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ABSTRACT.  
 

To overcome the limitations of the traditional approach 

the author developed the adaptive technique of orbital 

elements determination taking into account statistical 

characteristics of disregarded disturbances. This 

technique, called “Optimum Filtration of 

Measurements (OFM)”, has some common features 

with the Least Square Technique and the Kalman filter. 

Special corrections are added to the results of 

integration of the equations of motion. The experience 

of application of this technique demonstrated the 

possibility of increasing the accuracy of estimation and 

prediction of satellite orbits. This paper presents the 

review of investigation results obtained recently on the 

basis of applying the OFM technique, namely: 

-  Development of the algorithm and software for 

filtering the measurements with using the considered 

technique; 

- The technique efficiency evaluation from the results 

of processing the modeled and real information. 

 
1. INTRODUCTION 

The development of the techniques of orbital 

parameters determination from measurements began 

some hundreds years back. It is associated with names 

of !"pler (beginning of #7-th century), Gauss and 

Legendre (beginning of #9-th century), Fisher 

(beginning of 20-th century) and some other scientists. 

They developed the least-square technique (LST) and 

the maximum likelihood technique (MLT), which 

remain as a basis of modern algorithms of estimation 

and prediction of orbits [#, 2]. 

The intensive space exploration began after launching 

of the first Soviet satellite in #957. A lot of new 

applied problems appeared. On this basis, as well as in 

connection with unique achievements in computer 

technology, the new era began in the development of 

orbit estimation and prediction techniques. The most 

essential methodological achievements consist in 

accounting for random disturbances in the satellite 

motion model on the basis of applying the Kalman 

filter (KF) [3], as well as in developing the technique 

of successive processing of measurements [4]. A lot of 

publications were devoted to these issues, such as work 

[5], monographs by V. Mudrov [6] and P. Elyasberg 

[7]. The most complete review of modern orbit 

estimation and prediction techniques was given in D. 

Vallado's monograph [8]. 

We shall consider the problem of orbit estimation and 

prediction from measurements in the simplified (linear) 

formulation. In the majority of cases the solution of 

nonlinear problems is reduced just to this formulation.   

The time variation of satellite’s state vector (x) occurs 

according to the differential equation 

 

( ) ( ) ( )tqtBxtA
dt

dx ⋅+⋅= .             (#)    

    
Here A and B are known matrixes, q is the Gaussian 

random process with known statistical characteristics: 

 

( )[ ] ,00 =tqM    ( ) ( )[ ] ( )00 ,ττ tKqtqM q
T =⋅ .   (2) 

 

The measurements, carried out at various time instants 

( it ), are the known linear function of the state vector  

 

( ) iiii vtxhz +⋅= , i=#, . . . , k,              (3) 

 

and contain random errors iv  distributed according to 

the normal law with specified statistical characteristics   
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 It is required to determine the state vector estimate 

( )tx̂  with the minimum variance at any time 

instant ktt ≥ .  

Table 1. Techniques of solution of the considered 

problem under various conditions 

Problem  

solution 

techniques 

Modifications of statistical characteristics 

Noise q is absent Noise q is present 

ijiR δ⋅  ijR  ( )τδ −⋅ tKq  ( )0,τtKq  

Joint LST MLT 
Optimum filtration of 

measurements 

Successive 
Recurrent 

LST 

- 
KF 

KF 

modifications 

Various techniques are applied for solving the 

considered problem. They differ in these or those 

simplifications (modifications) of statistical 

characteristics Eq. 2 and Eq. 4, as well as in application 

of grouped (joint) or successive processing of 

measurements. Tab. # presents the solution techniques 

corresponding to various modifications of problem 

formulation.  
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Explanatory. 

 – The assumption on the absence of noise is some 

idealization, because the unknown disturbances (q) 

are always present under real conditions. Therefore, 

the estimates corresponding to the «noise is absent» 

condition, namely, the estimates based on LST and 

MLT application do not provide obtaining state 

vector estimates, which are optimum in accuracy. 

They approach to optimum ones only in the case of 

rational choice of a fit span (the number of 

measurements). Under these conditions, the 

application of the recurrent LST, though provides 

lowering labor consumptions, results in the negative 

consequences when the fit span excessively increases. 

The allowance for correlation of measurement errors 

( ijR ) on the MLT application basis results in 

essential increasing labor consumption at calculations 

(growing computer time expenses), that has 

especially great effect with growing number of 

measurements. 

