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ABSTRACT 
 
Active debris removal (ADR) procedures are necessary 
to reduce the risk posed by space debris. The choice of 
objects to be removed in an ADR campaign needs to be 
based on a robust selection process.  Building on the 
techniques introduced in previous work, networks were 
constructed using data IURP� D� µQR� QHZ� ODXQFKHV¶�
simulation generated by the University of 
6RXWKDPSWRQ¶V� '$0$*(� PRGHO for a 21 year 
projection period between 2009 and 2030. The network 
edges were weighted according to the collision 
probability between objects. The vertices were 
ZHLJKWHG� DFFRUGLQJ� WR� WKH� µYHUWH[� PHDVXUHV¶� ZKLFK�

were the product of edge weight and the object mass. 
This paper quantifies how the removal of individual 
objects affects the topology of the network, using 
measures of strength and affinity. It is shown that by 
removing the objects represented by particular vertices, 
the connectivity of the network can be reduced, 
decreasing the potential for collisions.  
 
1. INTRODUCTION 
 
Recent work has shown that the space debris 
environment is unstable such that, even if there were 
no new launches, the number of debris in the 
environment will increase due to on-orbit collisions 
[1][2]. Reducing the risk posed by debris involves 
implementing mitigation practices, but also using 
active debris removal (ADR) strategies to deal with 
existing debris. ADR relies on the development of 
technology that can remove objects from the 
environment whilst minimising the creation of new 
debris. There are a number of proposals for ADR 
strategies, but the lack of technological maturity means 
that they are not currently in use [3]. Whilst the ideas 
for this technology are under development, identifying 
appropriate selection criteria for removals in any future 
campaign needs to be planned carefully. Robust 
selection criteria are essential to ensure that the objects 
that are removed have the greatest impact on reducing 
the number of future collisions and on stabilising the 
environment.  
 
In a recent NASA study, the effectiveness of several 
ADR strategies was investigated [4]. In their approach, 
the objects were ranked according to the product of 

their collision probability and mass at the start of each 
projection year. Based on this ranking, 5, 10 or 20 
objects from the top of the list were then immediately 
removed from the environment.  Fig. 1 shows that 
increasing the removal rate reduces the effective 
number of debris leading to a linear growth and more 
stable future environment.  
 

 
 

Figure 1. NASA case study results in which a non-
mitigation scenario is compared to the removal of 5, 10 

or 20 debris objects [4]. 
 
However, this ranking approach means that objects that 
have the potential for many collisions may remain in 
the simulation if they are not at the top of the ranking 
list. Consequently these objects may go on to cause a 
collision during the simulation. Therefore, a new 
method is needed to identify the objects that have a 
high overall probability of collision. 
 
The need for a carefully targeted approach to removal 
based on a robust selection process is the motivation 
for using network theory. Network theory is used to 
investigate the environment both at system-level, as 
represented by the topology of the network and at the 
level of the individual vertices and edges, representing 
the debris objects and the potential connections 
between them.  
 
In work by Lewis et al. (2008) the concept of using 
networks as a theoretical approach to analysing data 
from debris environment models was introduced [5]. In 
that work, network theory was used to quantify how 
specific debris objects affect the environment, as well 
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as looking at how the environment is structured as a 
whole.  This new study follows the initial work by 
analysing the structure of the networks and then 
identifying objects for removal based on the analysis of 
network measures.  This allows for the development of 
strategies for targeting individual objects, taking into 
account the mass and collision probability by 
weighting the edges and vertices. Once objects have 
been identified using network measures, they can be 
removed in the modelling studies and the effectiveness 
of the network approach can be assessed by 
comparison to a non-mitigation scenario.  
 
2. NETWORKS 
 
Networks are composed of vertices representing debris 
objects and edges representing the encounters between 
the objects. A network is described mathematically 
using an adjacency matrix,  
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An unweighted network has a binary adjacency matrix 
where aij=1 represents an edge between vertices i and j 
and aij=0 represents the lack of a connection. The 
values in an adjacency matrix of a weighted network 
are not binary as the values describe the probability of 
a conjunction occurring.  
 
The topological features of a network have a strong 
impact on its physical properties such as robustness to 
targeted attack [6]. Whilst unweighted networks can be 
used to represent simple aspects of complex systems, 
many real-world systems have additional interesting 
features that can be highlighted in weighted networks. 
A study by Barthélemy et al. (2004) showed that the 
modelling of complex networks must go beyond 
topology and incorporate interaction strength to 
characterise real-world networks [7][8].  
 
