THE COLA COLLISION AVOIDANCE METHOD

K. ABmann?, J. Berger, and S. Grothkopp!?

ITechnische Universit Miinchen, Institute of Astronautics BoltzmannstraRe 15, D-85748 Garching / Germany
(kaja.assmann@mytum.de)
2LSE Space Engineering & Operations AGiithener StraRe 20, D-82234 Wessling / Germany
(jens.berger@Ilsespace.com, stefan.grothkopp@Isespace.com)

ABSTRACT

In the following we present a collision avoidance method
named COLA. The method has been designed to predict
collisions for Earth orbiting spacecraft on any orbits, in-
cluding orbit changes, with other space-born objects. The
point in time of a collision and the collision probability
are determined. To guarantee effective processing the
COLA method uses a modular design and is composed
of several components which are either developed within
this work or deduced from existing algorithms: A filter-
ing module, the close approach determination, the colli-
sion detection and the collision probability calculation. A
software tool which implements the COLA method has
been verified using various test cases built from sample
missions. This software has been implemented in the
C++ programming language and serves as a universal col-
lision detection tool at LSE Space Engineering & Opera-
tions AG.

1. INTRODUCTION

The increasing amount of space debris and other space-

borne objects increases the collision risk for operated
spacecraft (S/C). The prediction of possible collisions
gets more and more important as it enables the S/C op-
erator to react to the threat and hence avoid collisions
by changing the S/C’s orbit. For the collision predic-
tion, methods and tools are needed which reliably predict
collisions with other space-borne objects. The S/C to be
protected is called the main object, often also referred to
as primary object. The main object’s orbit and position
is compared with the orbits and positions of all objects
that might produce a collision and are a risk for the main
object. These objects are called collision objects, often
also referred to as secondary objects. In the following we
present the algorithm of the COLA method, the imple-
mentation of the method in the COLA software and the
verification of this software using various test cases built
from sample missions.

Proc. ‘5th European Conference on Space Debris’, Darmstadt, Germany
30 March -2 April 2009, (ESA SP-672, July 2009)

2. GENERAL STRUCTURE OF THE METHOD

A diagram of the general structure of the method can be
found in Figure 1. The process flow is as follows. First
the necessary input data is introduced and checked for
validity. If the data format is valid the huge amount of
collision objects is reduced by applying a series of three
filters that identify irrelevant collision objects and elim-
inate the corresponding data from the possible collision
objects. Subsequently the objects’ orbits are propagated
for the time period of collision examination. A coordi-
nate transformation follows, to assure the comparability
of the orbits by transforming the state vectors of the colli-
sion objects into the reference coordinate system (COS).
Having determined all objects’ state vectors the collision
calculation is conducted. The collision calculation con-
sists of three steps: the close approach determination, the
collision detection and the collision probability calcula-
tion. The results are printed out and the user can decide
whether to refine the input data for the detected collision
objects using the refinement module or not. If new input
data are given, the results will be recalculated. Finally,
the results will be written into an output file.

3. ANALYZED METHODS AND ALGORITHMS

Different methods and algorithms have been analyzed for
each component of the COLA method to find the most
suitable. This lead to the development of new and modi-
fications of existing algorithms. Within the filtering mod-
ule of COLA two geometrical filters and a time depend-
ing filter are available, deduced from filtering methods
developed by Vallado [8] and Hoots [6]. The general
approaches and the modifications made are described in
Section 5.2. When handling Two Line Elements (TLES)
as input data, as itis the case for the collision objects from
the NORAD Catalog, a SGP4/SDP4 (Simplified General
Perturbations Satellite Orbit Model) propagator is indis-
pensable. For COLA, the Vallado SGP4/SDP4 propaga-
tor was chosen [4]. The Vallado propagator is flexible,
has a good program structure and is documented through
comments in the code. It is assumed to be updated on the
basis of the Revisiting Space Track Report #3 [9].

