfro -

3.75 to 4.75 days. This effect is caused by cotitnac = 2.08-10 1

of the position error covariance N and W components 8 ’\

due to periodic variation (see Figs. 6 and 7). esé =) 1.58-10

covariance components contract, the primary at firs g 1 0E-10

experiences an increase in probability density themn s A [\
experiences a decrease as the three-sigma error S 5011

ellipsoid is drawn in to the secondary nominal piosi 2 —/ \_/ k
Figure 11 shows the cumulative collision probaypilit 8 0.0E+00 ‘ ‘ ‘ ‘

versus time. It is seen that the total encounter 375 395 415 435 455 475
probability accumulates continuously across thelap-

. . 7. Time (days)
forecast period. Attempting to compute collision
probability at only the conjunctions (local mininta Figure 10. Collision probability accumulation rate
range) would not yield an accurate result. versus time over the time interval from 3.75 to 4.75
days.

—3-sigma covariance ellipsoid

- - 6-sigma covariance ellipsoid 3:0

= Primary sat trajectory 2.5E-05

2.0E-05 e

(m/s)

1.5E-05

1.0E-05 /
5.0E-06 /
0.0E+00 \ /

0 1 2 3 4 5 6 7 8 9 10
Time (days)

vO_N
o

Cumulative collision probability

Figure 8. Path of the primary in initial velocity space. Figure 11. Cumulative collision probability versus

time.

5.0E-10
6. LONG-TERM RISK ASSESSMENT

4.0E-10

Determination of the long-term collision risk over
3.0E-10 mission life can be used to select an action ttolestn
encounter collision probability [1]. For this pugm

I I uncertainty modeling that is consistent with thersh
1.0E-10 M - | term risk assessment. Therefore, statistically

L/M representative position and velocity error covaréem
0.0E+00 +——— ! ‘ ‘ should play a role in long-term collision probétyili
0 2 4 6 8 10 determination. Additional uncertainties that playoée

Time (days) are future population growth, repeated station kepep

Collision probability rate (per sec)

Figure 9. Collision probability accumulation rate

versus time over the 10-day for period. by using historical data from recent years to regné

2.0E-10 the long-term risk assessment should be based on

maneuvers by operational satellites, and satellite
failures. One way to model these latter uncertainties is

future trends during the next few years. This is an

indirect, data-driven method that does not expjicit
model uncertain, uncorrelated input variables.

The following method for assessing long-term cihis
risk accounts for both classes of uncertaintiess Hn

extension of the method used in [1]. A historical



database of orbit determination products is esthbd
that contains state vectors (e.g., TLEs) and
corresponding position and velocity error covaresic

A conjunction simulation tool (e.g., Collision Vasi
[1]) is used with the database to determine
conjunctions over a long time interval (e.g., oean.
During the conjunction simulation, the state vestor
and covariances are propagated over a short time
interval (e.g., 10 days) and then refreshed from th
database to account for maneuvers, rectify propagat
errors, etc. The covariance propagation shouldide!
periodic variation and not only secular variatian t
prevent underestimating risk. The refresh timerirae
should be the same as the forecast interval ovéshwh
the action threshold will be applied so that theifimn
error covariance growth will be accurately représen
For each resulting non-coplanar conjunction, the
encounter collision probability is computed usirg t
static Gaussian/rectilinear motion formulation. €2&rs

of near-coplanar conjunctions are grouped into -near
coplanar encounters, and the position and velocity
error/general motion formulation is used to compute
collision  probability. The resulting collision
probabilities from all encounters are then combined
Direct summation of the collision probabilities ile
accurate if the sum is small (e.g., < 0.1). Othsewi
they should be combined via the formulation for
general independent events.

N
P, =1- H (1_ Pc )

7. CONCLUSIONS

(32)

This paper presented probability concepts for
computing short-term and long-term collision rislatt
account for correlation effects in GEO. The focussw
on covariance-based methods, which are less
demanding on computer resources than a direct Monte
Carlo approach. For computing short-term collision

probability, the static Gaussian/rectilinear motion
formulation can be used to compute collision
probability for non-coplanar encounters. Periodic

variation of covariance should be included to préve
underprediction of risk when predicted miss distaisc
low. For near-coplanar encounters, a collision
probability formulation for position and velocityrers
and general orbital motion was developed based®en t
theory of dynamical probability continua that hazb
used for debris cloud risk assessment. This fortiaua
can be used to predict out for longer periods (week
months) as the position error field spreads around
GEO. Long-term collision probability can be used to
select action thresholds on short-term probability.
Long-term collision probability can be determined b
using a conjunction simulation with a database of
historical state vectors and covariances, alonp thi¢

short-term risk methods, to generate a statisticall
representative set of encounter collision probtdsli
This methodology accounts for GEO-specific
correlating effects and maintains consistency of
uncertainty modeling between short and long-tesk ri
assessment.
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