An unstable space debris environment translates into a 
highly-connected network. As such, the aim of the 
work by Lewis et al. (2008) was to disrupt the 
connectivity of a space debris environment network in 
order to stabilise the environment [5]. In this new paper 
we extend the work and show that analysis of weighted 
networks allows the risk posed by objects to be 
quantified more robustly. For this paper, we use the 
ranking methods in the Liou and Johnson (2009) study 
as a starting point [4]. The edges are weighted 
according to the collision probability between objects. 
These edge weights are then used to calculate vertex 
measures of strength and affinity to quantify the 

importance of vertices for the connectivity of the 
network. 
 
2.1. Targets 
 
Objects can be targeted by quantifying their risk to 
future collision activities. It is possible that this risk is 
not only due to their mass and collision probability, but 
also other factors that may affect ADR effectiveness, 
such as altitude. Typically, most objects only have the 
potential to interact with one or two other objects. 
However, there are a small number of objects that have 
the potential to interact with many others. If these 
objects could be removed, the likelihood of the 
generation of new on-orbit debris would be reduced.  
 
Removing objects in the space debris environment 
translates into removing vertices with the aim of 
reducing the connectivity of the network. The part of a 
network containing the majority of connected vertices 
is called the giant component. Attacking a network by 
removing vertices reduces the giant component into 
smaller clusters that can no longer interact with other 
parts of the network, thus reducing its connectivity. If 
the giant component is broken down beyond a critical 
threshold, then the network is described as having 
failed. Removing vertices at random from some 
networks will lead to a failure, whereas vertices in 
certain types of networks, called scale-free networks, 
need to be targeted specifically before the network will 
fail [9]. For random attacks, no threshold for 
fragmentation of the giant component is observed; 
instead, the size of the giant component slowly 
decreases [10]. However, the random attack tolerance 
of scale-free networks comes at a high price as these 
networks are extremely vulnerable to targeted attacks 
[10].  Consequently, network theory can provide an 
indication of actions that can be performed in order to 
optimise the effectiveness of ADR [11]. For the space 
debris environment, the goals are to induce a network 
failure, to reduce the network connectivity and to 
increase the stability of the environment by limiting the 
future generation of on-orbit debris.  
 
2.2. Quantifying the Risk 
 
The network analysis measures used here are weighted 
variations of those used by Lewis et al. (2008) [5].  
The risk posed by individual objects is quantified here 
using measures of strength and affinity. These 
measures quantify the importance of individual vertices 
to the connectivity of the network as a whole. Strength 
and affinity are both related to the degree of a vertex. 
 
The connectivity of an individual vertex is given by its 
degree, ki which is calculated from the adjacency 
matrix, aij,  
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For a weighted network, the equivalent measure is 
strength, si, 
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where wij  is the weight on the edge between vertices i 
and j.  
 
Lewis et al (2008) concluded that vertices with a high 
degree (objects having a probability of interacting with 
many other objects) acted as hubs [5]. Hubs have a 
higher degree compared to other vertices in the 
network. The assortativity, r, identifies hubs in a 
network by calculating the correlation between the 
degree of vertex i and the degree of its neighbour, 
vertex j. Assortativity values can be positive or 
negative, corresponding to assortative or disassortative 
networks respectively. Lewis et al. (2008) found that 
space debris environment networks are likely to be 
disassortative and, therefore, have a few hubs that may 
be targeted for removal. For a weighted network, the 
affinity provides a measure corresponding to 
assortativity,  
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The values for individual vertices are called vertex 
measures and it is important to note, these are 
calculated using edge weights. The vertex measures 
can be averaged over the whole network to give 
network measures which describe the topology. In 
network theory characteristics of an object, such as 
mass, are labelled as vertex attributes, but no method 
yet exists to analyse networks that are initially 
weighted according to their vertices [12].  It is 
important to do so however, as the mass of an object in 
the space debris environment affects the outcome of a 
potential collision. To address this problem, the vertex 
measures were calculated using edge weights, 
following the current literature, and then multiplied by 
the mass of the object to provide weights for the 
YHUWLFHV�ZKLFK�PHDVXUH�WKH�µLPSRUWDQFH¶�RI�DQ�REMHFW� 
 
The efficiency of the network method used to select 
objects for removal was measured by an efficiency 
IDFWRU�� �. This efficiency factor measures the ratio of 
the number of objects removed to the difference 
between the number of vertices in an ADR scenario 
and a non-mitigation scenario.  A successful method 
will have a high efficiency factor. 