""-—COLA ~
Input
data not ok
L : data ok
Collision: Calkculation]
refing data
S A

Figure 1. General Structure of the COLA Method

The close approach algorithm within the collision calcu-
lation module determines the point of time and the mini-
mum distances between two objects on different orbits.
Therefore, two algorithms were evaluated: A method
developed by Alfano/Negron [3] [8], which determines

4. ASSUMPTIONS AND CONDITIONS

In this section assumptions are listed, that were made in
the course of the COLA development. A few simplifi-

close approach cases from the distance of objects, and a cations have been made, mostly because more detailed

method developed by Coppola/Woodburn [5], which uses
the distance of ellipsoids. The COLA method includes a
modified version of the Alfano/Negron method described
in detail in Section 5.4. This algorithm has been cho-
sen because of its low computation time. Since there
might, depending on the input data, only limited informa-
tion available on the error ellipsoids around the objects,
the Alfano/Negron algorithm is more adequate than the
ellipsoidal approaches.

To decide, whether a collision is likely to occur, three col-
lision detection methods were considered. Two methods
use the detection of ellipsoidal intersection developed by
Wang/Choi/Chan/Kim/Wang [11] and Alfano/Greer [2].
The third method was developed within this work and
compares the minimum distance and the maximum posi-
tional error of the objects. This method is used by COLA,
because of its simplicity and its considerably lower com-
putation time at no loss of accuracy.

Due to the error introduced by the orbit determination and
propagation of the objects, their positions are given as a
predicted position surrounded by an error ellipsoid, de-
fined by positional covariances. For the calculation of the
collision probability, four algorithms which use this er-
ror information were considered and compared: The al-
gorithms by Foster, Chan, Patera and Alfano [1]. After
careful consideration and analysis the Alfano algorithm
was chosen for the COLA method. It does not require
any further mathematical methods because of the trans-
formation of the double integral, used for the probabil-
ity calculation, into a series expression. This transfor-
mation includes error functions and exponential expres-
sions. Additionally, the consumed computation time is
low in comparison to most other collision probability al-
gorithms.

information on the objects is not available yet or the ex-
act calculations would exceed both, the mathematical and
computational possibilities of standard computers. In ad-
dition, most of the results would not improve much if the
simplifications were left out, because of the overall error
made at tracking and propagating the objects’ orbits. The
assumptions made for COLA are:

e The objects are approximated as spheres for the col-
lision detection at the point of close approach
e Linear motion exists for the short time of encounter

e No docking maneuvers will be performed during the
calculation period

e The covariance propagation is approximated by a
linear growth

e The positional errors are distributed in a zero-mean
Gaussian distribution

e The positional errors are uncorrelated and constant
for the short time of encounter

e The reference coordinate system is the J2000 COS
e The main orbit data (ephemeris) is given as a comma
separated value (CSV) text file or via a C++ applica-

tion programming interface (API) in the J2000 COS

e The initial covariance matrices are given in the
J2000 COS.

5. COMPONENTS OF THE COLA METHOD

5.1. Input

The COLA method requires input information for the
main object and the collision objects to be able to cal-
culate possible collisions. The main object’s data is usu-
ally provided by the satellite operator, who wants to pro-
tect his satellite. The main object’s data is provided to
the COLA software via a CSV text file or a C++ APl in
the J2000 COS. This can be done via LSE’s own Mission
Design Tool (MDT) or any other software capable to gen-
erate those data. Any collision objects’ state vector data
including collision objects error information can be han-
dled by the COLA method. Currently the only collision
data available are data taken from the North American
Aerospace Defense Command (NORAD) object catalog,
provided as TLEs to the software. The collision objects’
state vectors are propagated within the COLA software.
The collision object and the main object data are read
into the software from two files respectively. The input
and the output files can be replaced by a corresponding
data interface when integrating the COLA software into
another program (e.g. MDT), but for the stand-alone ver-
sion of the COLA software the data has to be provided
via files.

Additionally to the objects’ state vectors their positional
errors in the form of covariance matrices and the objects’

sizes are needed. In the case that these data is not avail-

able the COLA software uses default values. The default
values are chosen conservatively, so that no collision will
be missed. The default values can be changed via the
refinement module of the COLA software, then the colli-
sion probabilities are recalculated.