– The allowance for statistical characteristics of noise 

makes it possible to avoid the LST limitations and to 

increase the accuracy. The Kalman filter (KF) and its 

modifications, based on successive (recurrent) 

processing of measurements, have been widely 

spread. Such a technology occurred to be especially 

useful under the conditions of massive calculations 

and provided essential computer time saving as 

compared to LST application. The allowance for 

color noise requires knowledge of noise’s statistical 

characteristics and is implemented in KF 

modifications. One of such modifications was 

developed by the author and was used at processing 

the real information [9 - ##]. The limitation of KF 

and its modifications consists in possible divergence 

of updating process at excessive growth of a fit span 

(the number of measurements).     

–  The orbit estimation and prediction theory, based on 

accounting for color noise and Optimum filtration of 

measurements (OFM), is outlined in detail in paper 

[9]. 36 years have passed after this publication. 

However, this technique has not been widely applied 

for a number of reasons: $) insufficient computer 

technology characteristics (speed, word length, 

memory) have complicated its application; b) 

statistical characteristics of disturbances have not 

been studied well enough; c) strict demands to 

accuracy have not been placed on the results of 

massive calculations. The role of listed reasons is not 

so essential nowadays. So, the application of the 

considered technique of the optimum filtration of 

measurements became quite topical. 

The above statements are illustrated by the data of  Fig. 

#.  

2. COMPARISON OF VARIOUS APPROACHES 
TO SO’S STATE VECTOR ESTIMATION 

The considered problem of estimating the state vector 

x  (n×#) from Z  (k×#) measurements is given below 

in the classical formulation. In this case the noise effect 

is expressed in the form of some nuisance (noise) 

parameters q  (m×#). The basic initial relation is as 

follows:   

 

VqBxXZ +⋅+⋅= .                    (5) 

 

Here X  (k×n) and B  (k×m) are known matrices, V  

(k×#) is the vector of measurement errors, which are 

accepted to be of equal accuracy and statistically 

independent, i. e.    

                 

( ) EVVM z
T ⋅=⋅ 2σ .           (6) 

 

The correlation matrix ( ) qq
T KqqM ⋅=⋅ 2σ  of nuisance 

parameters is supposed to be known. We shall consider 

three approaches to state vector estimation, which 

differ in the way of accounting for nuisance 

parameters: 

I. Without accounting for nuisance parameters. In the 

process of state vector estimation the influence of 

nuisance parameters is not taken into account. In this 

case the classical least-square technique (LST) is 

applied for estimation:   

   

       ( ) ZXXXx TT ⋅⋅⋅=
−#

⌢ .             (7) 

 

It can easily be shown that the correlation matrix of 

state vector errors x  is expressed as follows:        
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Figure 1. Accuracy of various techniques depending on 

the fit span value 

II. Parameterization. The state vector of nuisance 

(disturbing) parameters is introduced into the structure 



of an extended state vector
TT qxy = , and then the 

LST is applied. In this case the required estimate and 

its correlation matrix are expressed as follows: 
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II. Without parameterization (the optimum filtration of 

measurements). The a priori correlation matrix of 

nuisance parameters is used for “weighing” the 

measurements without extension of a state vector. The 

influence of nuisance parameters is taken into account 

by combining them with measurement errors 

( VqBV +⋅=Σ ), and then the MLT is applied. In this 

case the required estimate and its correlation matrix are 

expressed as follows: 
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Here parameter nS  can be treated as the signal-to-noise 

merit. 

 
Figure 2. Dependence of errors on the used approach 

As a result of performed analysis, the comparative 

relationships were established between state vector 

errors with using the techniques listed above.  

The results of analysis are presented in Fig 2. It is seen 

that there exists the level of (small) disturbances, for 

which it is more profitably to apply the LST without 

state vector extension. However, even in this case the 

errors are greater, than in case of using the non-

parametric approach, which is realized on the basis of 

application of the technique of optimum filtration of 

measurements.   

 

3.   FEATURES OF ALGORITHM 

The traditional formula is applied for determining the 

state vector at the arbitrary time instant (tj)  

            

( ) kj
T
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T
jj ZPXXPXx ⋅⋅⋅⋅⋅=
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where jkj xZX ∂∂=  is the matrix of partial 

derivatives, jP is the weighting matrix, which is 

calculated with regard to noise and measurement 

errors: 
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U(…) – is the fundamental matrix of solutions of Eq. #.  

A typical feature of estimate Eq. #4 is the fact, that it is 

optimum for any time instant (both for the updating 

instant, and at forecasting). The shortage of its 

application at forecasting the motion for various time 

instants consists in the necessity of multiple reversal of 

a weighting matrix Eq. #5. This operation is rather 

labor consuming with a great number of measurements. 