3. METHOD 
 
The data used to build the networks were generated 
XVLQJ� WKH� 8QLYHUVLW\� RI� 6RXWKDPSWRQ¶V� GHEULV� PRGHO��

Debris Analysis and Monitoring Architecture for the 
Geosynchronous Environment (DAMAGE). 
DAMAGE is a three-dimensional model that was 
initially aimed at simulating debris within the 
geosynchronous orbital regime but has since been 
upgraded to allow investigations of the low Earth orbit 
(LEO) to geosynchronous Earth orbit (GEO) debris 
environment. As with other evolutionary models, 
DAMAGE is able to simulate the historical and future 
debris populations t 10 cm using a Monte Carlo (MC) 
approach, whereby multiple projection runs are 
performed to establish reliable statistics on the 
outcome. Projections covering the historical period 
from 1957 to 2009 employ launch and fragmentation 
LQIRUPDWLRQ� IURP� (6$¶V� 'DWDEDVH� DQG� ,QIRUPDWLRQ�

System Characterising Objects in Space (DISCOS) and 
historical monthly averaged solar flux F10.7 values 
combined with the CIRA-72 atmospheric model for 
atmospheric drag calculation. Future projections use 
long-term F10.7 projection based on a repeating sine 
function and fragmentation events are simulated using 
the NASA Standard Breakup Model [13]. Non-
fragmentation sources of debris, except mission-related 
objects included in DISCOS, are not considered. All 
objects are propagated forwards using a semi-analytical 
RUELWDO�SURSDJDWRU�WKDW�LQFOXGHV�(DUWK¶V�J2, J3, J2,2, luni-
solar gravitational perturbations, solar radiation 
pressure (with cylindrical Earth shadow) and 
atmospheric drag. Collision probabilities are estimated 
using a fast, pair-ZLVH� DOJRULWKP�EDVHG� RQ� WKH� µ&XEH¶�
DSSURDFK� DGRSWHG� LQ� 1$6$¶V� /(2-to-GEO 
Environment Debris model (LEGEND) [14]�� $� µno 
future launches (NFL�¶ (2009 ± 2030) scenario without 
further mitigation was used for 10 MC runs by 
DAMAGE to provide data for this investigation.  
 
For each of the 10 MC runs, DAMAGE recorded 
information about all the collision events occurring in 
the projection period, between intact vs intact or intact 
vs fragment objects t 10 cm. This information included 
the identification, mass, size and orbit of each object, 
as well as the collision probability and energy. The 
same information was recorded for encounters between 
objects occurring during snapshots taken at the start of 
each year between 2020 and 2030. It is important to 
note that the objects that have encounters in the 
snapshots do not form part of the normal projection 
[15]. The snapshot information can be used to 
determine a mass u collision probability criterion for 
ranking objects that contribute to the future hazard, 
following Liou and Johnson (2009) [4]. In this work, 
this information is used to construct networks. A freely 
DYDLODEOH�VRIWZDUH�WRRO��HQWLWOHG�µ&\WRVFDSH¶��ZDV�XVHG�



to display the resulting networks [16]. The networks 
were then analysed according to the vertex and 
network measures described above. Twenty objects 
identified by the network analysis as those having the 
highest strength and affinity were then removed and 
the simulation was re-run using DAMAGE. 
 
4. RESULTS AND DISCUSSION 
 
DAMAGE uses a Monte Carlo simulation approach to 
build a picture RI� WKH� FROOLVLRQ� µSRWHQWLDO¶� RI� HDFK�
object in the environment. The networks describing the 
encounters between objects were constructed by 
combining the data generated in each MC run. For each 
of the MC runs, 200 snapshots were taken of the 
network at the start of each simulation year between 
2020 and 2030. These snapshots used the collision 
algorithm to estimate the collision probability of every 
object in the simulated environment. The combined 
snapshot data from each MC run could then be split 
according to the year that the snapshots represent. One 
small network can be produced for each of the ten 
years, typically having a few short chains or pairs of 
objects. This enables a collision or explosion, which 
µVHHGHG¶� WKH� HQYLURQPHQW�GXULQJ� WKH� VLPXODWLRQ�� to be 
identified. Fig. 2 shows the data from 2020. As the 
conjunctions from each year are added, the network 
becomes more connected and complex. Fig. 3 shows 
the next step in the process and after every year is 
added together, the result is the network shown in Fig. 
4. 
 