5.2. Filtering Module

The COLA filtering module consists of a series of three
filters, two geometrical and one time depending filter,
which reduce the huge amount of possible collision ob-
jects to the relevant ones. Hence, the computation time
for the later collision calculation can be reduced by this
elimination of irrelevant collision objects for the consid-
ered main orbit. The applied filters are deduced from fil-
tering methods developed by Vallado [8] and Hoots [6]
and have been extended to be able to handle all kinds
of orbits, including orbits where impulsive maneuvers or
low thrust transfers are applied. Reducing the number of
objects for the actual collision calculation is the main fac-
tor in keeping the computation time within a reasonable
limit. The three filters are ordered from the roughest to
the finest filter to maximize the filtering efficiency. In-
creasing precision within the filtering mechanism results
in increasing computation time as well. Hence the max-
imum efficiency of the filters is reached by applying all
three filters serial.

Collision impossible

b)

/" Collision|impossible.

r ..
peri_main

Figure 2. First geometrical filter for a) outer and b) inner
collision objects

First Filter: Geometrical

The first filter that is used to reduce the number of pos-
sible collision objects is a geometrical filter. It is based
on the perigee-apogee filtering algorithm of [8], and in-
cludes some expanding modifications. This harsh filter
uses the orbits’ perigees and apogees to calculate the min-
imum distance between two orbits without considering
their orientation in space or the objects’ positions on the
orbits. Hence the filter can be applied prior to the orbit
propagation of the collision objects. The actual filter is
divided into two parts.

First, all objects with an orbit much bigger than the max-
imum main orbit and then all objects with an orbit much
smaller than the minimum main orbit are eliminated from
the list of possible collision objects. A collision is con-
sidered impossible if the difference between the collision
object’s radius of perigee f.i..;) and the main object’s
radius of apogeer{yomaqin), Which equals the minimum
distance D) between the two orbits, is bigger than a cer-
tain threshold (See Figure 2a and (1)). In the second case,
objects with a smaller orbit than the minimum main or-
bit are eliminated. In this case a collision between the
two objects is considered impossible if the difference be-
tween the collision object’s radius of apogeg,...;) and

the main object’s radius of perigee,{,imain) is smaller
than the acceptable close approach threshold (See Figure
2b and (2)). We considered a thresholddf= 300 km a
save value for both cases.

1)
)

T'pericol > Tapomain + D

Tapocol < Tperimain — D

In case of major changes in the main orbit during the
propagation period, for example due to a kick-burn of the
satellite’s thrusters, the filter considers the maximum and
the minimum main orbit for the outer and inner collision
object filtering respectively.

Second Filter: Geometrical

The second filter to reduce the number of possible colli-
sion objects is a geometrical filter, like the first filter. The
filter is deduced from an algorithm developed by Hoots et
al. [6]. Unlike the first filter, this filter considers the ori-
entation of the orbits in space. Two elliptical paths with
the same focus, in this case the Earth, that are not copla-
nar, have two distances andd, of close approach. If
the distancesl; andd, are greater than the acceptable
approach distanc®, the two satellites do not approach
each other close enough for a collision. Hence, these ob-
jects can be eliminated from the list of possible collision
objects. Hoots at al. form a system of equations depend-
ing only on the true anomaly of the main and the colli-
sion object. Solving this system of equations, for exam-
ple using Newton’s method, the resulting true anomalies
define the part of the orbit where the relative distance is
minimal and a close approach takes place. Within the
COLA method, the Newton iteration is stopped when
the difference between two iteration values is less than
v = 0.1° or a maximum of 1000 iteration steps is reached
in the infrequent case of a non converging solution.

The filtering is repeated for all main orbits that result of
possible orbit maneuvers within the propagation period.
Only collision objects that do not approach any of the
main orbits with a distance smaller tharare eliminated.

Third Filter: Time Depending

The third filter considers not only the geometrical char-
acteristics of the orbits but also the objects’ positions on
their orbits. Even though two orbits may share a zone of
possible close encounters which is within the minimum
approach distance allowed, this does not mean, that the
satellites pass this part of the orbit simultaneously. Con-
sidering the objects’ positions the crossing times for the
critical section of the orbit can be calculated and objects
that pass this section with a certain time-lag to the main
object can be eliminated from the list of possible colli-
sion objects. Like the second geometrical filter, this filter
is deduced from an algorithm developed by Hoots et al.
[6]. According to Hoots et al. angular windows for the

angular window true anomaly ecc. anomaly

mean ano@ ‘ t I

Figure 3. Third Filter, time windows

Filtering Efficiency

The filtering module consisting of the three filters de-
scribed above reduces the number of possible collision
objects in a most effective way. Depending on the input
data and naturally varying on a case by case basis for the
main object’s trajectory, the number of collision objects
can be reduced ter 10-15 % of the original amount in
case of the NORAD object catalog. Table 1 gives an ex-
ample of the filtering efficiency of each filter for a main
object on a circular orbit of 800 km altitude and an incli-
nation 0f28.5° for the 10" of July 2008 and a period of
calculation of one day.