Formula Eq.#4 does not contain explicitly the relation 

of obtained estimates with the results of integration of 

Eq. # with known initial conditions and with regard to 

the noise estimates: 
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A typical feature of the OFM technique is the 

possibility of calculating forecasted noise estimates 

from the results of measurement processing on a fit 

span. These estimates are calculated by form 
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Estimates Eq. #9 provide obtaining the optimum-in-

accuracy forecasted values of a state vector. Their 

application is more convenient as compared to 

estimates Eq. #4, since it does not require multiple 

reversal of a high-dimension matrix. Another 

advantage consists in the possibility of replacing the 

term ( ) ( ) ( )00 ˆ,ˆ txttUtx ⋅=  by the results of integration of 

the initial (nonlinear) differential equations of satellite 

motion.   

 

4. TECHNIQUE OF ESTIMATION OF 
FORECASTING ERRORS ON THE MODEL 

The simplified equations of motion have been 

successfully applied for evaluating the effect of 

disturbances on time parameters of the orbit (the errors 

along the trajectory) in a number of works [#2 - #5]. In 

this approach the state vector includes only those 

orbital elements, which characterize the motion in the 

plane of a near-circular orbit. Following this approach, 

we shall consider the satellite motion in the orbital 

plane with a number of revolutions as an argument. 

State vector components are the following three 

parameters: the equator crossing time it , satellite’s 

period of revolution iT , and the period change under an 

effect of disturbances per revolution i�� .The evolution 

of these parameters is described by the following 

equations: 
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Quantity iT∆  is associated with the effect of 

atmospheric disturbances only. In this case, with 

constant spacecraft’s ballistic factor, the value of iT∆  

is proportional to the current density of the atmosphere. 

Quantity mT∆  is the mean value of parameter iT∆ , and 

iq  is the Gaussian random process with the known 

correlation function ( )0,τtKq .   

The values of the equator crossing time at the 

beginning of revolution jN  are used as measurements:  

 

jjj vtz += ,  (j=1,2,...),                     (24) 

 

where the measurement errors jv  (of discrete white 

noise type) are distributed according to the normal law 

with zero mathematic expectation and variance 2
zσ . 

The time interval between the measurements is 

assumed to be constant and equal to ∆N (in 

revolutions). 

The aforementioned Eq. 23, the measurements Eq. 24 

and statistical characteristics of random quantities iq  

and jv  allow one to determine statistical 

characteristics of errors of estimation and forecasting 

of time parameters. As the techniques of estimation of 

orbital parameters we shall consider the classical least 

square technique (LST) and its generalization (the 

optimum filtration of measurements), which takes into 

account the effect of disturbances as a color noise. In 

the process of investigations we shall use the following 

correlation function of the random process iq :  
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Then, based on the results of modeling the random 

sequence iq , some initial conditions 0t , 0T , mT∆  and 

Eq. 23, we calculate the sequence of state vector values 

iii
T
i TTtx ∆=  (with a step of one revolution). The 

next operation of modeling the time parameters of orbit 

is calculation of the sequence of modeled values of 

measurements jz  by Eq. 24. In so doing, the random 

errors of measurements are determined by means of the 

random-number generator, and the constant time 

interval between measurements ∆N (in revolutions) is 

taken into account. 

Fig. 3 presents the scheme of successive calculations at 

processing the measurements Eq. 24 during modeling. 



 
Figure 3. Scheme of successive processing of 

measurements 

Two time intervals of estimation and forecasting of 

orbital parameters are shown in the figure: the current 

one (for the jd-th updating) and the subsequent one, 

constructed by shifting all data by dN revolutions. The 

following designations are applied here: nz – the 

number of measurements used at updating, np – the 

number of forecasts, dNp – the time interval (in 

revolutions) between successive forecasts. The black 

font marks the numbers of measurements, and the red 

font – the numbers of forecasts. The maximum 

forecasting interval equals dNp × np revolutions. The 

blue font marks serial numbers of revolutions. 

Performing updating and forecasts according to the 

given scheme of their cyclic organization allows one to 

obtain a rather great number of realizations for 

acceptable time. In the analysis of modeling results it is 

convenient to use the ratio    
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which can be treated as the "signal-to-noise" merit, i.e. 

the level of an estimated signal in relation to  

measurement errors.  