 
 

Figure 2. Simulation data from 2020 showing 2,198 
vertices and 1,609 edges. 

 

 
 
Figure 3. Simulation data from 2020 and 2021 which 

shows 3,429 vertices and 3,098 edges. 
 
4.1 Unweighted Network 
 
The output from the DAMAGE simulation produced a 
set of 14,405 encounters involving 7,368 objects which 
were displayed in the Cytoscape network software 
(Fig. 4). Most objects (95%) were found in the giant 
component and the remainder were found in pairs or 
short chains of three to seven vertices.  The network 
had a complex, well-connected topology which made it 
difficult to distinguish any features by visual 
inspection.  
 
4.2. Weighted Network 
 
The network in Fig. 2 was weighted according to the 
vertex measures. Fig. 5 shows part of the giant 
component. Each vertex has a size based on the value 
of the object mass and the vertex measure of strength.  
 

 
 

Figure 5. A portion of the giant component weighted 
according to mass u strength. 

 



 
 
Figure 4. The network with 7,014 vertices and 14,���� HGJHV� LQ� WKH� JLDQW� FRPSRQHQW�� GLVSOD\HG� XVLQJ� WKH� µRUJDQLF¶�

layout in Cytoscape. 
 
It is important to note that the objects chosen for 
removal using the network approach are based on the 
analysis of simulations and are not meant to identify 
the real objects that should be removed from the 
environment. Rather, this approach highlights the 
objects that should be removed to reduce the 
connectivity of the networks built in this study.  
 
4.3. Removing Vertices 
 
Using the vertex measures of strength, si and affinity, 
ai, and the mass, mi of each object, the vertices can be 
given a risk value, Ri,  
 

iii smR u 
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The objects were ranked separately to find the twenty 
highest Ri

(1) and Ri
(2) values. The twenty objects with 

the highest values of Ri
(1) were found within the first 34 

lines of the ranked list of Ri
(2) values. As there was a 

strong correspondence between the two criteria 
rankings, the twenty objects with the highest values of 
Ri

(1) were chosen for removal.  These twenty objects 
were removed from the population files before the  

 
simulations were repeated. The objects had Ri

(1) values 
that ranged from 1138.735 to 2496.723 and the objects 
had degree, ki ranging from 6 to 13. Each object had a 
degree and mass u strength value that was higher than 
that of the average for the network as shown in Tab. 1.  
 

Table 1. A comparison of network measures. 
 

Measure Original 
network 

Object 
removal 

Number of vertices 7368 7240 
Strength u Mass   16.455 16.208 
Affinity u Mass 1463.741 1460.520 
Degree 3.519 3.595 

 
The simulations were repeated and the new average 
network statistics were compared to the original 
network (Tab. 1). Removing twenty objects before the 
start of the simulation had an efficiency, ��RI���� as, 
there were 108 fewer objects without the potential for 
collisions in the second simulation. However, 
removing twenty objects was not enough to break 
down the giant component. 
 
Repeating the simulation using random removal 
confirms that a targeted approach is more efficient. 



When twenty randomly chosen objects were removed 
before the simulation, WKH�HIILFLHQF\����ZDV�RQO\������ 
 
5. CONCLUSION 
 
A weighted network more accurately represented the 
risk from the objects than an unweighted network for 
quantifying removal criteria. The addition of vertex 
weights takes into account the characteristics of an 
object and its relationship to other objects in the 
environment.  Objects were ranked according to the 
vertex measures of strength u mass and affinity u mass. 
By removing the twenty objects that had the highest 
vertex values, the potential for collisions decreased and 
the connectivity of the network was reduced. 
 
Future work will include investigating other object 
characteristics, such as altitude, that will be important 
when considering the cost and feasibility of an ADR 
scenario. Furthermore, the temporal aspect of the 
networks will be explored as the topology of the 
network changes as the space debris environment 
evolves.  
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