Table 1. Efficiency of the filtering module

of col. obj. % of total # of col. obj.
before filtering 11572 100.0 %
after filter 1 7876 68.1 %
after filter 2 5728 49.5 %
after filter 3 1212 10.5%

5.3. Propagation and Coordinate Transformation

For the collision calculation the state vectors and posi-
tional covariance matrices of both, the main object and all

close approaches are determined and subsequently can bepossible collision objects, are needed for the whole calcu-

transformed into time windows as indicated in Figure 3.
These time windows are used directly for the filtering.

As for the second filter the filtering is repeated for all
main orbits that result of possible orbit maneuvers within
the propagation period. Only collision objects that do not
approach any of the main orbits with a distance smaller
than the acceptable approach distafcare eliminated.

lation period. The main object’s data is given in the J2000
COS. The collision object's state vectors and covari-
ance matrices are propagated and predicted by COLA.
For the propagation of the NORAD objects, the Vallado
SGP4/SDP4 propagator [4] was chosen.

The state vectors calculated by the SGP4/SDP4 propaga-
tor are given in the True Equator Mean Equinox (TEME)

COS. To be able to compare the collision objects’ orbits
with the main object the propagated state vectors have to
be transformed from the TEME into the J2000 COS. This
transformation is made using a function implemented and
published by Vallado [8] [10]. The collision and the main
object’s covariance propagation is approximated by using
linear increasing position errors depending on the min-
utes from epoch of the state vector and the start propaga-
tion time in order to compensate the increasing error for
longer propagation periods.

5.4. Collision Calculation

Close Approach Determination

The close approach determination of the COLA method
is based on the Alfano/Negron [3] [8] close approach al-
gorithm mentioned in Section 3. The algorithm requires
not only the input of the position and velocity vectors, but
also of the acceleration vector to interpolate the distance
function. The algorithm has been modified for the COLA
software, so that it does not require the accelerations any
more. The close approach is determined via the distance
vector only, using smaller propagation steps without in-
terpolating the distance function.

In the COLA software the distance vectatof all col-
lision objects to the main object are determined for each
propagation step, using the propagated position vectors of
the main object,,.;, and all collision objects,.,; (See

(3) and Figure 4).

®3)

d= Tmain — Tcol

The propagation step is recommended to bé&of= 10

sec or less, and is not allowed to exceed a maximum of
At = 20 sec. Subsequently the modulus of all distance

vectors is calculated. The minimum distance can then
be found by selecting the smallest of these. Thus, the
close approach is determined (See Figure 4). After deter-
mining the close approaches, the calculation is repeated
with A¢/2 in the areas around the determined close ap-

proaches.

Collision Detection

The next step to perform is the collision detection. It has
to be determined, whether the collision objects and the
main object can collide at the time of close approach,
or not. Two objects are deemed to have a possible col-
lision when their positional covariance ellipsoids inter-
sect. Determining the intersection between two ellip-
soids is a rather complicated and time consuming pro-
cess. To facilitate the collision detection, the error ellip-

b) close

|d|
4
approach

(i

Figure 4. COLA close approach determination. a) Po-
sition and distance vectors b) Discrete distance function
with close approach detection

t

smaller than the sum of the radii. This is a simple com-
parison and does not take much computation time. By
approximating the ellipsoids as spheres a few objects are
selected wrongly. They are considered collision objects
because the error spheres intersect, but the ellipsoids do
not. However, the number of wrongly selected objects is
really small and it is easy to discard them again because
their collision probability will result to zero.

Collision Probability Calculation

Only in the case that a collision is detected, the collision
probability calculation is carried out. As method to con-
duct the collision probability calculation, an algorithm by
Alfano [1] has been chosen.

The collision probabilityP can be calculated by evaluat-
ing the path of a combined object, defined by the sum
of the main and the collision object’s radii, through a
combined covariance ellipsoid, defined by the sum of the
main and the collision object’s covarianceqSee [1]).