 

5. RESULTS OF INVESTIGATION ON THE 
MODEL  

The results of application of the considered model for 

studying the LST are outlined in detail in papers [#6, 

#7]. Below the main attention will be given to studying 

the OFM technique and to comparing it with the results 

of application of LST. Three modifications of the OFM 

technique will be considered: 

 – «OFM 3-#» – application of the 3-dimensional state 

vector with using T∆ estimates under initial 

conditions. 

  – «OFM 3-2» – application of the 3-dimensional state 

vector with using the forecast of T∆ estimates’ 

deviations from the mean value. 

– «OFM 2» – application of the 2-dimensional state 

vector and the mean value of parameter mT∆ . 

In addition, 4 more versions of calculations were 

considered: 

–  «LST #» – LST application with the number of 

measurements equal to nz=6. 

–   «LST 2» – LST application with nz=9. 

–   «LST 3» – LST application with nz=#2. 

–  «A priori» – aprioristic RMS estimates calculated 

by the analytical formula.  
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Figure 4. Forecasting errors under various conditions 

The tests were organized in such a manner, that 

identical measurements were used in all cases. The 

number of realizations for each of techniques was 

#0000. Fig. 4 presents RMS errors of the forecast for 

all considered versions of calculation. They were 

obtained for the following values of the initial data:  

Mean value of the drag parameter 

mT∆ =E(!T)=0.000#80 min / revolution; 

Interval between measurements dN = 2 revolutions; 

RMS of the drag parameter from the mean value 

qσ =0.00006 min / revolution; 

RMS of measurement errors zσ =0.000# min = 0.006 

sec; 

"Signal-to-noise" merit  Sn=0.6; 

Interval of correlation of the atmospheric color noise 

∆ =30 revolutions; 

Number of measurements on a fit span with using 

OFM nz=30; 

Number of measurements on a fit span with using 

LST nz=6, 9 and #2. 

The upper part of the figure presents, in the enlarged 

scale, the fragment of a plot related to forecasting 

intervals up to 6 revolutions. The following 

conclusions can be drawn from the modeling results:  

a)  As it should be expected on the basis of materials 

of Section 2, the minimum errors of estimation and 

forecasting of orbits are achieved as a result of 

application of calculation versions «OFM 3-2» and 

«OFM 2».  

b) The results of application of the 3-dimensional 

state vector with using T∆ estimates under initial 

conditions (version «OFM 3-#») are rather well 

correlated with aprioristic estimates RMS and have 

slightly worse accuracy as compared to versions 

«OFM 3-2» and «OFM 2».   



c)  In all cases the application of LST results in 

increasing the errors of estimation and forecasting 

of orbital parameters. Even for the optimum fit span 

(nz=6) and at forecasting for 60 revolutions the 

errors are #.5 times greater, than the corresponding 

results for «OFM 3-2» and «OFM 2». With 2-fold 

increase of a fit span (nz=12) the LST application 

errors grow. This is especially highly revealed for 

small forecasting intervals (up to 6 revolutions), 

where the RMS increase 2-3 times.    

Consider now the combined data on RMS of residual 

discrepancies on a fit span and on the RMS errors of 

the forecast. The corresponding results are presented in 

Fig. 5. We remind that 30 measurements have been 

processed on a fit span when using the OFM technique, 

and 6 measurements – when using the LST. So, the 

corresponding fit spans were 58 and #0 revolutions, 

respectively. 
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Figure 5. RMS of residual discrepancies and 

forecasting errors  

The data of Fig. 5 (namely, the data on the change of 

RMS of residual discrepancies on a fit span) clearly 

show the important distinction between considered 

techniques. The residual discrepancies very highly 

change in case of using the OFM. At the beginning of a 

fit span their RMS equals % 2.5 sec, and at the end of a 

fit span – 0.002 sec. When using LST all residual 

discrepancies have RMS within the limits from 0.003 

to 0.005 sec. At the last measurement instant the 

accuracy of determination of time using the OFM and 

LST techniques (with an optimum fit span) differs 

insignificantly. Such a behavior of residual 

discrepancies in the OFM technique illustrates 

advantages of the given technique. Namely, the change 

of residual discrepancies over a rather large fit span (58 

revolutions in this case) allows one to estimate 

automatically the time variability of drag (noise) and to 

use these estimates for forecasting the noise. Another 

important advantage of the OFM technique consists in 

the possibility of changing (increasing) the fit span 

with conserving the accuracy of estimates. This 

property is not present in LST: increasing of a fit span 

in relation to the optimum one results in essential 

worsening the accuracy of estimates at the updating 

instant and in short-term forecasting. 