At this the combined covariance ellipsoid represents the
probability density function (pdf). The collision proba-
bility can then be calculated by solving the integral of the
three dimensional pdf within the collision tube, which is
a circular cylinder due to the assumed linear motion. Al-

soids are approximated as spheres with a diameter that fano poses that "this is equivalent to evaluating the inte-
equals the maximum ellipsoid expansion. The spheres gral of the two-dimensional pdf within a circle on a plane
intersect when the distance between the two objects is perpendicular to the relative velocity at closest approach”

combined projected
~—_covariance ellipsoid

N
S /6X
| 45% N
~25%
 — 0% —

—— | 0% collision probability

Figure 5. Alfano’s collision probability determination

[1] as displayed in Figure 5. The Alfano method trans-
forms this double integral into a series expression includ-
ing error functions and exponential expressions.

5.5. Output

Finally, the obtained collision data is written to an output
file, including: The collision object’s identification num-
ber, the time of collision given in two variants (time of
flight of the main object and UTC), the close approach
distance and the collision probability. The output data is
provided through this file interface, but for the implemen-
tation of the COLA software into other software this file

interface can be easily changed into a pure data interface.

6. IMPLEMENTATION

The COLA method has been implemented in the C++
programming language building the COLA software.
The COLA software has been integrated as a module
into the MDT of LSE, but can also be used stand alone
by/with other software via a file interface or a C++ API.
The software is available for UNIX/Linux, Mac OS and
Windows.

7. VERIFICATION

The COLA software has been verified using various test

cases. For these tests sample missions for the main ob-

ject have been generated using LSE’s MDT. The results
of the COLA software verification are discussed in the
following.

7.1. Test: ISS Retrograde

The first test case is generated by simulating the ISS or-
bit and another object, a fictitious S/C, flying retrograde

on the same orbit. It is obvious that the two stations are
deemed to collide twice on every revolution around the
Earth. The fictitious S/C is considered as the main ob-
ject. Its orbit data is generated using the MDT. Thus the
objects properties (size and covariance data) are the stan-
dard values used by the COLA software. The collision
object is the real ISS, TLE's taken from the NORAD cat-
alog of the27t? of September 2008.

Running the COLA software with this input data, col-
lisions are detected approximately every 45 min. This
result is expected, since there are two collisions on each
ISS orbit having a period df' ~ 90 minutes. The col-
lision probabilities result to reasonable values between
107® < P < 107'3 using the default covariance data
of the COLA software. Introducing a higher positional
error via the refinement module, the collision probabili-
ties increase to values betweehr ® < P < 1078, as
expected.

The purpose of this test case was to check the software’s
results by introducing an example with known results.
The collisions were calculated by the COLA software as
expected. Additionally the option of covariance variation
within the refinement interface has been verified as well.

7.2. Test: Delfi-C3 Retrograde

The second test case that has been evaluated with the
COLA software is quite similar to the first one, except for
the modification of the covariance and object size data.
The purpose of this test case is to test the collision cal-
culation for an object smaller than the standard collision
object within the COLA software. Instead of the ISS the
triple CubeSat Delfi-C3 has been chosen as collision ob-
ject, which has a maximum dimension éf= 0.3 m,
using TLEs taken from the NORAD catalog of tR&™"

of September 2008. The calculation will be conducted
using the standard collision object diameterdof 110

m. Afterwards, the option to change the collision objects
data within the refinement interface will be used to repeat
the calculation with the much smaller real object diam-
eter. The main object is an object of the standard main
object size within the COLA software flying retrograde
on the Delfi-C3 orbit, whose orbit data is generated us-
ing the MDT. Just like in the previous test the two objects
should collide twice at each revolution. The orbits’ alti-
tude is abouk = 600 km so that the orbits’ period will

be longer than the ISS’s. The collisions are expected to
occur approximately every 48 minutes.