 

6. RESULTS OF TESTS BASED ON THE REAL 
INFORMATION 
 
6.1. Satellite SL-4 R/B.  

The example of tests of the OFM technique based on 

the real information is given below. The orbital data in 

the form of so-called two-line elements (TLE) [#8] for 

the SL-4 R/B (No. 20967) satellite were used as the 

initial data. The time interval was chosen in such a 

manner, that the real period change per revolution to 

correspond to the initial data used in modeling (Section 

5). The orbital parameters have been updated #08 times 

over the time interval of November – December, 2005. 

The average time interval between successive TLEs 

was 0.54 days % 8.3 revolutions.  
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Figure 6. Orbital characteristics of the satellite 

Fig. 6 presents the data on the satellite altitude and on 

the period change per revolution (&T), and Fig. 7 gives 

the data on the solar and geomagnetic activity. These 

data clearly show correlation of variations of indices 

and parameter &T.  

300 310 320 330 340 350 360

Days from beginning 2005

70

75

80

85

90

95

100

105

110

F
 1

0.
7

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

K
p

�������������	
�
����	

 
Figure 7. Solar and geomagnetic activity indices 



The initial conditions for forecasting have been 

updated on the basis of application of two techniques: 

OFM and LST. In so doing, the numerical model of 

motion was used, in which the major harmonics of the 

geopotential and the dynamic model of the atmosphere 

were taken into account. Fig. 8 presents the relative 

variations of SO drag characteristics obtained as a 

result of TLE processing.   
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Figure 8. Variations of drag characteristics 

The estimates of drag variations, presented in Fig. 8, 

well agree with corresponding data of Fig. 6. This 

testifies to the objective character of observed 

variations. Existing relatively small divergences are 

explained by the effect of random errors and various 

time "attribution" of obtained estimates. The order of 

divergences (%#0 %) correlates with generally accepted 

ideas about the drag estimates accuracy. 
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Figure 9. Estimates of forecasting errors 

The forecasts were carried out for the "future" orbital 

data. In this case the direct forecast of TLEs (without 

updating) was also used, which is based on applying 

the known American analytical model of motion SGP 4 

[#9]. This model is adapted to using TLEs as initial 

conditions. The obtained RMS of time errors are 

presented in Fig. 9. The number of realizations at 

calculating each of points was %#00. It is seen from 

figure’s data that in processing the real information the 

comparative characteristics of accuracy of OFM and 

LST techniques well correlate with modeling results 

(Fig. 4). 

Note. Rather unexpected is the fact, that the direct 

application of TLE as initial conditions for forecasting 

leads to the same errors, as application of LST and the 

numerical model of motion. It could be expected, that 

the accuracy of direct application of TLE would be 

worse. This result is explained, apparently, by the fact 

that essentially greater number of initial measurements 

was used in obtaining TLEs, than in our conditions (7 

measurements, which correspond to the fit span of %3 

days). In conformity with recommendations stated in 

the monograph [8], the optimum fit span in LST equals 

3 - 5 days for considered conditions. It should be 

expected, that under the conditions of obtaining a 

greater number and more accurate measurements, the 

application of OFM and LST techniques would result 

in a better accuracy as compared to the direct 

application of TLE. 

 

6.2. Analysis of the data on collision of SC Iridium 33 
and Cosmos 2251.  

The collision of these satellites on February, #0, 2009 

at #6 hr 56 min provides a unique opportunity for 

getting precise estimates of forecasting errors. 

Calculations on the basis of using previous TLEs were 

performed in three ways: 

#. Direct forecast of TLE on the basis of application of 

the SGP 4 model of motion; 

2. Updating the initial data by means of LST (nz=6) 

and application of the numerical model of motion; 

3. Updating the initial data by means of OFM (nz=20) 

and application of the numerical model of motion; 
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Figure 10. Change of distance between the satellites 

The last, before collision, initial data on February, 9 

corresponded to the time instants: #8 hours (Iridium 

33) and #2 hours (Cosmos 225#). Fig. #0 presents 



calculated values of the distance between satellites 

close to the collision instant. 

It is seen from the obtained results, that application of 

the OFM technique resulted in 2.7-fold decrease of 

forecasting errors as compared to application of other 

calculation techniques.  

 
CONCLUSION            

The application of the technique of optimum filtration 

of measurements is a perspective direction in 

perfecting the software applied for operative solution 

of various ballistic problems. This technique combines 

in itself the advantages of the classical least square 

technique and modern measurement filtration 

techniques with allowance for the errors of the model 

of motion.    
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