The results given by the COLA software for this input
data are as expected. There are collisions detected every
48 minutes. The collision probabilities result to values
between10~* < P < 107!8 for the default collision
object size ofd = 110 m. Since the CubeSat is much
smaller than the standard collision object of the COLA
software, the option to change the collision object’s data
has to be used to get reliable results. For a smaller ob-
ject the collision probabilities will be smaller as calcu-
lated before. In this test case, the covariance data will
not be changed, to be able to observe the results that
are obtained by a varying object diameter. The diame-

ter was changed frond = 0.110 km to d = 0.0003 km

for each detected collision. As expected, the only values
that change are the collision probabilities. For decreased
object size, the collision probability decreases to values
betweerl0~7 < P < 10720,

7.3. Example: ISS 5 Day Analysis

A typical use case for later operational application of the
COLA software will be to predict possible collisions for
an operated satellite a few days in advance. The third ex-
ample demonstrates using the ISS as main object. The
ISS orbit data is generated using the MDT. A propaga-
tion time of 5 days has been chosen, with a time step
of At = 5 seconds. It is not recommended to choose a
longer propagation period, because the results get fairly
imprecise due to propagation errors. In addition, keeping
a small time step, which guarantees accurate results, the
amount of data that is produced increases strongly with
longer propagation periods. Using a 5 day period with a
time step of 5 seconds is a reasonable trade-off between
a long propagation time and a small time step. The ISS
orbit data will be compared with the full catalog of possi-
ble collision objects, here the NORAD object catalog of
the 27*h of September 2008. The COLA software deter-
mined only one collision with a collision probability of

P = 0 within a 5 days propagation period. This seems
reasonable, since the ISS has to perform a maneuver to
avoid collisions every few month or less. So the prob-
ability is low that this takes places in the analyzed time
interval of 5 days. The collision probability means, as
explained above, that the positional covariance ellipsoids
do not intersect, but the approximated spheres used for
the collision detection do. Thus the operator would not
have to perform an avoidance maneuver yet, but it might
be wise to gather more information on the debris object
and to perform more detailed calculations when the time
of collision draws closer.

7.4. Example: Hohmann Transfer LEO-GTO-GEO

Here a Hohmann transfer from a low Earth orbit (LEO)
with an altitude ofh, = 600 km and inclinationi = 0°

via a geostationary transfer orbit (GTO) to a geostation-
ary orbit (GEO) is simulated. The main object’s data is
generated with the MDT as before. Its orbit data will be
compared to the full catalog of possible collision objects,
here the NORAD object catalog of tB&** of September
2008.

COLA detects three possible collision objects with this
input data (# 20905, 21268, 30030). These are classified
as a CZ-4 debris, a DELTA 1 debris and a FENGYUN
1C debris object, respectively. The collision probabilities
are distributed around values &f = 10~%, which are
values high enough to consider an avoidance maneuver
or to adjust the transfer’s start time to avoid a collision.
As in the previous example, for real time operation more
information should be acquired on the debris objects and

the objects’ orbits should be kept tracked. The detection
of three collisions when crossing from a LEO to a GEO
on an elliptical transfer orbit seems a reasonable result.

7.5. Example: Low Thrust Transfer LEO-GEO

This example demonstrates the handling of a low thrust
transfer from a circular LEOHW = 600 km, ¢ = 0°) to
GEO. The transfer orbit is helical, as is typical for low
thrust propulsion. The main object’s data was generated
using the MDT (See Figure 6b). This orbit data is com-
pared with the full catalog of possible collision objects,
here the NORAD object catalog of tB&** of September
2008. The low thrust transfer usually is very slow, which
means that there is a huge amount of propagated orbit
data that has to be stored and compared, especially on or-
bits close to the Earth, because of the slow orbit changes.
To reduce the data that has to be compared and to main-
tain a relatively small propagation step at the same time
(here At = 5 seconds), the propagation period is split
into five parts. Each of these parts is handed separately
with the COLA software.

Running this example in the COLA software 106 pos-
sible collisions with 17 different objects are calculated
(See Figure 6a). It should be noted that many collisions
were detected for the first two days of the propagation
time. This is due to the higher concentration of objects
in low Earth orbits. Additionally, the change of the main
orbit is very slow in the beginning of the low thrust transi-
tion. The more the propagation time progresses, the more
the orbit is widened and changed more quickly. Regions
with a lower concentration of space debris are reached
and fewer collisions are detected. As expected there are
a lot of possible collisions when performing a low thrust
transfer from LEO to GEO no matter which transfer strat-
egy is chosen. There might be an optimal solution where
a smaller number of collisions occurs but the S/C opera-
tor always has to be aware of possible collisions and be
prepared to perform collision avoidance maneuvres.

7.6. Computation Time

In order to make a collision avoidance tool capable of
real time analysis and simulations, the computation time
needed for the determination of possible collision shall
not exceed a reasonable time. The COLA software has
been developed by all means to be as fast as possible.
This goal has been achieved, since the computation time
for all of the examples described above is below 5 min
for each example on a standard PC witlf & 2 GHz
clocked single core processor.

8. CONCLUSION AND OUTLOOK

In this paper the collision avoidance method COLA in-
cluding it's development, implementation and verifica-
tion has been presented. The resulting COLA software

000012

a). .

00001

o
o - PP)
27.09.08 28.09.08 28.09.08 28.09.08 28.09.08 29.09.08 29.09.08 29.09.08 29.09.08 30.09.08 30.09.08 30.09.08 30.09.08
18:00:00 00:00:00 06:00:00 12:00:00 18:00:00 00:00:00 06:00:00 12:00:00 18:00:00 00:00:00 06:00:00 12:00:00 18:00:00

Date
Time

Figure 6. Low thrust transfer LEO to GEO. a) Collision probability vs. time of flight. b) Path of the transfer

is capable of determining collisions between Earth orbit- REFERENCES

ing objects. The method considers orbit changes like high

impulse and low thrust transfers. The following param- [1] Salvatore Alfano (2007). Review of Conjunction
eters are determined by the COLA software: The point Probability Methods for Short-term Encounters, AAS-
of time of the collision, the distance between the centers 07-148

of the positional error ellipsoids of the objects at their [2] Salvatore Alfano, Meredith L. Greer (2003). Deter-
closest approach and the collision probability. A num- mining If Two Solid Ellipsoids Intersect, JOURNAL

ber of different software modules, designed to carry out OF GUIDANCE. CONTROL. AND DYNAMICS 26.
the necessary calculations, have been developed and have ' ' ’

then been joined to build the COLA software. The com- [3] Salvatore Alfano (1994). Determining Satellit_e Close;
bination of different algorithms were to create a universal ~ APProaches, Part I, Journal of the Astronautical Sci-
collision detection software for all kinds of Earth orbiting ences42, 143.

objects. This tool can be used for simulation purposes as [4] http://www.centerforspace.com/downloads/

well as real time operations. An additional verification of [5] Vincent Coppola, James Woodburn (1999). Deter-
the software against some other collision detecting soft- mination of Close, Approaches Based on Ellipsoidal
ware would increase the level of confidence of predicted Threat Volumes. AAS 99-170.

collisions. This is planned in the near future. i)

Nevertheless, there are some possible future enhance-[6] Felix R. Hoots, Linda L. Crawford, and Ronald L.
ments. The COLA software is restricted to Earth orbit- ~ Roehrich (1984). An Analytical Method to Determine
ing objects. A possible enhancement could be to handle Future Close Approaches Between Satellites, Celestial
deep space missions. Another possible enhancement of ~Mechanics33, 143.

the COLA software could include docking maneuvers. [7] T. S. Kelso (2007). Validation of SGP4 and IS-GPS-
Here, the close approach determination would have to 200D Against GPS Precision Ephemerides, AAS 07-
be extended to non linear motion. These two enhance- 127,

ments give rise to new appl_lcatlons of the software_. How- [8] David A. Vallado (2007). Fundamentals of Astrody-
ever, there might be possible enhancements to improve namics and Aoplications ' Edition. STL

the current functionality of the COLA software as well. pp ’ ’ ’
First, the collision object data base will be updated and [9] David A. Vallado, Paul Crawford, Richard Hujsak,
enlarged whenever there is more data available, espe- and T. S. Kelso (2006). Revisiting Spacetrack Report
cially collision objects’ data with tracking error infor- #3, AIAA 2006-6753.

mation and a precise covariance propagator model would [10] Jaohn H. Seago and David A. Vallado (2000). The
be valuable. Secondly a Kalman filter could be included Coordinate Frames of the US Space Object Cata|0g'
to reduce the overestimation of the positional error when AIAA 2000-4025.

propagating a data set of TLEs [7]. This might increase [11] W.Wang, Y-K. Choi, B. Chan, M-S. Kim, and J,

the propagation accuracy. Wang (2004). Efficient Collision Detection for Mov-
ing Ellipsoids Using Separating Planes, Computing,
72, 235.

